钢筋混凝土框架结构的整体概率抗震能力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪初,美国太平洋地震工程研究中心(Pacific Earthquake Engineering Research Center, PEER)提出了新一代“基于性能的地震工程(Peformance-Based Earthquake Engineering, PBEE)”概率决策框架;与此同时,美国中部地震研究中心(Mid-American Earthquake Engineering, MAE)也提出了“基于后果的地震工程(Consequence-Based Earthquake Engineering, CBEE)”概率决策框架。由于这两个框架都是建立在地震风险分析的基础上,为此,本文初步提出了“基于风险的地震工程(Risk-Based Earthquake Engineering, RBEE)”概率决策框架。地震动(Earthquake Motion)、地震需求(Seimsic Demand)和抗震能力(Seimsic Capacity)以及它们之间的相互关系是PBEE、CBEE和RBEE所共同关心的三个核心问题。由于地震发生的随机性、地震动的随机过程性以及工程结构自身参数的随机性,因此结构的抗震能力本质上是随机的,研究结构地震需求与抗震能力之间概率关系的学科称为“概率抗震能力分析(Probabilsitic Seismic Capacity Analysis, PSCA)”。
     工程结构的概率抗震能力分析是结构抗震可靠度分析、结构地震易损性分析以及结构地震风险分析的基础,同时,也是采用全概率方法进行结构概率抗震性能设计和概率抗震性能评定的重要组成部分;另外,概率抗震能力分析的结果也可以为地震损失估计和防震减灾决策提供科学的依据。由于结构整体抗震能力可以从宏观上刻画结构的抗震性能,因此,对重大土木工程结构和基础设施系统进行整体概率抗震能力分析,不仅具有重要的理论意义,而且具有重要的工程实用价值。
     本文首先研究了复杂随机函数的统计矩分析方法,提出了基于Nataf变换的点估计法;通过对同一算例的计算,将点估计法同蒙特卡洛模拟法、数值积分法和平均值一次二阶矩法进行了比较;然后,将随机函数统计矩分析方法和Pushover分析结合起来,提出随机Pushover分析方法;以最大层间位移角(Inter-Storey Drift Angle, ISDA)作为结构整体能力参数,然后从随机Pushover分析和有限元可靠度分析两个角度,建立了钢筋混凝土框架结构的整体概率抗震能力模型;在此基础上,结合场地的地震危险性,对结构的整体概率抗震能力危险性和整体概率抗震能力易损性进行了系统深入的分析。得到以下结论:
     (1)本文提出的改进的点估计法可以提高Zhao-Ono点估计法的精度;MVFOSM的效率最高,但精度较低,特别是当随机函数的非线性程度较高时;数值积分法的精度与点估计法相当,其效率高于点估计法。
     (2)随机Pushover分析方法和有限元可靠度分析方法都可以用来计算结构整体能力的统计矩。随机Pushover分析方法将随机函数统计矩分析方法与传统的Pushover分析相结合,可以很好地解决结构整体能力统计分析中所遇到的隐式函数难以处理的困难;有限元可靠度分析方法将结构可靠度的近似解析法与有限元分析以及有限元反应灵敏度分析相结合,本质上是一种随机有限元方法,可以精细地模拟结构模型中的各种不确定性。
     (3)结构整体抗震能力基于统计矩的概率模型和基于可靠度的回归模型,结果存在一定差异。前者基于结构能力参数服从对数正态分布假设,是一种具有“共性”的假设;后者基于有限元可靠度分析则是针对具体的结构形式,得到了“个性”的结果。“个性”的结果一定会体现“共性”的假设特征,但是,更多的体现的是结构个体的性质。
     (4)结构的概率抗震能力模型只考虑结构自身参数的不确定性,而结构抗震能力的易损性模型则进一步考虑了地震动参数的随机性。显然,后者是对前者的进一步拓广。
     (5)结构抗震能力的危险性是在结构抗震能力易损性分析基础上,考虑了场地的危险性。因此,结构的抗震能力危险性分析是对结构抗震能力分析的进一步拓广。
At the beginning of the twenty-first century, Pacific Earthquake Engineering Research Center (PEER) proposed a probabilistic decision-making framework for Performance-Based Earthquake Engineering (PBEE). At the same time, Mid-American Earthquake Engineering (MAE) proposed another probabilistic decision-making framework for Consequence-Based Earthquake Engineering (CBEE). Actually, the two frameworks both are based on seismic risk analysis, threrfore, the probabilistic decision-making framework of Risk-Based Earthquake Engineering is put forward in this thesis. Earthquake motion, seismic demand and seismic capacity as well as their relationships are central concerned problems in PBEE, CBEE and RBEE. Because of the randomness of seismic activity, the random process characteristics of earthquake motions and stochastic parameters of engineering structures, the seismic capacities of structures are random in nature. The subject which studies the probabilistic relationships between seismic capacity and seismic demand of structures is called as Probabilistic Seismic Capacity Analysis (PSCA).
