化学计量学与遥感FTIR技术联用对复杂多组分体系的定性定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用化学计量学的方法,结合遥感傅里叶红外光谱(Fourier transform infrared Spectrum,FTIR)技术,对大气环境中的有毒易挥发有机化合物(Volatile Organic Compounds,VOCs)进行了较为深入的定性、定量研究。本文的主要研究内容如下:
     1.基于化学计量学的多组分遥感FTIR谱图解析
     针对人工神经网络(ANN)训练时间过长和模型“过拟合”的问题,采用偏最小二乘法(PLS)和主成分分析法(PCA),对输入ANN的光谱数据进行了主成分提取,利用遗传算法(GA)进行波长选择,以简化模型、剔除不相关的变量、加快分析速度。建立了PLS-BP-ANN、PCA-BP-ANN、GA-BP-ANN和BP-ANN四种模型,对谱带混叠严重的多组分体系成功地进行了同时定量分析。在苯、甲苯、甲醇、氯仿和丙酮五组分大气VOCs的定量测定中,对四种方法的预测误差比较,PLS-BP-ANN模型显示了最为稳健的能力。
     2.模型传递方法用于解析遥感FTIR谱图
     本文将模型传递的思想引入到遥感FTIR谱图的分析中,模型传递就是将一台仪器所获得的数据建立的校正模型,直接用到另一台仪器测得的数据上,旨在简化分析过程并获得好的预测精度,这样就可消除同一样品在不同仪器上的测量误差。而遥感FTIR的问题,本文将其理解为样品在实测中相对于标准红外谱图所出现的偏差。采用普鲁克分析(PA)就是去除仪器间的差异,PA的基本思想是去除X(如吸光度)中与Y(如浓度)不相关的部分。由于其更针对在不同仪器上的量测信号进行处理,消除这些信号间的差别,同时具有较好的适应性,因此是一种更有意义的模型传递方法。本研究利用PA实现了四组分—丙酮、苯、氯仿和甲醇气体混合物的BP-ANN模型在两台FTIR仪器上的传递,预测精度高,实现了EPA数据对遥感数据的分析。
     3.人工神经网络研究大气VOCs的分类
     针对BP-ANN学习收敛速度慢、建模过程中网络层数及每层神经元的个数难以确定和易陷入局部最优等问题,本文提出了适用于模式分类的径向基神经网络,即概率神经网络(Probabilistic Neural Network,PNN)和学习矢量量化(Learning Vector Quantization,LVQ)神经网络的方法,对大气环境质量进行预测。在氯仿、甲醇、丙酮、己烷、甲苯和二氯甲烷六组分大气VOCs的定性测定中,对PNN、LVQ和BP-ANN三种方法的预测误差进行比较,结果表明:PNN方法的分类精度最好,达到93.3%。而且由于PNN的结构简单、训练速度快、新的训练样本也很容易加入到以前训练好的分类器中,因此它很适合于大气环境的实时、在线定性监测,能起到及时预警的作用。
     4.遥感FTIR谱图的模式识别
     本文创造性地将主成分提取与线性判别分析(Linear Discriminant Analysis,LDA)相结合的方法,引入到遥感FTIR光谱的分析中,建立了PLS-LDA、PCA-LDA对VOCs的模式识别方法。在对谱图相互严重混叠干扰的五组分—己烷、苯、甲苯、丙酮和二氯甲烷大气VOCs的定性鉴别中,两种方法的识别率都较高,其中PLS-LDA略高于PCA-LDA,该项研究对工作和生活空间的污染控制具有指导意义。本文将这种方法推广到其它复杂体系的定性分析中,如对多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)的致癌性进行分类,致癌性按高(h)、低(l)、非(n)分类时预测准确率达100%。
Qualitative and quantitative analysis of VOCs (Volatile Organic Compounds)in the atmosphere are carried out in combination with remote sensing FTIR(Fourier transform infrared spectrum) technology and chemometrics methods inthis dissertation. The main contents are as follows:
     1. Interpretation on Remote Sensing FTIR Spectrum Based on Chemometrics
     In consideration of ANN's weakness of excess training time and overfittingmodels, this dissertation adopts PLS and PCA to extract principal component fromANN spectrum data, and uses GA to choose wavelength to simplify models, toeliminate irrelevant variables, and to enhance analytic speed. Four models,PLS-BP-ANN, PCA-BP-ANN, GA-BP-ANN and BP-ANN, are built to performsimultaneous quantitative analysis of multicomponents in the mixture when thereare serious overlapping between the spectral bands of the compounds Comparingthe predictive error of the four methods with the quantitative measurement for thefive-component atmosphere VOCs(benzene, toluene, methanol, chloroform andacetone), PLS-BP-ANN model had the best robustness.
     2. Calibration Transfer for the Interpretation on Remote Sensing FTIRSpectrum
     The idea of calibration transfer is introduced into the analysis of remotesensing FTIR spectrum this dissertation. Calibration transfer means to predictsuccessfully the signals of other uniform instrument with the calibrated modelbuilt with one instrument. As for the data of remote sensing FTIR, it is regarded asthe deviation from EPA data in this research. And then the method of PA(Procrustes Analysis) is adopted to get rid of discrepancy among instrumentswhile its main idea is to eliminate the parts in X (such as absorbance) irrelevant toY (such as concentration). PA focuses on the process of metrical signals ofdifferent apparatus to get rid of discrepancy among them and maintains bettersteadiness. Hence, it is a more significant method of calibration transfer. Thisresearch adopts the method of PA to realize the transfer of BP-ANN model madeup of acetone, benzene, chloroform and methanol between two FTIR apparatus. Ityields high prediction accuracy and fulfills the prediction of remote sensing data with EPA data.
     3. Classification of VOCs in the Atmosphere Based on Artificial NeuralNetwork
     Considering the confinements of slow speed of study convergence, too muchlayers of network and local optimization with BP-ANN model, the improved ANNmodels, PNN(probabilistic neural network) and LVQ(learning vector quantization)which are suitable to pattern classification are built in this dissertation. For thesix-component system chloroform, methanol, acetone, hexane, toluene andmethyene chloride in the atmosphere, the qualitative measurement performance ofPNN, LVQ, and BP-ANN are compared while the method of PNN maintains thebest classification accuracy with 93.3%. Besides, PNN is characterized of simplestructure and fast training speed. And the new training samples are easier to addinto the former trained classifiers for PNN model. Consequently, PNN is suitablefor the real-time and on-line qualitative monitoring of atmospheric environmentand can perform environmental alarm.
     4. Pattern Recognition of Remote Sensing FTIR Spectrum
     The method of PCA-LDA (principal components analysis-linear discriminantanalysis) is introduced creatively in the analysis of remote sensing FTIR spectrumin this dissertation and the method of pattern recognition of PLS-LDA andPCA-LDA are built to recognize VOCs in the atmosphere. In the qualitativedifferentiation of five components with overlapped spectrum, that is, hexane,benzene, toluene, acetone and methyene chloride, both methods have high ratio ofrecognition and PLS-LDA yields a little higher one than PCA-LDA. This researchis of great significance to the control of pollution in our life. This method is alsopromoted to qualitative analysis of other complex system in this research such asthe classification of carcinogenicity of PAHs (polycyclic aromatic hydrocarbons).When the carcinogenicity is classified on high, low, and no level, the predictiveaccuracy reaches 100%.
