几类风灾易损建筑台风损伤估计与预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上遭受台风灾害最为严重的国家之一,每年因台风灾害造成的经济损失十分惨重。城市各类建(构)筑物的损坏与倒塌是风灾直接损失的主要组成部分,快速预测和评估城市建(构)筑物遭受风灾后的损伤情况,对城市防灾减灾工作至关重要,也是目前土木工程领域急待解决的一个问题。本文对三类典型的城市风灾易损建(构)筑物进行了台风作用下的响应分析,根据实际风灾破坏现象以及荷载与结构相互作用机理,进行成灾机理分析,并分别定量计算了每一类结构的损伤程度。主要内容包括以下几个方面:
     (1)基于城市建筑台风损伤机理分析的需要,对台风鹦鹉(No. 0812)和台风黑格比(No. 0814)进行了灾后实地调研。通过调查总结出在台风中容易遭受损伤的建(构)筑物的主要类型,以及主要的损伤模式并分析了原因,最后明确了将轻钢结构工业厂房、户外广告牌以及高层建筑玻璃幕墙三类结构作为本文的主要研究对象。
     (2)通过对灾后调查资料和结构破坏现象特点进行分析,得出了台风致结构损伤的4点主要原因,并将台风对建筑结构的作用分为3个方面:外风压、风致内压和风致碎片作用。与现行建筑结构荷载规范中外风压计算方法进行了对比,讨论了台风作用下外风压的计算方法。通过数值风洞方法对多种工况下风致内压分布规律进行了探讨,并提出了台风中风致碎片危险性的分析方法。最后对台风鹦鹉(No. 0812)、台风珍珠(No. 0601)、台风莎莉(No. 9615)和台风黑格比(No. 0814)实测的风速、风向角和风攻角时程数据进行了适当的处理,得到了适用于风灾损伤分析的数据。
     (3)对于轻钢结构工业厂房的研究,首先介绍了轻钢结构工业厂房的组成,分析了风灾损伤的主要形式及原因。给出了厂房结构和构件承载力的计算方法,阐述了厂房结构风灾损伤分析方法的步骤,并进行了损伤等级的划分。最后建立了轻钢结构工业厂房模型,并进行了细致的分析,应用台风鹦鹉、珍珠和莎莉的时程数据,实现了轻钢结构工业厂房风灾损伤估计的全过程。
     (4)对于户外广告牌的研究,介绍了广告牌的分类,根据调研资料总结归纳出广告牌结构几种主要风灾损伤形式并进行了原因分析,给出了广告牌风灾损伤等级划分的标准。针对每一种损伤原因分析了相应的承载力计算方法。基于台风风压计算的需要,对落地式和屋顶式广告牌进行了风压系数数值模拟。最后以单立柱三面巨型广告牌为例,建立了广告牌有限元模型,进行了台风作用下的风致动力响应分析和静力响应分析,实现了户外广告牌风灾损伤分析的全过程。
     (5)对于高层建筑玻璃幕墙风灾损伤的研究,介绍了作为幕墙材料的玻璃的种类和性能,以及目前最为常见的幕墙结构种类。对幕墙风致损伤进行了单片玻璃应力和挠度分析、玻璃幕墙平面内变形能力分析和玻璃幕墙风致碎片损伤分析。基于目前高层建筑在风灾中主要的损伤在于玻璃幕墙风致碎片破坏,最后进行了模型结构玻璃幕墙在台风珍珠和台风莎莉作用下的风致碎片损伤分析。
China is one of the most severe countries suffering from typhoon damage in the whole world, and the economic losses caused by typhoon every year are quite enormous. The damage and collapse of all kinds of structures are the main parts of the direct wind hazard losses. To make an immediate estimation and prediction of damage degree of structures after the landfall of typhoon is very important for government emergency response and the evaluation of capability of urban disaster prevention and reduction, which is also an exigent problem to be solved in civil engineering field. According to the real damage phenomena and load-structure interaction mechanism, the typhoon responses of typical wind vulnerable structures are analyzed by numerical simulation and finite element methods. Furthermore, the wind disaster mechanism is analyzed, and the damage degrees of wind vulnerable structures are quantitatively calculated respectively. The main contents in this paper are shown as following.
     (1) For the requirement of the mechanism analysis of typhoon-induced damage of structures, lots of field damage investigations and research were made after typhoon Nuri (No. 0812) and Hagupit (No. 0814) made landfall. According to the investigation results, the typical typhoon vulnerable structures are summarized, meanwhile, the three kinds of structural types studied in this paper are confirmed, which are light steel industrial buildings, outdoor advertisement boards and glass curtain wall of tall buildings.