     PSCA is the foundation of seismic reliability analysis, seismic vulnerability analysis and seismic risk analysis of engineering structures. Meanwhile, it is an important part of probabilistic performance-based seismic design and assessment by using full probability method. Moreover, the results of PSCA can also provide scientific support for earthquake loss evaluation and earthquake disaster mitigation decision-making. Since the global seismic capacity of structures can describe the seismic performance of structures from the macroscope viepoint, it is very important to study the theory and methodologies of global PSCA for key civil engineering structures and infrastructure systems.
     In this thesis, an improved point estimation method (PEM) based on Nataf transformation is put forward to compute the statisticalal momens of complex stochastic functions, The proposed method is compared with crude Monte Carlo simulation method, numerical integration method and mean-value first order second moment (MVFOSM) by an detailed numerical example. Then the four stochastic analysis methods are then combined with pushover analysis (POA) method, which is named“random POA”to compute the statisticalal moments of the stochastic seismic capacity of structures. The inter-story drift angle (ISDA) is taken as the capacity parameter and the computation results of random POA method are compared with that by using two finite element reliability method based on MVFOSM and FORM. After constructing the global probabilistic seismic capacity models (PSCM) of R.C. frame structures, the global seismic capacity fragility and hazard are studied more deeply and systematically considering the seismic hazard of the site. The main conclusions are summarized as follows:
     (1) The modified point estimation method probopsed by this thesis can improve the accuracy of Zhao-Ono method. Among the four methods to compute the statisticalal moments of a complex random function, the efficiency of the mean-value first order second moment (MVFOSM) method is the best, however, its accuracy is worse, especially in the condition of high nonlinearity of the random function. Numerical integraton method has the same accuracy as the point estimation method, and its efficiency is higher than the latter.
     (2) Random pushover analysis (RPOA) method combines statisticalal moments analysis of random functions with pushover analysis. Because there are a lot of mathematics problems in implicit functions in structural analysis, this idea that combines finite Element analysis with mathematics method is so revealing for structural analysis.
     (2) RPOA method and finite element reliability analysis (FERA) method can all be applied to compute the statisticalal moments of random functions. Combining statisticalal moments analysis of random functions with conventional pushover analysis, RPOA can overcome the difficulties of implicit performance functions in global capacity statisticalal analysis of structures. FERA method couples the approximate analytical methods in structural reliability theory with finite element analysis (FEA) and finite element response sensitivity analysis (FERSA) efficiently, therefore, it is a kind of stochastic finite element methods in ature. It can be used to more finely simulate the various uncerainties in structural model.
     (3) There are some differences in the results of global probabilistic seismic capacity model based on statistical moments analysis and finite element reliability analysis. The former is built upon the“common”assumption that the global capacity of structures satisfies the log-normal model, which is based on a lot of experimental data. However, when the“individual”result that based on reliability analysis also is regressed by log-normal model on the basis of“common”assumptions, then the diversities would surely exist. Although the“individual”sample can reflect the“common”aspect of the population, it still would manifest its more specific characteristics.