引文
1 Wold S. Chemometri-Kemi Och Tillampad Matematik. Year-Book of Swedish Natural Science Research Council, Stockholm, 1974: 200-206
    
    2 Kowalski B R. Chemometrics. Anal. Chem., 1980, 52:11R-112R
    
    3 Lavine B, Workman J. J. Chemometrics. Anal. Chem., 2004, 76: 3365-3372
    
    4 Lavine B, Workman J. J. Chemometrics. Anal. Chem., 2002, 74: 2763-2770
    
    5 Lavine B. Chemometrics. Anal. Chem., 2000, 72: 91R-97R
    
    6 Jurs P C, Bakken G A, Mcclelland H E. Computation Methods for the nalysis of Chemical Sensor Array Data from Volatile Analytes. Chem. Review., 2000, 100: 2649-2678
    
    7 Togkalidou T, Tung H H, Sun Y, Andrews A, Braatz R D. Solution Concentration Prediction for Pharmaceutical Crystallization Processes Using Robust Chemometrics and ATR FTIR Spectroscopy. Org. Process Res. Dev., 2002, 6(3): 317-322
    
    8 Prado B M, Kim S, Ozen B F, Mauer L J. Differentiation of Carbohydrate Gums and Mixtures Using Fourier Transform Infrared Spectroscopy and Chemometrics. J. Agric. Food Chem., 2005, 53(8): 2823-2829
    
    9 Notholt J, Toon G C, Stordal F, Sbolberg S, Schmidbauer N, Meier A, Becker E, and Sen B. Fourier Transform Spectrometer(FTS) for Measurements of Atmospheric Trace Gases. J. Geophys. Res., 1997, 102: 12855-12861
    
    10 Notholt J, Toon G C, Rinsland C P, Pougatchev N S, Jones N B, Connor B J, Weller R, Gautrois M, Schrems O. Latitudinal Variations of Trace Gas Concentrations in the Free Troposphere Measured by Solar Absorption Spectroscopy During a Ship Cruise. J. Geophys. Res., 2000, 105(2000): 1337-1349
    
    11 Becker E, Notholt J. Intercomparison and Validation of FTIR Measurements with the Sun, the Moon and Emission in the Arctico. J. Quant. Spectrosc. Radiat. Transfer, 2000, 65(5): 779-786
    
    12 Goldman A, Schoenfeld W G, Stephen T M, Murcray F J, Rinsland C P, Barbe A, Hamdouni A, Flaud J M, Camy-Peyrep C. Isotopic Ozone in the 5 u Region from High Resolution Balloon-Borne and Ground-Based FTIR Solar Spectra. J. Quant. Spectrosc. Radiat. Transfer, 1998, 59(3-5): 231-244
    13 Wang Junde(王俊德).The Application of Remote Sensing in FTIR(遥感技术在傅里叶变换红外光谱中的应用),in Modern Fourier Transform Infrared Spectroscopy and its Application(Vol.1)(文载:近代傅里叶变换红外光谱技术及应用.上卷),Wu Jinguang Ed(吴瑾光主编).Beijing(北京):Scientifical and Technical Documents Publishing House(科学技术文献出版社),1994:442-473
    14 Marshall T L, Chaffin C T, Makepeace V D, Hoffman R M, Hammaker R M. Investigation of the Effects of Resolution on the Performance of Classical Least-Squares(CLS) Spectral Interpretation Programs when Applied to Volatile Organic Compounds (VOCs) of Interest in Remote Sensing Using Open-Air Long-Path Fourier Transform Infrared(FT-IR) Spectrometry. Journal of Molecular Structure, 1994, 324(1-2): 19-28
    15 Wang Junde(王俊德), Bian Haiyan(卞海燕), Chen Zuoru(陈作如), Luo Yunhua(罗蕴华), Ma Chong(马冲). Remote Measurement of Drone (Aircraft) Exhaust Using Fourier Transform Infrared System(靶机尾气的FTIR遥感分析). Chinese J. of Anal. Chem. (分析化学), 1990, 18:435-439
    16 Walter W T, Perry S H, Han J S, Park C J. Open-path FTIR Ozone Measurements in Korea. SPIE, 1998, 3534:133-139
    17 Piccot S D, Masemore S S, Ringlet E S, Srinivasan S. Validation of a Method for Estimating Pollution Emission Rates From Area Source Using Open-Path. FTIR Spectroscopy and Ddispersion Modeling Techniques. J. Air Waste Manage. Assoc., 1994, 44:271-279
    18 Milton M J T, Partridge R H, Goody B A. Proceeding of the A&WMA International Specialty Conference on Optical Sensing for Environmental and Process Monitoring. VIP-55 San Francisco: Pittsburgh, Pa., 1996: 393-406
    19 Hren B, Katona K, Mink J, Kohan J, Isaak Gy. Long-Path FTIR Spectroscopic Studies of Air Pollutants in the Danube Refinery Plant. Analyst, 2000, 125:1655-1659
    20 Li Y, Wang J D, Huang Z H, Xu H Q, Zhou X T. Monitoring Leaking Gases by OP-FTIR Remote Sensing. J. Environ. Sci. & Health, 2002, A37(8): 1453-1479
    21 Huang Zhonghua(黄中华).The Application of Remote Sensing FTIR in Toxic Organic Compounds Measurement(遥感傅里叶变换红外光谱在有毒有机物分析中的应用).Doctoral Dissertation of Nanjing University of Science & Technology(南京理工大学博士学位论文),2003,51-63
    22 Samanta A, Todd L A. Mapping Chemical Concentrations Indoors Using Open-Path FTIR Spectroscopy and Computed Tomography: Chamber Studies. Proc. SPIE-Int. Soc. Opt. Eng., 1995, 2365:187-191
    23 Todd L A, Yost M G, Hashmonay R A. Trends and Future Applications of Optical Remote Sensing and Computed Tomography to Map Air Contaminants. SPIE, 1999, 3534:399-404
    24 Herman G T. Image Reconstruction From Projections: The Fundamentals of Computerized Tomography. New York: Academic, 1980
    25 Todd L A, Ramanathan M, Mottus K, Katz R, Dodson A, Mihlan G. Measuring chemical emissions using open-path Fourier transform infrared (OP-FTIR) spectroscopy and computer-assisted tomography. Atmospheric Environment, 2001, 35(11): 1937-1947
    26 Jinhua Sheng, Derong Liu. An Improved Maximum Likelihood Approach to Image Reconstruction Using Ordered Subsets and Data Subdivisions. IEEE Trans. on Nuclear Sci., 2004, 51(1): 130-135
    27 Hashmonay R A, Yost M G, Wu C F. Computed Tomography of Air Pollutants Using Radial Scanning Path-Integrated Optical Remote Sensing. Atmospheric Environment, 1999, 33(2): 267-274
    28 Tsai M Y, Yost M G, Wu C F, Hashmonay R A, Larson T V. Line Profile Reconstruction: Validation and Comparison of Reconstruction Methods. Atmospheric Environment, 2001, 35(28): 4791-4799
    29 Wu C F, Yost M G, Hashmonay R A, Tsai M Y. Path Concentration Profile Reconstruction of Optical Remote Sensing Measurements Using Polynomial Curve Fitting Procedures. Atmospheric Environment, 2003, 37(14): 1879-1888