     (2) Based on the post disaster investigation data and structural damage characteristics analysis, five main reasons for typhoon-induced damage are achieved. The typhoon action acted on the structure could be divided into three aspects: external wind pressure, wind-induced internal pressure and wind-borne debris action. Firstly, the calculation method of external wind pressure is discussed by comparing with the method suggested in China Load code for the design of building structures. Secondly, wind-induced internal pressure distribution rules are studied by using numerical wind tunnel method. Thirdly, the risk analysis method of windborne debris is built. At last, the observed time-history data of wind speed, wind direction angle and wind azimuth of typhoon Nuri (No. 0812), Chanchu (No. 0601), Sally (No. 9615) and Hagupit (No. 0814) are processed properly to be used in wind damage estimation.
     (3) For the research on the light steel industrial buildings, the components of structures are introduced at first, and then failure modes and reasons for wind induced damage of light steel industrial buildings are analyzed in detail. The calculation method of resistance of the element and the procedure of the damage estimation are described, meanwhile, the damage state of industrial buildings is graded. At last, an example is set by building a model and using three typhoons’data to demonstrate the whole process of damage estimation.
     (4) For the research on the outdoor advertisement boards, the classification of advertisement boards is introduced. According to the field investigation information, the typical damage modes and main reasons for destruction of advertisement boards are analyzed. The wind damage states of boards are graded. The calculation method of typhoon load and steel member resistance is given accord with the typical failure modes. Because of the requirement of the calculation of typhoon wind pressure, the model of standing and roof advertisement boards are built through CFD software, and wind pressure distribution of different wind directions is obtained through numerical simulation. At last, a huge three-side advertisement board model is built by using finite element software ANSYS with the obsevred data of typhoon Nuri, Chanchu and Sally as input wind load, meanwhile, the wind induced dynamic and static response of advertisement board are achieved.
     (5) For the research on the glass curtain wall of tall buildings, the types and performances of glass are shown, as well as the most common structural types of curtain walls. The study on wind-induced destruction of glass curtain wall is taken from three aspects. Because the wind-borne debris is the most important reason for the wind induced damage of glass curtain wall, a tall building model with glass curtain wall is set, moreover, the wind-borne debris damage estimation of the model under typhoon Chanchu and Sally are achieved.
引文
1葛耀君,赵林,项海帆.结构风工程中的台风数值模拟研究进展.第十一届全国结构风工程学术会议论文集.三亚. 2003: 48~54
    2 W. M. Gray. Global View of the Origin of Tropical Disturbances and Storms. Monthly Weather Review. 1968, 96(10): 669~700
    3肖仪清,孙建超,李秋胜.台风湍流积分尺度与脉动风速谱——基于实测数据的分析.自然灾害学报. 2006, 15(5):45~53
    4 Q. S. Li, Y. Q. Xiao, C. K. Wong, and A. P. Jeary. Field Measurements of Typhoon Effects on a Super Tall Building. Engineering Structures. 2004, 26(2): 233~244
    5王凌等.近35年登陆我国台风的年际变化特征及灾害特点.科技导报. 2006, 24(11): 23~25