     (4) The probabilistic seismic capacity model of structures can only consider the randomness in structure itself, while the vulnerability model of seismic capacity of structures can further include the variations in earthquake motion’s parameters. Obviously, the latter is the generalization of the former.
     (5) Based on probabilistic seismic capacity fragility analysis of sructures, the hazard analysis of seismic capacity of structures further considers the hazard of the site, so the seismic capacity hazard analysis is the generalization of the probabilistic seismic capacity analysis.
引文
1 Mackie K. Fragility-Based Seismic Decision Making for Highway Overpass Bridges. Ph.D. Dissertation. Berkeley: Department of Civil and Environmental Engineering of UC Berkeley, 2005
    2 D.P. Abrams, A.S. Elnashai and J.E. Beavers. A New Engineering Paradigm: Conseguence-Based Engineering
    3 Benjamin. J, and C.A.Conell. Probability, Statisticals and Decision for Civil Engineering. McGraw-Hill, NewYork, 1970
    4 Ghiocel D.M., et al. Seismic response and fragility evaluation for an Eastern US NPP including soil–structure interaction effects. Reliability Engineering and System Safety, 1998, 62:197~214
    5 Ozaki M., et al. Improved response factor methods for seismic fragility of reactor building. Nuclear Engineering and Design, 1998, 185:277~291
    6 Kazuta Hirata,Takahiro Somak. Fragility estimation of an isolated FBR structure considering the ultimate state of rubber bearings. Nuclear Engineering and Design,147(1994):183~196
    7 Cho S.G., and Joe Y.H. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea. Nuclear Engineering and Design, 2005, 235:1867~1874
    8 Bhargava K., Ghosh A.K., and Ramanujama S. Seismic response and fragility analysis of a water storage structure. Nuclear Engineering and Design, 2005, 235:1481~1501
    9 Kapilesh Bhargawa.et.al. Evaluation of Seismic fragility of Structures-a case study. Nuclear Engineering and Design, 212(2002):253~272
    10 Akira Yamaguchi. Seismic failure probability evaluation of redundant fast breader reactor piping system by probabilistic structural response analysis. Nuclear Engineering and Design, 195(1997):237~245
    11 Tekie P.B., and Ellingwood B.R. Seismic fragility assessment of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 2003(32): 2221~2240
    12 R.Giannini.et al.,Risk analysis of a medieval tower before after streng-thening. Structural Safety VOL 18, NO 2/3 , pp, 81-100, 1996
    13 Giuliano Augusti et.al., Seismic vulnerability of monumental buildings. Structure Safety 23(2001):253~274
    14 Torres-Veraa M.A., and Canas J.A. Lifeline vulnerability study in Barcelona, Spain. Reliability Engineering and System Safety, 2003, 80:205~210
    15 Hwang H.H.M., and Huo J.-R. Seismic fragility analysis of electric substation equipment and structures. Probabilistic Engineering Mechanics, 1998, 13(2):107~116