    30 Li Yan(李燕),Wang Lianjun(王连军),Wang Junde(王俊德).Path Concentration Distribution of Air Contaminants Measured by Remote Sensing Fourier Transform Infrared Spectroscopy(遥感傅里叶变换红外光谱测定气体污染物在单光程上的浓度分布).Chinese Journal of Analytical Chemistry(分析化学),2005,33(6):825-827
    31 Todd L, Leith D. Remote Sensing and Computed Tomography in Industrial Hygiene. Am. Ind. Hyg. Ass. J., 1990, (51): 224-233
    32 Yost M G, Gadgil A J, Drescher A C, Zhou Y, Simonds M A, Levine S P, Nazaroff W W, Saisan P A. Imaging Indoor Tracer-Gas Concentrations With Computed Tomography: Experimental Results With Remote Sensing FTIR System. Am. Ind. Hyg. Assoc. J., 1994, 55: 395-402
    33 David B M, Gregory M Z, Rodney D T, Philip R C. Remote Optical Sensing Instrument Monitoring to Demonstrate Compliance with Short-term Exposure Action Limits during Cleanup Operations Uncontrolled Hazardous Waste Sites. Journal of Hazardous Materials. 1995, 43: 55-65
    34 Stephen O D, John G M, Niall J S. Computed Tomography of Air Pollutants in Street Canyons. Pto-ireland 2002: Optic and Photonics Technologies and Applications, Thomas J Glynn, Editor, Proceedings of SPIE, 2003, 4876: 958-966
    35 Drescher A C, Gadgil A J, Price P N, Nazaroff W W. Novel Approach for Tomographic Reconstruction of Gas Concentration Distributions in Air: Use of Smooth Basis Functions and Simulated Annealing. Atmos. Environ., 1996, 30(6): 929-940
    36 Hashmonay R A, Yost M G, Wu Changfang. Ambient Gaseous Leak Detection Using Radial Scanning Computed Tomography and Optical Remote Sensing. SPIE, 1999, 3534: 126-132
    37 Huang Zhonghua, Wang Junde, Li Yan. Mapping Spacial Tracer Gases. Concentration Profiles on a Two-Dimensional Plane by OP-FTIR Remote Sensing. Instrumen. Sci. & Tech., 2003, 31: 23-32
    38 Li Y, Wang J D. Mapping Air Contaminant Concentrations Using Remote Sensing FTIR. J. Environ. Sci. & Health, 2003, A38(2): 429-438
    39 Ren Y B, Li Y, Wang J D, Wang X F, Liu B P, Zhang L M, Zhang L. Reconstruction of Air Contaminant Concentration Distribution in a Two-dimensional Plane by Computed Tomography and Remote Sensing FTIR Spectroscopy. J. Environ. Sci. & Health, 2005, A40(3): 571-580
    40 Yu B H, Li Y, Ren Y B, Hu L P, Wang J D. A Novel Iterative Algorithm for Spatially Mapping Air Contaminant Concentration Distribution Using OP-FTIR. Atmospheric Environment, submitted
    41 Zhang J, Gong Y J. Automated Identification of Infrared Spectra of Hazardous Clouds by Passive FTIR Remote Sensing. Proceedings of SPIE, 2001, 4548:356-362
    42 Klaus P S, Carsten J, Peter J S, Bernhard L, Michael B, Adam G, Barbara K, Leszec Z, Guenter D. Comparison of Remote Sensing Techniques for Measurements of Aircraft Emissions Indices at Airports. Proceedings of SPIE, 2004, 5235:425-434
    43 Klaus S, Carsten J, Peter S, Bernhard L, Michael B. Measurements of Aircraft Emissions Indices at Airports Passive Remote Sensing. Proceedings of SPIE, 2003, 4882:375-383
    44 Harig R, Matz G. Toxic Cloud Imaging by Infrared Spectrometry: a Scanning FTIR System for Identification and Visualization. Field Anal. Chem. Technol., 2001, 5(1-2): 75-90
    45 Wang J D, Wang T S, Chen Z R, Luo Y H, Clench M R, Mowthorpe D J. The Influence of the Temperature of Blackbody for Calibrating FTIR System on the Instrument Response Function. Spectrosc. Lett., 1997, 30(4): 783-791
    46 Zhang Liming(张黎明),Zhang Lin(张琳),Li Yan(李燕),Wang Xiaofei(王晓斐),Liu Bingping(刘丙萍),Ren Yibo(任翌博),Wang Junde (王俊德).The Calibration of Instrument Response Function during Passive FTIR Measurement(被动式遥感FTIR测量时的仪器响应函数校正).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006,26(1):45-46
    47 Wang T S, Zhu C J, Wang J D, Xu F M, Chen Z R, Luo Y H. Study on Spectral Characterization of Infrared Flare Material Combustion with Remote High Resolution Fourier Transform Infrared Spectrometry. Anal. Chim. Acta, 1995, 306:249-258
    48 Herget W F, Brasher J D. Remote Fourier Transform Infrared Air Pollution Studies. Opt. Eng. 1980, 19:508-514
    49 Li Y, Wang J D. the Real Time Diagnostics of Combustion Characteristics of Solid Propellant by Remote Sensing FTIR System. Instrum. Sci. Technol., 2003, 31(1): 33-45
    50 Flores-Jardines E, Schafer K, Harig R, Rusch P, Grutter M. Investigation of Temperature and Gas Concentration Distributions in Hot Exhausts (Airplanes and Burners) by Scanning Imaging FTIR Spectrometry. SPIE, 2005, 5979 1A: 1-12
    51 Wang Junde(王俊德),Li Yan(李燕).Spatially Extension of Analytical Chemistry.(分析化学在空间上的延伸).In Advances in Analytical Chemistry(载于《分析化学新进展》).Chemical Science Department of National Natural Science Foundation of China(国家自然科学基金委员会化学科学部组编).Ed.Erkang Wang.(汪尔康主编).Beijing(北京):Science Press(科学出版社),2002:pp.359-372
    52 Wang C D, Walter W T, Kagann R H. Neural Network and Classical Least Squares Methods for Quantitative Analysis in Remote Sensing FTIR Systems. Proc. SPIE-Int. Soc. Opt. Eng., 1995, 2366:251-262
    53 Emilio L A, Garrigues S, Miguel G. Simultaneous Vapor Phase Fourier Transform Infrared Spectrometric Determination of Butyl Acetate, Toluene and Methyl Ethyl Ketone in Paint Solvents. Analyst, 1998, 123:1247-1252
    54 Yang H S, Griffith P R, Tate J D. Comparison of Partial Least Squares Regression and Multi-Layer Neural Networks for Quantification of Nonlinear Systems and Application to Gas Phase Fourier Transform Infrared Spectra. Anal. Chim. Acta, 2003, 489:125-132
    55 Hippel T, Storrie-Lombardi L J, Storrie-Lonbardi M C. Automated Classification of Stellar Spectra-I. Initial Results with Artificial Neural Networks. Monthly Notices of the Royal Astronomical Society, 1994, 269: 97-104