    6梁必骐,梁经萍,温之平.中国台风灾害及其影响的研究.自然灾害学报. 1995, 4(1): 84~91
    7国家减灾中心信息部. 2006年全国台风灾害情况.中国减灾. 2007, (2): 13~14
    8国家减灾中心信息部. 2005自然灾害大盘点.中国减灾. 2006, (1):16~31
    9国家减灾中心信息部. 2007全国十大自然灾害事件.中国减灾. 2008, (1): 13~14
    10国家减灾中心信息部. 2008十大自然灾害事件.中国减灾. 2009, (1):7~9
    11国家减灾中心信息部. 2006全国自然灾害大盘点.中国减灾. 2007 , (2):4~7
    12常亮.中国东南沿海台风危险性分析与GIS应用.哈尔滨工业大学硕士学位论文. 2003:5
    13 L. R. Russell. Probability Distributions for Texas Gulf Coast Hurricane Effects of Engineering Interest. Ph.D Thesis. Stanford University. 1968
    14 L. R. Russell. Probability Distributions for Hurricane Effects. J. of Waterway, Port, Coastal and Ocean Engineering Division, ASCE. 1971, 97(1):139~154
    15 S. H. Chow. A Study of Windfield in the Planetary Boundary Layer of a Moving Tropical Cyclone. MS Thesis. New York University. 1971
    16 L. R. Russell, and G. F. Schueller. Probabilistic Models for Texas Gulf Coast Hurricane Occurrences. J. of Petroleum Technology. 1974:279~288
    17 B.V. Tryggvason, D. Surry, and A. G. Davenport. Predicting Wind-Induced Response in Hurricane Zones. J. of the Structural Division. 1976, 102(ST12):2333~2350
    18 M. E. Batts, L. R. Russell, and E. Simiu, Hurricane Wind Speeds in the United States. J. of Structural Division. 1980, 106 (10):2001~2016
    19 P. N. Georgiou, A. G. Davenport, and B. J. Vickery. Design Wind Speed in Region Dominated by Tropical Cyclones. J. of Wind Engineering and Industrial Aerodynamics. 1983, 13(1~3):139~152
    20 L. J. Shapiro. The Asymmetric Boundary Layer Flow under a Translating Hurricane. J. of Atmospheric Science. 1983, 40(8):1984~1998
    21 P. N. Georgiou. Design Windspeeds in Tropical Cyclone-Prone Regions. Ph.D Thesis. University of Western Ontario. 1985
    22 P. J. Vickery, and L. A. Twisdale, Wind-Field and Filling Models for Hurricane Wind-Speed Predictions. J. of Structural Engineering. 1995, 121(11): 1700~1709
    23 P. J. Vickery, and L. A. Twisdale. Prediction of Hurricane Wind Speeds in the United States. J. of Structural Engineering. 1995, November:1691~1699
    24 P. J. Vikery, P. F. Skerlj, A. C. Steckley, and L. A. Twisdale. Hurricane Wind Field Model for Use in Hurricane Simulations. J. of Structural Engineering. 2000, October:1203~1221
    25 P. J. Vickery, P. F. Skerlj, and L. A. Twisdale. Simulation of Hurricane Risk in the U.S. Using Empirical Track Model. J. of Structural Engineering. 2000, October: 1222~1237
    26 N. A. Heckert, E. Simiu, and T. Whalen. Estimates of Hurricane Wind Speeds by“Peaks over Threshold”Method. J. of Structural Engineering. 1998, April: 445~449
    27 E. F. Thompson, and V. J. Cardone. Practical Modeling of Hurricane Surface Wind Fields. J. of Waterway, Port, Coastal and Ocean Engineering. 2003, July/August: 219~228
    28 Y. Y. Chao, and H. L. Tolman. Specification of Hurricane Wind Fields for Ocean Wave Prediction. Ocean Wave Measurement and Analysis. 2001:671~679
    29 C. G. Brown, P. E. Johnson, S. L. Richards, and D. G. Long. Wind Field Models and Classification. Proceedings of SPIE. 1997, 3117:115~122
    30 A. Kareem. Structural Performance and Wind Speed-Damage Correlation in Hurricane Alicia. J. of Structural Engineering. 1985, 111(12):2596~2610
    31 K. C. Mehta, J. E. Minor, and T. A. Reinhold. Wind Speed-Damage Correlation in Hurricane Frederic. J. of Structural Engineering. 1983, 109(1):37~49
    32 Y. Li, and B. R. Eillingwood. Hurricane Damage to Residential Construction in the US: Importance of Uncertainty Modeling in Risk Assessment. EngineeringStructures. 2006, (28):1009~1018