    16 Shinozuka M., et al. Statisticalal analysis of fragility curves. Journal of Engineering Mechanics, ASCE 2000, 126(12):1224~1231
    17 Shinozuka M., et al. Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics, ASCE 2000, 126(12): 1287~1295
    18 Kim S.-H., and Feng M.Q. Fragility analysis of bridges under ground motion with spatial variation. International Journal of Non-Linear Mechanics, 2003, 38:705~721
    19 Kim S.-H., and Shinozuka M. Development of fragility curves of bridges retrofitted by column jacketing. Probabilistic Engineering Mechanics, 2004, 19:105~112
    20 Choi E., DesRoches R., and Nielson B. Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures, 2004, 26(2):187~199
    21 Gardoni P., Der Kiureghian A., and Mosalam K.M. Probabilistic Models and Fragility Estimates for Bridge Components and Systems. PEER Report 2002/13
    22 Mackie K., and Stojadinovic B. Fragility curves for reinforced concrete highway overpass bridges. 13th World Conference on Earthquake Engineering, Vancouver, B.C. Canada, August 1~6, 2004, Paper No 1553
    23 Lupoi A., Franchin P., and Schotanus M.I.J. Seismic risk evaluation of RC bridge structures. Earthquake Engineering and Structural Dynamics, 2003, 32:1275~1290
    24 Hwang H.H.M., and Low Y.K. Seismic reliability analysis of plane frame structures. Probabilistic Engineering Mechanics, 1989, 4(2):74~84
    25 Hwang H.H.M., Low Y.K., and Hsu H.-M. Seismic reliability analysis offlat-plate structures. Probabilistic Engineering Mechanics, 1990, 5(1):2~8
    26 Hwang H.H.M., and Jaw J.-W. Probabilistic damage analysis of structures. Journal of Structural Engineering, ASCE 1990, 116(7):1992~2007
    27 Ellingwood B.R. Earthquake risk assessment of building structures. Reliability Engineering and System Safety, 2001, 74:251~262
    28 Song J.-L., and Ellingwood B.R. Seismic reliability of special moment steel frames with welded connections: II. Journal of Structural Engineering, ASCE 1999, 125(4):372~384
    29 Ellingwood B.R., et al. Fragility assessment of light-frame wood constructi-on subjected to wind and earthquake hazards. Journal of Structural Engineering, ASCE 2004, 130(12):1921~1930
    30 Rosowsky D.V., and Ellingwood B.R. Performance-based engineering of wood frame housing: Fragility analysis methodology. Journal of Structural Engineering, ASCE 2002, 128(1):32~38
    31 Kim J.H., and Rosowsky D.V. Fragility analysis for performance-based seis-mic design of engineered wood shearwalls. Journal of Structural Engineering, ASCE 2005, 131(11):1764~1773
    32 Wen Y.K., and Ellingwood B.R. The role of fragility assessment in consequence-based engineering. 9th International Conference on Applica-tions of Stochastic and Probability in Civil Engineering (ICASP9), Der Kiureghian, Madanat & Pestana (eds), Millpress, Rotterdam, 2003: 1573~1579
    33 Sasani M., and Der Kiureghian A. Seismic fragility of RC structural walls: Displacement approach. Journal of Structural Engineering, ASCE 2001, 127(2):219~228