    56 Folkes S R, Lahav O, Maddox S J. An Artificial Neural Network Approach to. Classification of Galaxy Spectra. Monthly Notices of the Royal Astronomical Society, 1996, 283: 651-665
    57 Andrew E F, Ofer L, Rachel S S. Estimating Photometric Redshifts with Artificial Neural Networks. Monthly Notices of the Royal Astronomical Society, 2003, 339:1195-1202
    58 Hammer C L, Small G. W. Artificial Neural Network for the Automated Detection of Trichloroethylene by Passive Fourier Transform Infrared Spectrometry. Anal. Chem., 2000, 72:1680-1689
    59 Van Den Broek W H A M, Wienke D, Melssen W J, Buydens L M C. Plastic Material Identification with Spectroscopic Near Infrared Imaging and Artificial Neural Networks. Anal. Chim. Acta., 1998, 361:161-176
    60 Li Yan(李燕), Wang Junde(王俊德), Chen Zuoru(陈作如), Zhou Xuetie(周学铁). Comparison of Four Multivariate Calibration Methods in Simultaneous Determination of Air Toxic Organic Compounds with FTIR Spectroscopy(四种多变量校准方法在FTIR多组分分析中的性能比较).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2002,22(5):758-760
    61 Liu Bingping(刘丙萍), Li Yan(李燕), Zhang Lin(张琳), Wang Xiaofei(王晓斐), Wang Junde(王俊德). Automated Recognition of VOCs Using Artificial Neural Networks(人工神经网络对VOCs的自动识别). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(1): 51-53
    62 Li Y, Wang J D, Yuan W Q. Simultaneous Determination and Spectra Correction of Air Toxic Organic Compounds Using PLS and ANN in FTIR Spectroscopy. J. Environ. Sci. & Health, 2000, A35(9): 1673-1691
    63 Bian Zhaoqi(边肇祺), Zhang Xuegong(张学工). Pattern Recognition(模式识别). Beijing(北京): Tsinghua University Press (北京:清华大学出版社),1999
    64 Storrie-Lombardi M C, Irwin M J, Hippel T. Spectral Classification. with Principal Component Analysis and Artificial Neural Networks. Vistas in Astronomy, 1994, 38(3): 331-340
    65 Coryn A L, Mike I, Hippel T. Automated Classification of Stellar Spectra-Ⅱ. Two-dimensional Classification with Neural Networks and Principal Components Analysis. Monthly Notices of the Royal Astronomical Society, 1998, 298(2): 361-377
    66 Connolly A J, Szalay A S. Spectral Classification of Galaxies: an Orthogonal Approach. Astronomical Journal, 1995, 110(3): 1071-1082
    67 Folkes S, Ronen S, Price I. The 2dF Galaxy Redshift Survey: Spectral Types and Luminosity Functions. Monthly Notices of the Royal Astronomical Society, 1999, 308(2): 459-472
    68 Darren S M, Alison L C. The DEEP2 Galaxy Redshift Survey: Spectral Classification of Galaxies at z~l. Astrophysical Journal, 2003, 599(2): 997-1005
    69 Liu B P, Li Y, Zhang L, Wang J D. Interpretation of FTIR Spectra by Principal Components-Artificial Neural Networks. Spectroscopy Letters, 2006, 39(4): 373-385
    70 Liu F, Wang J D. Using Genetic Algorithm to Identify Completely Unknown System in FTIR Spectra Analysis. Journal. of Environmental Science and Health, 2004, 39(6): 1525-1533
    71 Arcos M J, Ortiz M C, Belen Vand Sarabia L A, Genetic-algorithm-based Wavelength Selection in Multicomponent Spectrometric Determinations by PLS: Application on Indomethacin and Acemethacin Mixture. Anal. chim. Acta, 1997, 339:63-77
    72 Ding Q, Small G W, Arnold M A, Genetic Algorithm-Based Wavelength Selection for the Near-Infrared Determination of Glucose in Biological Matrixes: Initialization Strategies and Effects of Spectral Resolution. Anal. Chem., 1998, 70:4472-4479
    73 Leardi R, Seasholtz M B, Pell R J. Variable Selection for Multivariate Calibration Using a Genetic Algorithm: Prediction of Additive Concentrations in Polymer Films from Fourier Transform Infrared Spectral Data. Anal. Chim. Acta., 2002, 461:189-200
    74 Shaffer R E, Small G W. Genetic Algorithm-Based Protocol for Coupling Digital Filtering and Partial Least-Squares Regression: Application to the Near-Infrared Analysis of Glucose in Biological Matrices. Anal. chem., 1996, 68:2663-2675
    75 Dane A D, Timmermans P A M, Van Sprang H A, Buydens L M C. A Genetic Algorithm for Model-Free X-ray Fluorescence Analysis of Thin Films. Anal. Chem., 1996, 68:2419-2425
    76 Hartnett M, Diamond D, Potentiometric Nonlinear Multivariate Calibration with Genetic Algorithm and Simplex Optimization. Anal. Chem., 1997, 69: 1909-1918
    77 Sun Z, et al. Protein Structure Prediction in a 210-type Lattice Model: Parameter Optimization in the Genetic Algorithm Using Orthogonal Array. J Pretein Chem., 1999, 18(1): 39-46
    78 Zhang Lin(张琳),Zhang Liming(张黎明),Li Yan(李燕),Wang Xiaofei(王晓斐),Hu Lanping(胡兰萍),Wang Junde(王俊德).Multi-Component Analysis of FTIR Spectra of Non-Linear System Using Polynomial Partial Least Squares Method(多项式偏最小二乘法对非线性体系红外谱图的分析).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006.26(4):620-623
    79 Liu Fang(刘芳),Wang Junde(王俊德).Using Wavelet Transform for Information Extraction from Remote Sensing FTIR Spectra(运用小波变换对遥感FTIR光谱进行信息提取).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004,24(8):946-948
    80 Bangalore A S, Shaffer R E, Small G W. Genetic Algorithm-Based Method for Selecting Wavelengths and Model Size for Use with Partial Least Squares Regression: Application to Near-Infrared Spectroscopy. Anal. Chem., 1996, 68(23): 4200-4212
    81 Ding Q, Small G W, Arnold M A. Genetic Algorithm-Based Wavelength Selection for the Near-Infrared Determination of Glucose in Biological Matrixes: Initialization Strategies and Effects of Spectral Resolution. Anal. Chem., 1998, 70(21): 4472-4479
    82 Douglas N R, Antonio B, Ivonne D. Polish-Smoothed Partial Least-Square Regression. Anal. Chim. Acta, 2001, 446:281-286
    83 Zhang L, Zhang L M, Li Y, Wang J D. Orthogonal Signal Correction Used For Noise Elimination Of Open Path Fourier Transform Infrared Spectra. J. Environ. Sci. & Health, 2005, A40(5): 1690-1669