    33张相庭.结构风工程.中国建筑工业出版社. 2006:1~3, 76
    34 M. Powell, G. Soukup, S. Cocke, S. Gulati etc. State of Florida Hurricane Loss Prejection Model: Atmospheric Science Component. J. of Wind Engineering and Industrial Aerodynamics. 2005, 93(8):651~674
    35 E. S. Tezak, and S. Rogers. FEMA Sponsored Coastal Structures Damage Assessment in North Carolina for Hurricane Isabel (HMTAP Task Order 274 Sep 2003). Coastal Disasters. 2005:524~537
    36 E. L. Keith, and J. D. Rose. Hurricane Andrew—Structural Performance of Buildings in South Florida. J. of Performance of Constructed Facilities. 1994, 8(3):178~191
    37 M. G. Stewart, D. V. Rosowsky, and Z. G. Huang. Hurricane Risks and Economic Viability of Strengthened Construction. Natural Hazards Review. 2003, February:12~19
    38 R. A. Pielke Jr., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, R. Musulin. Normalized Hurricane Damage in the United States 1900-2005. Natural Hazards Review. 2008, February:29~42
    39 C. D. Eamon, P. Fitzpatrick, and D. D. Truax. Observations of Structural Damage Caused by Hurricane Katrina on the Mississippi Gulf Coast. J. of Performance of Constructed Facilities. 2007, March/April:117~127
    40 N. Kobayashi, B. Pozueta, and J. A. Melby. Performance of Coastal Structures against Sequences of Hurricanes. J. of Waterway, Port, Coastal and Ocean Engineering. 2003, September/October:219~228
    41 P. R. Sparks, S. D. Schiff, and T. A. Reinhold. Wind Damage to Envelope of Houses and Consequent Insurance Losses. J. of Wind Engineering and Industrial Aerodynamics. 1993, (53):145~155
    42 P. R. Sparks. Wind Speeds in Tropical Cyclones and Associated Insurance Losses. J. of Wind Engineering and Industrial Aerodynamics. 2003, (91): 1731~1751
    43 J. H. Crandell. Statistical Assessment of Construction Characteristics and Performance of Homes in Hurricanes Andrew and Opal. J. of Wind Engineering and Industrial Aerodynamics. 1998, (77&78):695~701
    44 B. L. Sill, and R. T. Kozlowski. Analysis of Storm-Damage Factors for Low-Rise Structures. J. of Performance of Constructed Facilities. 1997, November:168~177
    45 G. Y. K. Chock. Modeling of Hurricane Damage for Hawaii Residential Construction. J. of Wind Engineering and Industrial Aerodynamics. 2005, (93):603~622
    46 C. Khanduri, and G. C. Morrow. Vulnerability of Buildings to Windstorms and Insurance Loss Estimation. J. of Wind Engineering and Industrial Aerodynamics. 2003, (91):455~467
    47 V. K. Jain, R. Davidson, and D. Rosowsky. Modeling Changes in Hurricane Risk over Time. Natural Hazards Review. 2005, May: 88~96
    48 C. O. Unanwa, J. R. McDonald, K. C. Mehta, and D. A. Smith. The Development of Wind Damages Bands for Buildings. J. of Wind Engineering and Industrial Aerodynamics, 2000, 84: 119~149
    49 C. O. Unanwa, and J. R. McDonald. Building Wind Damage Prediction and Mitigation Using Damage Bands. Natural Hazards Review. 2000, November: 197~203
    50 M. M. Abdullah, S. C. Gross, T. R. Norton, and G. D. Wesson. Altered Building Classifications for a Hurricane Loss Estimation Model. 2007: 1~21
    51 B. R. Ellingwood, D. V. Rosowsky, Y. Li, and J. H. Kim. Fragility Assessment of Light-Frame Wood Construction Subjected to Wind and Earthquake Hazards. J. of Structural Engineering. 2004, December: 1921~1930
    52 S. D. Schiff, D. V. Rosowsky, and A. E. C. Lee. Uplift Capacity of Nailed Roof Sheathing Panels. Proceeding of International Wood Engineering Conference. New Orleans, 1996, Vol. 4:446~470