    34 Sasani M., Der Kiureghian A., and Bertero V.V. Seismic fragility of short period reinforced concrete structural walls under near-source ground motions. Structural Safety, 2002, 24(2-4):123~138
    35 Gardoni P., Der Kiureghian A., and Mosalam K.M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics, ASCE 2002, 128(10):1024~1038
    36 Schotanus M.I.J., et al. Seismic fragility analysis of 3D structures. StructuralSafety, 2004, 26(4):421~441
    37 Rossetto T., and Elnashai A. Derivation of vulnerability functions for European-type RC structures based on observational data. Engineering Structures, 2003, 25(10):1241~1263
    38 Dymiotis C., Kappos A.J., and Chryssanthopoulos M.K. Seismic reliability of RC frames with uncertain drift and member capacity. Journal of Structural Engineering, ASCE 1999, 125(9):1038~1047
    39 Dymiotis C., Kappos A.J., and Chryssanthopoulos M.K. Seismic reliability of masonry-infilled RC frames. Journal of Structural Engineering, ASCE 2001, 127(3):296~305
    40 Dumova-Jovanoska E. Fragility curves for reinforced concrete structures in Skopje (Macedonia) region. Soil Dynamics and Earthquake Engineering, 2000, 19:455~466
    41 Dimova S.L., and Negro P. Seismic assessment of an industrial frame structure designed according to Eurocodes. Part 2: Capacity and vulnerability. Engineering Structures, 2005, 27(4):724~735
    42 Dimova S.L., and Elenas A. Seismic intensity parameters for fragility analysis of structures with energy dissipating devices. Structural Safety, 2002, 24(1):1~28
    43 Curadelli R.O., and Riera J.D. Reliability based assessment of the effectiveness of metallic dampers in buildings under seismic excitations. Engineering Structures, 2004, 26(13):1931~1938
    44周神根,王天威,杨春环.铁路桥梁震害简易预测法.抗震防灾对策.开封:河南科学技术出版社. 1988: 276~283
    45王天威,杨春环.铁路桥梁震害预测和抗震加固.铁道建筑1991, 16(8):4~9
    46朱美珍.公路桥梁震害预测.林皋主编.第三届全国地震会议论文集.大连:大连理工大学出版社, 1990
    47王东升,冯启民.桥梁震害预测方法.自然灾害学报, 2001,10(8):113~118
    48黄龙生,姜淑珍.公路桥震害损失的预测研究.哈尔滨,中国地震局工程力学研究所, 1995
    49常岭.桥梁的抗震变形能力.工程抗震, 1987, 3(4):20~26
    50王东升,翟桐,郭明珠.利用Pushover分析方法评价桥梁的抗震安全性.世界地震工程,2000, 16(2): 47~51
    51潘龙,孙利民,范立础.基于推倒分析的桥梁地震损伤评估模型与方法.同济大学学报,2001, 29(1): 10~14
    52赵成刚,冯启民.生命线地震工程.北京:地震出版社, 1994
    53刘兴业,王海超,邓文樵.人工神经元网络在公路工程震害预测方面的应用.地震工程与工程振动. 1996, 16(4):97~103
    54韩大建,杨炳尧,颜全胜.用人工神经网络方法评估桥梁缺损状况[J].华南理工大学学报,2004, 32(9):72~75
    55刘勇生.桥梁结构抗震研究的文献综述.世界地震工程,1992,12(2):48~55
    56陈一平,陈欣.公路交通系统震害预测计算机辅助系统DPLH简介.建筑科学, 1994, 10(4):71~75
    57黄龙生,姜淑珍.公路桥梁震害损失的研究.地震工程与工程振动, 1995, 15(4):113~117
    58邓民宪,宋龙伯.桥梁去体震害预测方法的研究.地震学刊, 1998, (1):18~24
    59程海根,董明.桥梁震害的模糊综合评估.云南交通科技, 1999, 15(4):32~35
    60赵燕林,韦树英,梅占馨.拱桥震害预测的灰色聚类方法.自然灾害学报, 1998,7(2): 92~98
    61王菁,高小旺.城市中典型及重要钢筋混凝土梁式桥震害预测方法.工程抗震,1995,11(1): 31~34
    62 Hwang H.,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析.土木工程学报, 2004, 37(6):47~51
    63常宝琦,梁纪彬.土坝的地震易损性和震害快速评估.人民珠江,1994; 12(6):12~16