    84 Zhang Lin(张琳),Zhang Liming(张黎明),Li Yan(李燕),Wang Junde(王俊德).Calibration Transfer Used For The Interpretation Of RS-FITR Spectrum(模型传递用于解析遥感傅立叶变换红外谱图).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006,26(9):1614-1616
    85 Zhang Lin(张琳),Zhang Liming(张黎明),Li Yan(李燕),Liu Bingping(刘丙萍),Wang Junde(王俊德).Orthogonal Signal Correction Used for Calibration Transfer of Fourier Transform Infrared Spectra(正交信号校正用于傅里叶变换红外光谱的模型传递).Chinese Journal of Analytical Chemistry(分析化学),2005,12:1709-1712
    86 Amendolia S R, Doppiu A, Ganadu M L, Lubinu G. Classification and Quantitation of ~1H NMR Spectra of Alditols Binary Mixtures Using Artificial Neural Networks. Anal. Chem., 1998, 70(7): 1249-1254
    87 Lavine B K, Davidson C E, Westover D J. Spectral Pattern Recognition Using Self-Organizing MAPS. J. Chem. Inf Comput. Sci., 2004, 44(3): 1056-1064
    88 Zhou H, Baldini L, Hong J, Wilson A J, Hamilton A D. Pattern Recognition of Proteins Based on an Array of Functionalized Porphyrins. J. Am. Chem. Soc., 2006, 128(7): 2421-2425
    89 Habershon S, Cheung E Y, Harris K D M, Johnston R L. Powder Diffraction Indexing as a Pattern Recognition Problem: A New Approach for Unit Cell Determination Based on an Artificial Neural Network. J. Phys. Chem. A., 2004, 108(5): 711-716
    90 Bakken G A, Jurs P C. Classification of Multidrug-Resistance Reversal Agents Using Structure-Based Descriptors and Linear Discriminant Analysis. J. Med. Chem., 2000, 43(23): 4534-4541
    91 Pereira R C C, Skrobot V L, Castro E V R, Fortes I C P, Pasa V M D. Determination of Gasoline Adulteration by Principal Components Analysis-Linear Discriminant Analysis Applied to FTIR Spectra. Energy & Fuels, 2006, 20(3): 1097-1102
    92 Heberger K, Csomos E, Simon-Sarkadi L. Principal Component and Linear Discriminant Analyses of Free Amino Acids and Biogenic Amines in Hungarian Wines. J. Agric. Food Chem., 2003, 51(27): 8055-8060
    93 Shaffer R E, Small G W. Comparison of Optimization Algorithms for Piecewise Linear Discriminant Analysis: Application To Fourier Transform Infrared Remote Sensing Measurements. Anal. Chim. Acta, 1996, 331: 157-175
    94 Hunt M J, Lefebvre C. A Comparison of Several Acoustic Representations for Speech Recognition with Degraded and Undegraded Speech. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 1(4): 262-265
    95 Haeb-Umbach R, Ney H. Linear Discriminant Analysis for Improved Large Vocabulary Continuous Speech Recognition. Proceedings of ICASSP, 1992, 1(1): 13-16
    96 Aubert X, Haeb-Umbach R, Ney H. Continuous Mixture Densities and Linear Discriminant Analysis for Improved Context-dependent Acoustic Models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1993, 2(10): 648~651
    97 Swets D L, Weng J J. Using Discriminant Eigenfeatures for Image Retrieval. IEEE Trans. on PAMI, 1996, 18(8): 831-836
    98 Koehler F W, Small G W, Combs R J, Knapp R B, Kroutil R T. Calibration Transfer Algorithm for Automated Qualitative Analysis by Passive Fourier Transform Infrared Spectrometry. Anal. Chem., 2000, 72:1690-1698
    99 Hammer C L, Small G W, Combs R J, Knapp R B, Kroutil R T. Artificial Neural Networks for the Automated Detection of Trichloroethylene by Passive Fourier Transform Infrared Spectrometry. Anal. Chem., 2000, 72: 680-1689
    100 Hu Lanping(胡兰萍),Zhang Lin(张琳),Li Yan(李燕),Zhang Liming(张黎明),Wang Junde(王俊德).Alarm on VOCs in the Atmosphere with PCA-LDA(主成分—线性判别法对大气VOCs的预警).Chinese Journal of Analytical Chemistry(分析化学),2007,35(3):345-349
    101 Yu P. Applications of Hierarchical Cluster Analysis (CLA) and Principal Component Analysis (PCA) in Feed Structure and Feed Molecular Chemistry Research, Using Synchrotron-Based Fourier Transform Infrared (FTIR) Microspectroscopy. J. Agric. Food Chem., 2005, 53(18): 7115-7127
    102 Fan Y, Shi L M, Kohn K W, Pommier, Y, Weinstein J N. Quantitative Structure-Antitumor Activity Relationships of Camptothecin Analogues: Cluster Analysis and Genetic Algorithm-Based Studies. J. Med. Chem., 2001, 44(20): 3254-3263
    103 Penza M, Cassano G. Application of Principal Component Analysis and Artificial Neural Networks to Recognize the Individual VOCs of Methanol/2-propanol in a Binary Mixture by SAW Multi-Sensor Array.0 Sensors and Actuators, 2003, 89(3): 269-284
    104 William T W. Sensitive Detection of Chemical Agents and Toxic Industrial Chemicals Using Active Open-Path FTIRs. SPIE, 2004, 5270:144-150
    105 Dae W H, Gwi S H, Jin S H, Seog Y C. Application of the Open Path FTIR with COL1SB to Measurements of Ozone and VOCs in the Urban Area. Atmospheric Environment, 2004, 38(33): 5567-5576
    106 Rencher A C. Methods of Multivariate Analysis. New York: John Wiley & Sons, 1995
    107 Minoux M. Mathematical Programming. New York: John Wiley & Sons, 1986
    108 Yang H, Griffiths P R. Application of Multilayer Feed-Forward Neural Networks to Automated Compound Identification in Low-Resolution Open-Path FT-IR Spectrometry. Anal. Chem., 1999, 71(3): 751-761
    109 Despagne F, Massart D L, Chabot P. Development of a Robust Calibration Model for Nonlinear in-Line Process Data. Anal. Chem., 2000, 72(7): 1657-1665
    110 Hadjiiski L, Geladi P. A Comparison of Modeling Nonlinear Systems with Artificial Neural Networks and Partial Least Squares. Chemom. Intell. Lab. Syst., 1999,49:91-103
    111 Li Y, Wang J D, Chen Z R, Zhou X T. Artificial Neural Network for the Quantitative Analysis of Air Toxic VOCs. Anal. Lett., 2004, 34(12): 2203-2219
    112 Lu X Q, Mo J Y. Wavelet Analysis as a New Method in Analytical Chemometrics. Analytical Chemistry, 1996, 24: 1100-1106