    53 J. Graettinger, J. W. Van de Lindt, R. Gupta, S. E. Pryor, T. D. Skaggs, and K. J. Fridley. Overview of Wind Damage to Woodframe Structure Caused by Hurricane Katrina. Structures. 2006:1~10
    54 A. Kareem. Performance of Cladding in Hurricane Alicia. J. of Structural Engineering. 1986, 112(12):2679~2693
    55 P. Huang, A. Mirmiran, A. G. Chowdhury, C. Abishdid, and T. L. Wang. Performance of Roof Tiles under Simulated Hurricane Impact. J. of Architectural Engineering. 2009, March:26~34
    56 J. W. van de Lindt, A. Graettinger, R. Gupta, T. Skaggs, S. Pryor, and K. J. Fridly. Performance of Wood-Frame Structures during Hurricane Katrina. J. of Performance of Constructed Facilities. 2007, March/April:108~116
    57 N. Meloy, R. Sen, N. Pai, and G. Mullins. Roof Damage in New Homes Caused by Hurricane Charley. J. of Performance of Constructed Facilities. 2007, March/April:97~107
    58 D. V. Rosowsky, and N. Cheng. Reliability of Light-Frame Roofs in High-Wind Regions II: Reliability Analysis. J. of Structural Engineering. 1999, 125(7): 734~739
    59 D. V. Rosowsky, and N. Cheng. Reliability of Light-Frame Roofs in High-Wind Regions I: Wind Load. J. of Structural Engineering. 1999, 125(7): 725~733
    60 D. V. Rosowsky, and B. R. Ellingwood. System Reliability and Load-Sharing Effects in Light-Frame Wood Construction. J. of Structural Engineering. 1991, 117(4): 1096~114
    61 D. V. Rosowsky, and B. R. Ellingwood. Performance-Based Engineering of Wood Frame Housing: Fragility Analysis Methodology. J. of Structural Engineering. 2002, 128(1): 32~38
    62 D. V. Rosowsky, and S. D. Schiff. Probabilistic Modeling of Roof Sheathing Uplift Capacity. Proceeding of Probabilistic Mechanics and Structural Specialty Conference. ASCE, Reston. 1996: 334~337
    63 J. P. Pinelli, E. Simiu, K. Gurley, C. Subramanian, L. Zhang, A. Cope, J. J. Filliben, and S. Hamid. Hurricane Damage Prediction Model for Residential Structures. J. of Structural Engineering. 2004, November:1685~1691
    64 A. D. Cope. Predicting the Vulnerability of Typical Residential Buildings to Hurricane Damage. Ph.D. Dissertation. University of Florida. 2003:1~5
    65 J. P. Pinelli, C. Subramanian, L. Zhang, K. Gurley, A. Cope, E. Simiu, J. Filliben, and S. Diniz, A Model to Predict Hurricane Induced Losses for Residential Structures. Proceedings of European Safety and Reliability Conference. Maastricht, Netherlands. 2003, June:1~14
    66 Y. Li, and B. R. Eillingwood. Expected Economic Losses and Vulnerability of Coastal Residential Building to Hurricanes. Coastal Disasters. 2005:466~473
    67 C. Hill, and M. Levitan. Development Vulnerability Function for Industrial/ Petrochemical Facilities due to Extreme Winds and Hurricanes. Coastal Disasters. 2005:494~593
    68曹嵩高,张相庭.结构风灾经济损失模型的建立及其应用.安阳师范学院学报. 2000, (2):32~34
    69崔剑锋,张相庭.高耸结构风灾经济损失预测的研究.同济大学学报. 2000, 28(5):518~522
    70张相庭.直立管式结构抗风防灾分析和经济损失估算研究.特种结构. 2006, 23(3):41~44
    71申晓明,谢慧才,王英姿.结构风灾经济损失模型在GIS中的应用.灾害学. 2002, 17(3):1~4
    72申晓明.风灾易损结构物损伤评估体系及在汕头市城市防风灾中的应用.汕头大学硕士学位论文. 2003:3~4
    73 P. J. Vickery, P. F. Skerlj, J. Lin, L. A. Twisdale Jr., M. A. Young, and F. M. Lavelle. HAZUS-MH Hurricane Model MethodologyⅡ: Damage and Loss Estimation. Natural Hazards Review. 2006, May:94~103
    74 P. J. Vickery, P. F. Skerlj, J. Lin, L. A. T. Jr., and K. Huang. HAZUS-MHHurricane Model Methodology.Ⅰ: Hurricane Hazard, Terrain, and Wind Load Modeling. Natural Hazards Review. 2006, May:82~93