    64王立功,陈建英,蔡灵铎.乌鲁木齐市供水管网地震易损性分析与震害预测.工程抗震. 1986(4):40~42
    65王立功.徐州市供水生命线工程易损性分析与震害预测.华北地震科学. 1982, 3(1)
    66邹其嘉,孙振凯,毛国敏.电力系统的地震易损性研究.自然灾害学报,1994, 3(2): 81~90
    67姜淑珍,柳春光.城市交通系统易损性分析.工程抗震与加固改造,2005, 27(增刊):237~241
    68杨玉成,杨柳,高大学.现有多层砖房震害预测的方法及其可靠度.地震工程与工程震动,1982, 2(3):75~84
    69杨玉成,李大华,杨雅玲,王治山,杨柳.投入使用的多层砌体房屋震害预测专家系统PDMSMB-1.地震工程与工程震动, 1990, 10(3):83~89
    70高小旺,钟益树.底层全框架砖房震害预测方法.建筑科学. 1990, 2
    71高小旺,钟益树,陈德彬.钢筋混凝土框架房屋震害预测方法.建筑科学, 1989, 1
    72尹之潜.地震灾害与损失预测方法.北京,地震出版社, 1995
    73尹之潜.地震损失分析与设防标准.北京,地震出版社, 2004
    74赵少伟,窦远明,张春祥,张春乔.建筑结构震害预测方法研究与实践.地震工程与工程振动2006, 26(3):51~53
    75宋立军,唐丽华,尹力峰,胡伟华.石河子市建筑物群体易损性矩阵的建立方法与震害预测.内陆地震. 2001, 15(4):320~325
    76常业军,吴曙光.底层框架砖房的震害预测方法.华南地震, 2001, 2(1): 57~61
    77于红梅,许建东,张素灵,潘波.基于集集地震德建筑物易损性统计分析.防灾科技学院学报, 2006, 8(4):17~20
    78钟德理,冯启民.基于地震动参数的建筑物震害研究.地震工程与工程震动,2004, 24(5):46~51
    79常业军,吴明友.建筑物结构易损性分析及抗震性能比较.山西地震,2001(1):23~25
    80王薇,徐志胜,冯凯.小城镇灾害易损性分析与评估.中国安全科学学报, 2004, 14(7):3~5
    81郭小东等.城市抗震防灾规划中建筑物易损性评价方法的研究.世界地震工程, 2005, 21(2):129~135
    82张令心,江近仁,刘洁平.多层住宅砖房的地震易损性分析.地震工程与工程振动, 2002, 22(1):49~55
    83于德湖,王焕定.配筋砌体结构地震易损性评价方法初探.地震工程与工程振动, 2002, 22(4):97~101
    84成小平,胡聿贤,帅向华.基于神经网络模型的房屋震害易损性估计方法.自然灾害学报, 2000, 9(2):68~73
    85温增平,高孟潭,赵凤新,李小军.统一考虑地震环境和局部场地影响的建筑物易损性研究.地震学报, 2006, 28(3):277~283
    86田军伟.砖砌体结构地震易损性矩阵分析.硕士论文.中国地震局工程力学研究所, 2005
    87楼思展,叶志明,陈玲俐.框架结构房屋地震灾害风险评估.自然灾害学报,2005; 14(5):99~105
    88乔亚玲,闫维明,郭小东.建筑物易损性分析计算系统.工程抗震与加固改造,2005; 27(4):75~79
    89陶正如,陶夏新.基于地震动参数的建筑物震害预测.地震工程与工程振动,2005; 24(2): 88~94
    90吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析.自然灾害学报,2006, 5(2):107~114
    91吕大刚,王光远.基于可靠度和灵敏度的结构局部地震易损性分析.自然灾害学报,2006, 15(4):157~162
    92 Federal Emergency Management Agency(FEMA), NEHRP Guideline for the Seismic Rehabilitation of Buildings, FEMA report 273, 1997
    93 Federal Emergency Management Agency(FEMA),Prestandard and Commentary for the Rehabilitation of Buildings, FEMA report 356, 2000
    94 Federal Emergency Management Agency(FEMA),Next-Generation Performance-Based Seismic Design Guildlines, FEMA report 445, 2006
    95 Applied Technology Council(ATC), Seismic Evaluation and Retrofit of Existing Concrete Buildings, ATC 40, 1996
    96 Structural Engineering Association of California(SEAOC), Performance Based Seismic Engineering of Buildings, April, 1995
    97 Do-Eun Choe et al. Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliability engineering and System Safety.(2007), doi: 10,1016/j.ress. 2006. 12.015
    98 Y.K.Wen et al. Vulnerability Function Framework for Consequence-based Engineering. MAE Center Project DS-4 Report
    99 Sang Hoon Kim. Fragility anlysis of bridges under ground motion with spatial variation. Ph D Dissertation: University of California Irvine. 2002
    100 Fatemeh Jalayer. Direct probabilistic seismic analysis: Implementing Non-linear Dynamic assessments. Ph D Dissertation: University of Stanford . March 2003