    113 Jalali-Heravi M, Fatemi M H. Simulation of Mass Spectra of Noncyclic Alkanes and Alkanes Using Artificial Neural Network. Anal. Chim. Acta, 2000,415: 95-103
    114 Jurs P C, Bakken G A, McClelland H E. Computational Methods for the Analysis of Chemical Sensor Array Data from Volatile Analytes. Chem. Rev., 2000, 100(7): 2649-2678
    115 Eklov T, Martensson P, Lundstrom I. Selection of Variables for Interpreting Multivariate Gas Ssensor data. Anal. Chim. Acta, 1999, 381(2-3): 221-232
    116 Benigni R. Structure-Activity Relationship Studies of Chemical Mutagens and Carcinogens: Mechanistic Investigations and Prediction Approaches. Chem. Review, 2005, 105: 1767-1800
    117 Litina D H, Garg R, Hansch C. Comparative Quantitative Structure-Activity Relationship Studies(QSAR) on Non-Benzodiazepine Compounds Binding to Benzodiazepine Receptor (BzR). Chem. Review, 2004, 104: 3751-379
    118 Bjarnestad S, Dahlman O. Chemical Compositions of Hardwood and Softwood Pulps Employing Photoacoustic Fourier Transform Infrared Spectroscopy in Combination with Partial Least-Squares Analysis. Anal. Chem., 2002, 74(22): 5851-5858
    119 Geladi P, Kowalski B R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta, 1986, 185: 1-17
    120 Sha W. Comment on "Design of a Propane Ammoxidation Catalyst Using Artificial Neural Networks and Genetic Algorithms". Ind. Eng. Chem. Res., 2006, 45(24): 8223-8224
    121 Omata K, Ozaki T, Umegaki T, Watanabe Y, Nukui N, Yamada M. Optimization of the Temperature Profile of a Temperature Gradient Reactor for DME Synthesis Using a Simple Genetic Algorithm Assisted by a Neural Network. Energy & Fuels, 2003, 17(4): 836-841
    122 Tarca L A, Grandjean B P A, Larachi F. Integrated Genetic Algorithm-Artificial Neural Network Strategy for Modeling Important Multiphase-Flow Characteristics. Ind. Eng. Chem. Res., 2002, 41(10): 2543-2551
    123 Zinn P. Adaptive Multicomponent Analysis by Genetic Algorithms. J. Chem. Inf. Model, 2005, 45(4): 880-887
    124 Goicoechea H C, Olivieri A C. Wavelength Selection for Multivariate Calibration Using a Genetic Algorithm: A Novel Initialization Strategy. J. Chem. Inf. Comput. Sci., 2002, 42(5): 1146-1153
    125 Amin N A S. Hybrid Artificial Neural Network-Genetic Algorithm Technique for Modeling and Optimization of Plasma Reactor Istadi. Ind. Eng. Chem. Res., 2006, 45(20): 6655-6664
    126 Holland J H. Adaptation in Nature and Artificial Systems. The University of Michigan Press, Ann Arbor 1975, 89-120
    127 Jiang J H, Berry R J, Siesler H W, Ozaki Y. Wavelength Interval Selection in Multicomponent Spectral Analysis by Moving Window Partial Least-Squares Regression with Applications to Mid-Infrared and Near-Infrared Spectroscopic Data. Anal. Chem., 2002, 74(14): 3555-3565
    128 Koehler F W IV, Small G W, Combs R J, Knapp R B, Kroutil R T. Calibration Transfer Algorithm for Automated Qualitative Analysis by Passive Fourier Transform Infrared Spectrometry. Anal. Chem., 2000, 72(7): 1690-1698
    129 Woody N A, Feudale R N, Brown S D. Transfer of Multivariate Calibration between Four Near-Infrared Spectrometers Using Orthogonal Signal Correction. Anal. Chem., 2004, 76: 2595-2600
    130 Zhang L, Small G W, Arnold M A. Multivariate Calibration Standardization across Instruments for the Determination of Glucose by Fourier Transform Near-Infrared Spectrometry. Anal. Chem., 2003, 75(21): 5905-5915
    131 Blank T B, Sum S T, Brown S D. Transfer of Near-Infrared Multivariate Calibrations without Standards. Anal. Chem., 1996, 68: 2987-2995
    132 Wang Z, Dean T, Kowalski B R. Additive Background Correction in Multivariate Instrument Standardization. Anal. Chem., 1995, 67: 2379-2385
    133 Wang Y, Veltkamp D J, Kowalski B R. Multivariate Instrument Standardization. Anal. Chem., 1991, 63: 2750-2756
    134 Xie Y, Hopke P K. Calibration Transfer as a Data Reconstruction Problem. Anal. Chim. Acta, 1999, 384: 193-205
    135 Pavon Jose L, Sanchez M N, Cordero B M. Calibration Transfer for Solving the Signal Instability in Quantitative Headspace-Mass Spectrometry. Anal. Chem., 2003, 75: 6361-6367
    136 Noord O E de. Multivariate Calibration Standardization. Chemom. Intell. Lab. Syst., 1994, 25(2): 85-97
    137 Ledermann W. Handbook of Applicable Mathematics, Volume. Statistics. Part B. New York: John Wiley, 1984
    138 Cox T F, Cox A A. Multidimensional Scaling. London: Chapman and Hall. 1994
    139 Swierenga H, Wulfert F, Noord O E de. Development of Robust Calibration Models in Near Infrared Spectrometric Applications. Analytica Chimica Acta, 2000, 411(1-2): 121-135
    140 Riccardo L, Amparo L G. Genetic Algorithms Applied to Feature Selection in PLS Regression: How and when to Use them. Chemom. Intell. Lab. Sys., 1998,41(2): 195-207
    141 Noord O E. The Influence of Data Preprocessing on the Robustness and Parsimony of Multivariate Calibration Models. Chemometrics and Intelligent Laboratory Systems, 1994, 23(1): 65-70
    142 Barnes R J, Dhanoa M S, Susan J L. Standard Normal Variate Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc, 1989, 43(5): 772-777
    143 Mcclure W F, Abdul Hamid, Giesbrecht F G. Fourier Analysis Enhances NIR Diffuse Reflectance Spectroscopy. Appl. Spectrosc, 1984, 38(3): 322-329
    144 Svante W, Henrik A, Fredrik L. Orthogonal Signal Correction of Near-Infrared Spectra. Chemom. Intell. Lab. Syst., 1998, 44(1-2): 175-185
    145 Griep M I, Wakeling I N, Vankeerberghen P. Comparison of Semirobust and Robust Partial Least Squares Procedures. Chemom. Intell. Lab. Syst., 1995, 29(1): 37-50
    146 Osborne B G, Fearn T. Discriminant Analysis of Black Tea by Near Infrared Reflectance Spectroscopy. Food Chemistry, 1988, 29(3): 233-238