    75赵桂峰,马玉宏.建筑结构震害预测研究进展.广州大学学报(自然科学版). 2005, 4(5): 441~448
    76尹之潜.地震灾害损失预测研究.地震工程与工程振动. 1991, 11(2): 87~96
    77尹之潜,李树桢,杨淑文.单层工业厂房震害估计方法.地震工程与工程振动. 1987, 7(4): 78~86
    78王景来,宋志峰.地震灾害快速评估模型.地震研究. 2001, 24(2):162~167
    79郭小东,苏经宇,马东辉,李刚.城市建筑物快速震害预测系统.自然灾害学报. 2006, 15(3):128~134
    80 F. W. Agnew. Alabama Hurricanes and Their Effect on the Electrical Transmission System. Coastal Disasters. 2005:474~483
    81 J. Padgett, R. DesRoches, B. Nielson etc. Bridge Damage and Repair Costs from Hurricane Katrina. J. of Bridge Engineering. 2008, January/February: 6~14
    82 P. F. Mlakar, G. I. Velazquez, P. G. Combs, and S. R. Collinsworth. Bridge Performance in Hurricane Mitch. Forensic Engineering. 244~252
    83 G. Mosqueda, K. A. Porter, J. O. Connor, and P. McAnany. Damage to Engineered Buildings and Bridges in the Wake of Hurricane Katrina. Structures Congress, Forensic Engineering Symposium. 2007
    84 J. Friedland, M. L. Levitan, and B. J. Adams. Development of a Hurricane Storm Surge Damge Model for Residential Structures. Solutions to Coastal Disasters Congress. 2008: 838~847
    85 N. Kobayashi, B. Pozueta, and J. A. Melby. Performance of Coastal Structures against Sequences of Hurricanes. J. of Waterway, Port, Coastal and Ocean Engineering. 2003, 129(5):219~228
    86 G. Franco, R. Green, B. Khazai, A. Smyth, and G. Deodatis. Field Damage Survey of New Orleans Homes in the Aftermath of Hurricane Katrina. Natural Hazards Review. 2010, February:7~18
    87 J. E. Padgett, and C. Arnold. Lessons in Bridge Vulnerability from Hurricane Katrina: Reconnaissance Findings and Analysis of Empirical Data. TCLEE 2009: Lifeline Earthquake Engineering in a Multihazard Environment. 2009:485~494
    88 M. Okeil, and C. S. Cai. Survey of Short and Medium Span Bridge Damage Induced by Hurricane Katrina. J. of Bridge Engineering. 2008, July/ August:377~387
    89中华人民共和国国家标准,建筑结构荷载规范GB50009- 2001.中国建筑工业出版社. 2005:44~48
    90 J. Shanmugasundaram, and S. Arunachalam. Cyclone Damage to Buildings and Structures– A Case Study. J. of Wind Engineering and Industrial Aerodynamics. 2000, (84):369~380
    91楼文娟,卢旦,孙炳楠.风致内压及其对屋盖结构的作用研究现状评述.建筑科学与工程学报. 2005, 22(1):76~82
    92 H. Liu. Building Code Requirements on Internal Pressure. Proceeding of 3rd U.S. National Conference of Wind Engineering Research. Florida, 1978:V1~7
    93 H. Liu, and P. J. Saathoff. Building Internal Pressure:Sudden Change. J. of the Engineering Mechanics Division. 1981, 107(Em2):309~321
    94 H. Liu, and K. H. Rhee. Helmholtz Oscillation in Building Models. J. of Wind Engineering and Industrial Aerodynamics. 1986, (24):95~115
    95 B. J. Vickery. Gust Factors for Internal Pressures in Low Rise Buildings. J. of Wind Engineering and Industrial Aerodynamics. 1986, (23):259~271
    96 B. J. Vickery. Comments on the Propagation of Internal Pressures in Buildings by R.I. Harris. J. of Wind Engineering and Industrial Aerodynamics. 1991, (37):209~212
    97 B. J. Vickery, and C. Bloxham. Internal Pressure Dynamics with a Dominant Opening. J. of Wind Engineering and Industrial Aerodynamics. 1992, (41~44):193~204
    98 B. J. Vickery. Internal Pressure and Interactions with the Building Envelop. J. of Wind Engineering and Industrial Aerodynamics. 1994, (53):125~144
    99 T. Stathopoulos, and H. D. Luchian. Transient Wind Induced Internal Pressures. J. of the Engineering Mechanics Division. 1989, 115(7):1501~1514