    101 Howard Hwang, Jing Bo Liu and Yi-Huei Chiu. Seismic Fragility Analysisof Highway Bridges. Report. Center for Earthquake Research and Information. The University of Memphis. July 2001
    102 H.Hwang,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析.土木工程学报, 2004(6):47~52
    103杨仕升,秦荣等.结构抗震能力评估技术的研究及应用.世界地震工程, 2004年12月, 20(4):100~107
    104孙巍巍,孟少平,吴京.多跨超长预应力混凝土框架结构抗震能力研究.工业建筑, 2006, 3(5):23~26
    105郝效强.钢筋混凝土框架结构-剪力墙结构抗震能力评估.硕士学位论文. 2006年3月
    106杨仕成,郝效强,秦荣.钢筋混凝土框架结构抗震能力评估研究.地震工程与工程振动. 2005年10月, 25(5):81~85
    107高小旺,孟俊义等.钢筋混凝土框架房屋不同破坏状态的抗震可靠度分析.自然灾害学报. 1995, 7(4增刊):68~76
    108李琦,顾荣蓉.基于位移的底部框架-抗震墙房屋抗震能力分析世界地震工程. 2006年6月, 22(2):64~68
    109李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用.国家自然科学基金研究专著
    110中国科学院计算中心概率统计组.概率统计计算.北京,科学出版社, 1979
    111 Liu, P.-L., and A. Der kiureghian. (1986). Multivariate distribution models with prescribed marginal and covariances. Probabilistic Engineering Mechanics, 1(2):105~112
    112 Cornell, C.A. (1969). A Probability-based structural code. Journal of American Concrete Institute, 66:974~985
    113 Hohenbichler, M., and Rackwitz, R. (1981). Non-normal dependent vectors in structural safety. Journal of Engineering Mechanics, ASCE, 107(6):1227~1238
    114 Yan-Gang Zhao.,and Tetsuro Ono, New point estimates for probability moments. Journal of Engineering Mechanics, ASCE, 126(4):433~436
    115 Jianhua Zhou., and Andrzej S. Nowak. Integration formulas to evaluate functions of random variables. Structural Safety,5(1988):267~284
    116 Jianhua Zhou. System reliability models for highway bridge analysisPh.D.The University of Michigan, 1989
    117高层建筑混凝土结构技术规程. JGJ 3-2002. J 186-2002
    118王光远,吕大刚,顾平著.抗灾结构最优设防荷载的决策.抗震结构的最优设防烈度与可靠度(第一部分),北京,科学出版社, 1999
    119胡晓琦.钢框架结构地震损伤可靠度分析与抗震性能设计研究.硕士论文.哈尔滨工业大学. 2005
    120 Terje Haukaas, Siviling, M.S. Finite Element Reliability and Sensitivity Methods for Performance-Based Engineering. D.PH. UC.Berkeley. 2003
    121 Sathish K. Ramamoorthy. Paolo Gardoni and Joseph M, Bracci. Seismic Fragility Estimate for Reinforced Concrete Building. Technical Report CDCI-06-01
    122潘峰.钢筋混凝土结构的整体概率地震需求分析.硕士论文,哈尔滨工业大学. 2007
    123龚思礼主编.建筑结构设计系列手册-建筑抗震设计手册(第二版).中国建筑工业出版社. 2003
    124高孟潭.新的国家地震区划图(综述).地震学报. 2003, 25(6):630~636
    125欧进萍,侯纲领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用.建筑结构学报, 2001, 6(22):81~86
    126混凝土结构设计规范. GB 50010-2002
    127 Der Kiureghian, A., and Taylor, R. L. Numerical Methods in Structural Reliability. Fourth International Conference on Applications of Statisticals and Probability in Soil and Structural Engineering. Florence, Italy, June 1983:769~784
    128 Der Kiureghian, A., and Ke J-B. The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 1988, 3(2):83~91
    129 Haldar, A., and Mahadevan, S. Reliability assessment using stochastic finite element analysis. Wiley, New York. 2000
    130吴世伟.结构可靠度分析.北京.人民交通出版社,1990
    131刘宁.可靠度随机有限元法及其工程应用.北京,中国水利水电出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700