    147 Blank T B, Sum S T, Brown S D, Monfre S L. Transfer of Near-Infrared Multivariate Calibrations without Standards. Anal. Chem., 1996, 68(17): 2987-2995
    148 Wulfert F, Kok W T, Noord O E, Smilde A K. Correction of Temperature-Induced Spectral Variation by Continuous Piecewise Direct Standardization. Anal. Chem., 2000, 72(7): 1639-1644
    149 Carlosena A, Andrade J M, Kubista M, Prada D, Cariosena A, Andrade J M. Procrustes Rotation as a Way To Compare Different Sampling Seasons in Soils. Anal. Chem., 1995, 67(14): 2373-2378
    150 Kroonenberg P M, Dunn III W J, Commandeur J J F. Consensus Molecular Alignment Based on Generalized Procrustes Analysis. J. Chem. Inf. Comput. Sci., 2003, 43(6): 2025-2032
    151 Le Fur Y, Mercurio V, Moio L, Blanquet J, Meunier J M. A New Approach To Examine the Relationships between Sensory and Gas Chromatography-Olfactometry Data Using Generalized Procrustes Analysis Applied to Six French Chardonnay Wines. J. Agric. Food Chem., 2003, 51(2): 443-452
    152 Sales F, Rius A, Callao P M, Rius F X. Standardization of a Multivariate Calibration Model Applied to the Determination of Chromium in Tanning Sewage. Talanta, 2000, 52(2): 329-336
    153 Perez Pavon J L, del Nogal Sanchez M, Garcia Pinto C, Fernandez Laespada M E, Moreno Cordero B. Calibration Transfer for Solving the Signal Instability in Quantitative Headspace-Mass Spectrometry. Anal. Chem., 2003, 75(22): 6361-6367
    154 Koehler F W IV, Small G W, Combs R J, Knapp R B, Kroutil R T. Calibration Transfer Algorithm for Automated Qualitative Analysis by Passive Fourier Transform Infrared Spectrometry. Anal. Chem., 2000, 72(7): 1690-1698
    155 Mlakar P., Boznar M. Short-Term air Pollution Prediction on the Basis of Artificial Neural Networks. Air Pollut. II, [Int. Conf.], 2nd, Volume 1, 545-552. Baldasano J. M. Ed. Comput. Mech. Publ.: Southampton, UK. 1994
    156 Yang H S, Griffith P R. Application of Multilayer Feed-Forward Neural Networks to Auromated Compound Identification in Low-Resolution Open-Path FT-IR Spectrometry. Anal. Chem., 1999, 71:751-761
    157 Despagne F, Massart D L, Chabot P. Development of a Robust Calibration Model for Nonlinear In-Line Process Data. Anal. Chem., 2000, 72(7): 1657-1665
    158 Robertsson G. Contributions To The Problem Of Approximation Of Non-Linear Data With Linear PLS In An Absorption Spectroscopic Context. Chemom. Intell. Lab. Syst. 1999, 47(1): 99-106
    159 Tetko I V, Solov'ev V P, Antonov A V, Yao X, Doucet J P, Fan B, Hoonakker F, Fourches D, Jost P, Lachiche N, Varnek A. Benchmarking of Linear and Nonlinear Approaches for Quantitative Structure-Property Relationship Studies of Metal Complexation with Ionophores. J. Chem. Inf. Model, 2006, 46(2): 808-819
    160 Rani K Y, Patwardhan S C. Data-Driven Modeling and Optimization of Semibatch Reactors Using Artificial Neural Networks. Ind. Eng. Chem. Res., 2004, 43(23): 7539-7551
    161 Li G Z, Yang J, Song H F, Yang S S, Lu W C, Chen N Y. Semiempirical Quantum Chemical Method and Artificial Neural Networks Applied for λ_(max) Computation of Some Azo Dyes. J. Chem. Inf. Comput. Sci., 2004, 44(6): 2047-2050
    162 Kohonen T. New Developments of Learning Vector Quantization and the Self-Organizing Map.In:Symposium on Neural Networks. Osaka:Alliances and Perspectives in Senti, 1992
    163 Baurin N, Mozziconacci J C, Arnoult E, Chavatte P, Marot C, Morin-Allory I 2D QSAR Consensus Prediction for High-Throughput Virtual Screening. An Application to COX-2 Inhibition Modeling and Screening of the NCI Database. J. Chem. Inf. Comput. Sci., 2004, 44(1): 276-285
    164 Dumas M E, Debrauwer L, Beyet L, Lesage D, Andre F, Paris A, Tabet J C. Analyzing the Physiological Signature of Anabolic Steroids in Cattle Urine Using Pyrolysis/Metastable Atom Bombardment Mass Spectrometry and Pattern Recognition. Anal. Chem., 2002, 74(20): 5393-5404
    165 Dumas M E, Canlet C, Andre F, Vercauteren J, Paris A. Metabonomic Assessment of Physiological Disruptions Using ~1H-~(13)C HMBC-NMR Spectroscopy Combined with Pattern Recognition Procedures Performed on Filtered Variables. Anal. Chem., 2002, 74(10): 2261-2273
    166 Qin A K, Suganthan P N. Initialization Insensitive LVQ Algorithm Based on Cost-Function Adaptation. Pattern Recognition, 2005, 38(5): 773-776
    167 Specht D F. Probabilistic Neural Network. Neural Network, 1990, 3(2): 109-118
    168 Asikainen A, Kolehmainen M, Ruuskanen J, Tuppurainen K. Structure-Based Classification of Active and Inactive Estrogenic Compounds by Decision Tree, LVQ and KNN Methods. Chemosphere, 2006, 62(4): 658-673
    169 Olmez T, Dokur Z. Classification of Heart Sounds Using an Artificial Neural Network. Pattern Recognition Letters, 2003, 24(1-3): 617-629
    170 Bashar M K, Ohnishi N, Matsumoto T, Takeuchi Y, Kudo H, Agusa K. Image Retrieval by Pattern Categorization Using Wavelet Domain Perceptual Features with LVQ Neural Network. Pattern Recognition Letters, 2005, 26(15): 2315-2335
    171 Luo X C, Singh C, Patton A D. Power System Reliability Evaluation Using Learning Vector Quantization and Monte Carlo Simulation. Electric Power Systems Research, 2003, 66(2): 163-169
    172 He L, Jurs P C, Kreatsoulas C. Probabilistic Neural Network Multiple Classifier System for Predicting the Genotoxicity of Quinolone and Quinoline Derivatives. Chem. Res. Toxicol, 2005, 18(3): 428-440
    173 Vilar S, Santana L, Uriarte E. Probabilistic Neural Network Model for the In Silico Evaluation of Anti-HIV Activity and Mechanism of Action. J. Med. Chem., 2006, 49(3): 1118-1124
    174 Niwa T. Prediction of Biological Targets Using Probabilistic Neural Networks and Atom-Type Descriptors. J. Med. Chem., 2004, 47(10): 2645-2650