    100 J. D. Holmes. Mean and Fluctuating Internal Pressures by Wind. Proceeding of 5th International Conference on Wind Engineering. Fort Collins, Colorado, Pergamon Press, Oxford, July, 1997 :435~450
    101 A. R. Woods, and P. A. Blackmore. The Effect of Dominant Openings and Porosity on InternalPressures. J. of Wind Engineering and Industrial Aerodynamics. 1995, (57):167~177
    102 Beste, Frank, Cermak, and E. Jack. Correlation of Internal and Area-Averages External Wind Pressures on Low-Rise Buildings. J. of Wind Engineering and Industrial Aerodynamics. 1997, (69-71):557~566
    103 N. Kato, Y. Niihori, T. Kurita, and T. Ohkuma. Full-Scale Measurement of Wind-Induced Internal Pressures in a High-Rise Building. J. of Wind Engineering and Industrial Aerodynamics. 1997, (69~71):619~630
    104 R. N. Sharma, and P. J. Richards. The Influence of Helmholtz Resonance onInternal Pressures in a Low-Rise Building. J. of Wind Engineering and Industrial Aerodynamics. 2003, (91):807~828
    105 R. N. Sharma. Internal and Net Envelop Pressures in a Building Having Quasi-Static Flexibility and a Dominant Opening. J. of Wind Engineering and Industrial Aerodynamics. 2008, (96):1074~1083
    106余世策,楼文娟,孙炳楠,孙斌.背景孔隙对开孔结构风致内压响应的影响.土木工程学报. 2006, 39(6):6~11
    107余世策,孙炳楠,楼文娟.风致内压对大跨屋盖风振响应的影响.空气动力学学报. 2005, 23(2):210~216
    108卢旦.风致内压特性及其对建筑物作用的研究.浙江大学博士学位论文. 2006:36~37
    109余世策.开孔结构风致内压及其与柔性屋盖的耦合作用.浙江大学博士学位论文. 2006:16~18
    110楼文娟,余世策,李恒,孙炳楠.突然开孔对平屋盖结构静动力风荷载的影响.同济大学学报(自然科学版). 2007, 35(10):1316~1321
    111卢旦,楼文娟,孙炳楠,唐锦春.突然开孔结构的风致内压及屋盖响应研究.振动工程学报. 2005, 18(3):299~303
    112 A. F. Miguel, and A. M. Silva. Analysis of Wind-Induced Internal Pressure in Enclosures. Energy and Buildings. 2000, (32):101~107
    113 J. D. Ginger. Internal Pressures and Cladding Net Wind Loads on Full-Scale Low-Rise Building. J. of Structural Engineering. 2000:538~54
    114 M. L. Levitan, and K. C. Mehta. Texas Tech Field Experiments for Wind Loads Part I:Building and Pressure Measuring System. J. of Wind Engineering and Industrial Aerodynamics. 1992, (41~44):1565~1576
    115 M. L. Levitan, and K. C. Mehta. Texas Tech Field Experiments for Wind Loads Part II:Meteorological in Strumentation and Terrain Parameters. J. of Wind Engineering and Industrial Aerodynamics. 1992, (41–44):1577~1588
    116 Australian Standard:SAA Loading Code, Part 2, Wind loads. AS1170.2. 1989
    117 Department of Homeland Security Emergency Preparedness and Response Directorate, FEMA Mitigation Division. HAZUS-MH Hurricane Technical Manual. 2006, Vol.Ⅰ:5-1, 5-7, 5-25, 5-19
    118 N. Lin, J. D. Holmes, and C. W. Letchford. Trajectories of Wind-Borne Debris in Horizontal Winds and Applications to Impact Testing. J. of Structural Engineering. 2007, February:274~282
    119 N. Lin, and E. Vanmarke. A Windborne Debris Risk Model. Proceedings of ICWE12. Australia. Cairns. 2007:1967~1974
    120 J. A. B. Wills, B. E. Lee, and T. A. Wyatt. A model of Wind-Borne Debris Damage. J. of Wind Engineering and Industrial Aerodynamics. 2002, 90:555~565
    121 J. R. Mcdonald. Tornado-Generated Missiles and Their Effects. Proceeding of Symposium on Tornadoes. Texas Tech University, Lubbock, Texas. 1976
    122 J. R. Mcdonald. Impact Resistance of Common Building Materials to Tornado Missiles. J. of Wind Engineering and Industrial Aerodynamics. 1990, 36(2):717~742
    123 A. J. H. Lee. A General Study of Tornado-Generated Missiles. Nuclear Engineering and Design. 1974, 30(3):418~433