    175 Vaananen T, Koskela H, Hiltunen Y, et al. Application of Quantitative Artificial Neural Network Analysis to 2D NMR Spectra of Hydrocarbon Mixtures. J. Chem. Inf. Comput. Sci., 2002, 42(6): 1343-1346
    176 Berthod M R, Diamond J. Constructive Training of Probabilistic Neural Networks. Neurocomputing, 1998, 19(1-3): 167-183
    177 Lu Q, Yang B, Zhuang L, Lu J. Pattern Recognition on the Structure Activity Relationship of Nano Pt-Ru Catalysts: Methodology and Preliminary Demonstration. J. Phys. Chem. B., 2005, 109(18): 8873-8879
    178 Shnayderman M, Mansfield B, Yip P, Clark H A, Krebs M D, Cohen S J, Zeskind J E, Ryan E T, Dorkin H L, Callahan M V, Stair T O, Gelfand J A, Gill C J, Hitt B, Davis C E. Species-Specific Bacteria Identification Using Differential Mobility Spectrometry and Bioinformatics Pattern Recognition. Anal. Chem., 2005, 77(18): 5930-5937
    179 Habershon S, Cheung E Y, Harris K D M, Johnston R L. Powder Diffraction Indexing as a Pattern Recognition Problem: A New Approach for Unit Cell Determination Based on an Artificial Neural Network. J. Phys. Chem. A., 2004, 108(5): 711-716
    180 Li Y, Wang J D, Chen Z R, Zhou X T. Artificial Neural Network for the Quantitative Analysis of Air Toxic VOCs. Anal. Lett., 2001, 34(12): 2203-2219
    181 Zhang L, Zhang L M, Li Y, Wang J D. Orthogonal Signal Correction Used For Noise Elimination Of Open Path Fourier Transform Infrared Spectra. J. Environ. Sci. & Health, 2005, A40(5): 1690-1669
    182 Ruyken M M A, Visser J A, Smilde A K. Online Detection and Identification Interferents in Multivariate Predictions of Organic Gases Using FT-IR Spectroscopy. Anal. Chem., 1995, 67(13): 2170-2179
    183 Zhang Lin(张琳).Application and Development of Chemometrics Methods on the Interpretation Remote Sensing FTIR Spectra(化学计量学在遥感FTIR谱图解析中的应用及发展).[Ph.D.Thesis](博士学位论文).Nanjing(南京):Nanjing University of Science& Technology(南京理工大学),2006
    184 Xie Dadong(谢达东),Wu Ji(吴及),Wang Zuoying(王作英).LDA Applied to Mandarin Speech Recognition System(线性判别分析在汉语语音识别中的应用).Computer Engineering and Applications(计算机工程与应用),2002,23:1-3
    185 Abdullah M Z, Mohamad-Saleh J, Fathinul-Syahir A S, Mohd-Azemi B M N. J. Food Engineering, 2006, 76(4): 506-513
    186 Sharma A, Paliwal K K, Onwubolu G C. Class-dependent PCA, MDC and LDA: A Combined Classifier for Pattern Classification. Pattern Recog., 2006, 39(7): 1215-1229
    187 Bangalore A S, Small G W, Combs R J, Knapp R B, Kroutil R T. Automated Detection of Trichloroethylene by Fourier Transform Infrared Remote Sensing Measurements. Anal. Chem., 1997, 69(2): 118-129
    188 Pereira R C C, Skrobot V L, Castro E V R, Fortes I C P, Pasa V M D. Determination of Gasoline Adulteration by Principal Components Analysis-Linear Discriminant Analysis Applied to FTIR Spectra. Energy & Fuels, 2006, 20(3): 1097-1102
    189 Eklov T, Martensson P, Lundstrom I. Selection of Variables for Interpreting Multivariate Gas Sensor Data. Anal Chim. Acta, 1999, 381: 221-224
    190 Srivastava A K. Detection of Volatile Organic Compounds (VOCs) Using SnO_2 Gas-Sensor Array and Artificial Neural Network. Sensor Actuators B., 2003, 96: 24-37
    191 Wenzel K D, Vrana B, Hubert A, Schuurmann G. Dialysis of Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons from Semipermeable Membranes. A Procedure Using an Accelerated Solvent Extraction Device. Anal. Chem., 2004, 76(18): 5503-5509
    192 Farrar N J, Harner T, Shoeib M, Sweetman A, Jones K C. Field Deployment of Thin Film Passive Air Samplers for Persistent Organic Pollutants: A Study in the Urban Atmospheric Boundary Layer. Environ. Sci. Technol., 2005, 39(1): 42-48
    193 Sandau C D, Sjodin A, Davis M D, Barr J R, Maggio V L, Waterman A L, Preston K E, Preau J L, Barr D B, Needham L L, Patterson D G. Comprehensive Solid-Phase Extraction Method for Persistent Organic Pollutants. Validation and Application to the Analysis of Persistent Chlorinated Pesticides. Anal Chem., 2003, 75(1): 71-77
    194 Kuo-Chih Chiang, Chung-Min Liao. Heavy incense burning in temples promotes exposure risk from airborne PMs and carcinogenic PAHs. Science of The Total Environment, 2006, 372(1): 64-75
    195 Wenzel K D, Vrana B, Hubert A, Schuurmann G. Dialysis of Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons from Semipermeable Membranes. A Procedure Using an Accelerated Solvent Extraction Device. Anal. Chem., 2004, 76(18): 5503-5509
    196 Dai Qianhuan(戴乾圜). Researches on Chemical Carcinogens and on Mechanism of Chemical Carcinogenesis(化学致癌剂及化学致癌机理的研究). China Science(中国科学), 1979, 10: 964-977
    197 Zhang Haixia(张海霞),Zhang Ruisheng(张瑞生),Liu Mancang(刘满仓),Hu Zhide(胡之德).Application of Self-Organizing Maps to the Visual Classification of the Carcinogenicity of Polycyclic Aromatic Hydrocarbons(用人工神经网络方法对多环芳烃的致癌性进行分类).Chinese Journal of Analytical Chemistry(分析化学),2000,28(11):1336-1343
    198 Xiang Yuhong(相玉红),Yao Xiaojun(姚小军),Zhang Ruisheng(张瑞生),Liu Mancang(刘满仓),Hu Zhide(胡之德),Fan Botao(范波涛).Application Probabilistic Neural Network to Classify of the Carcinogenicity of Polycyclic Aromatic Hydrocarbons(用概率神经网络对多环芳烃的致癌性分类).Journal of Lanzhou University(兰州大学学报),2002,38(3):55-59
    199 Wang Liansheng(王连生),HAN Shuokui(韩朔睽).Organic Quantitative Structure-Activity Relationship(有机物定量结构一活性相关).Beijing(北京):Environment Science Press of China(中国环境科学出版社),1993:247-253
    200 Suzuki T, Ide K, Ishida M, Shapiro S. Classification of Environmental Estrogens by Physicochemical Properties Using Principal Component Analysis and Hierarchical Cluster Analysis. J. Chem. Inf. Comput. Sci., 2001, 41(3): 718-726

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700