    124 L. A. Twisdale, W. L. Dunn, and T. L. Davis. Tornado Missile Transport Analysis. Nuclear Engineering and Design. 1979, 51(2):295~308
    125 L. A. Twisdale, P. J. Vickery, and A. C. Steckley. Analysis of Hurricane Windborne Debris Risk for Residential Structures. Applied Research Associates. Inc. Raleigh, N.C. 1996
    126 M. Tachikama. Trajectories of Flat Plates in Uniform Flow with Applications to Wind-Generated Missiles. J. of Wind Engineering and Industrial Aerodynamics. 1983, 14(1-3):443~453
    127 J. D. Holmes, C. J. Baker, and Y. Tamura. Tachikama number:A proposal. J. of Wind Engineering and Industrial Aerodynamics. 2006, 94:41~47
    128 J. D. Holmes, C. W. Letchford, and N. Lin. Investigation of Plate-Type Windborne Debris. PartⅡ:Computed Trajectories. J. of Wind Engineering and Industrial Aerodynamics. 2006, 94:21~39
    129 N. Lin, C. Letchford, and J. D. Holmes. Investigation of Plate-Type Windborne Debris. PartⅠ:Experiments in Wind Tunnel and Full Scale. J. of Wind Engineering and Industrial Aerodynamics. 2006, 94:51~76
    130 J. D. Holmes. Trajectories of Spheres in Strong Winds with Application to Wind-Borne Debris. J. of Wind Engineering and Industrial Aerodynamics. 2004, 92:9~22
    131李文波,王赛宁.从风荷载对门式刚架房屋的破坏看抗风设计. 2005年全国建筑钢结构行业大会论文集.北海, 2005:195~209
    132潘赛军,施月中,耿晓清,卢善正.浙江台州工业厂房0414号台风受损的原因剖析与对策探讨.钢结构. 2005, 20(82):52~57
    133《轻型钢结构》编委会.轻型钢结构.中国计划出版社. 2006:80~81
    134中华人民共和国国家标准,冷弯薄壁型钢结构技术规范GB 50018-2002.中国计划出版社. 2003:33~37
    135中华人民共和国国家标准,建筑用压型钢板GB/T12755-2008.中国标准出版社. 2009:4~5
    136李守巨.钢结构常用数据速查手册.中国建材工业出版社. 2006:375~376
    137沈祖炎,陈以一,陈扬骥.房屋钢结构设计.中国建筑工业出版社. 2008:197~200
    138张其林.轻型门式刚架.山东科学技术出版社. 2006:1
    139周绪红.钢结构设计指导与实例精选.中国建筑工业出版社, 2008:156, 43
    140 R. A. Behr, and J. E. Minor. A Survey of Glazing System Behavior in Multi-Story Buildings during Hurricane Andrew. Structural Design of Tall Buildings. 1994, 3(3):143~161
    141包头钢铁设计研究总院,中国钢结构协会房屋建筑钢结构协会.钢结构设计与计算,第2版.机械工业出版社. 2006:141
    142李权. ANSYS在土木工程中的应用.人民邮电出版社. 2005:265~295
    143段进,倪栋,王国业. ANSYS10.0结构分析从入门到精通.兵器工业出版社. 2006:46~88
    144郝文化. ANSYS土木工程应用实例.中国水利水电出版社. 2005:33~74
    145张朝晖. ANSYS8.0结构分析及实例解析.机械工业出版社. 2006:79~177
    146徐鹤山. ANSYS建筑钢结构工程实例分析.机械工业出版社. 2007:20
    147中华人民共和国国家标准,户外广告设施钢结构技术规程CECS 148:2003.中国计划出版社. 2003
    148中华人民共和国国家标准,冷弯薄壁型钢结构技术规范GB50018-2002.中国计划出版社. 2003
    149姚谏,赵滇生.钢结构设计及工程应用.中国建筑工业出版社, 2008:80, 87
    150中华人民共和国国家标准,钢结构设计规范GB 50017-2003.中国计划出版社. 2003
    151冷御寒.建筑外围护结构.中国建筑工业出版社. 2005:119
    152 C. Schittich, G. Staib, D. Balkow, M. Schulerm, and W. Sobek. Glass Construction Manual. Birkhauser Publishers. 1999:47
    153 R. Hess. Material Glass. Structural Engineering International. 2004, 14(2):76~79
    154中华人民共和国国家标准,玻璃幕墙工程技术规范JGJ 102-2003.中国建筑工业出版社. 2004
    155张其林.玻璃幕墙结构.山东科学技术出版社. 2006:73~75
    156中华人民共和国国家标准,建筑用安全玻璃第二部分:钢化玻璃GB15763.2-2005.中国标准出版社. 2006
    157中华人民共和国国家标准,夹层玻璃GB9962-1999.中国标准出版社. 1999
    158中华人民共和国国家标准,中空玻璃GB11944-2002.中国标准出版社. 2002
    159罗艺.点式支撑玻璃建筑体系及其工程应用.工业建筑, 2001, 31(10):1~5
    160 J. E. Minor. Lessons Learned from Failures of the Building Envelope in Windstorms. J. of Architectural Engineering. 2005, March:10~13
    161 J. A. B. Wills, and B. E. Lee. Vulnerability of Fully Glazed High-Rise Buildings in Tropical Cyclones. J. of Architectural Engineering. 2002, June:42~48
    162中华人民共和国国家标准,建筑幕墙平面内变形性能检测方法GB/T 18250-2000.中国标准出版社. 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700