缺血性脑血管病患者血清炎性标志物与颈动脉斑块稳定性的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究缺血性脑血管病患者血清炎性标志物水平与颈动脉斑块稳定性之间的相关性,评估各血清炎性标志物对易损性颈动脉斑块的识别能力,为早期识别易损性颈动脉斑块探索新的途径。
     方法:研究对象为65例经相关影像学检查证明存在颈动脉斑块的缺血性脑血管病患者,其中TIA 17例,脑梗塞44例,治疗其他疾病或健康体检时偶然发现颈动脉狭窄4例。所有研究对象均排除可能影响血清炎性标志物表达的疾病或状态。
     所有研究对象均行全脑血管造影及颈动脉斑块高分辨率MRI检查。根据斑块的MRI影像学特征如纤维帽厚度、是否存在较大脂质核及是否存在斑块内出血分为稳定斑块组(21例)和不稳定斑块组(44例)。不稳定斑块组根据纤维帽是否破裂又分为未破裂斑块组(29例)和破裂斑块组(15例)。
     抽取研究对象静脉血,用乙二胺四乙酸(EDTA)抗凝管搜集,离心后提取血清,零下80℃冷冻储存。应用酶联免疫吸附法(ELISA)测定血清sCD40L、MCP-1、MMP-2、MMP-9、MPO、PAPP-A的水平。
     结果:不稳定斑块组、不稳定未破裂斑块组和破裂斑块组患者血清sCD40L浓度水平均显著高于稳定斑块组(P值分别为0.011、0.001和0.000)。不稳定未破裂斑块组与破裂斑块组之间sCD40L浓度水平差异无显著性(P=0.085)。sCD40L浓度水平与斑块易损程度呈正相关关系(r=0.556,P=0.000)。
     不稳定斑块组、不稳定未破裂斑块组和破裂斑块组患者血清MMP-9浓度水平均显著高于稳定斑块组(P值分别为0.045、0.032和0.003)。不稳定未破裂斑块组与破裂斑块组之间MMP-9浓度水平差异无显著性(P=0.192)。血清MMP-9浓度水平与颈动脉斑块易损程度呈正相关关系(r=0.424,P=0.000)。
     不稳定斑块组和破裂斑块组患者血清PAPP-A浓度水平均显著高于稳定斑块组(P值分别为0.008和0.000),破裂斑块组患者血清PAPP-A浓度水平显著高于不稳定未破裂斑块组(P=0.000)。而稳定斑块组与不稳定未破裂斑块组差异无显著性(P=0.745)。血清PAPP-A浓度水平与斑块易损程度呈正相关关系(r=0.424,P=0.000)。
     Logistic多元回归分析结果显示血清标志物浓度sCD40L≥673.22pg/ml(OR值为22.47,95%CI为2.11-239.81, P=0.010)、MMP-9≥84.09ng/ml (OR值为10.01,95%CI为1.74-57.78, P=0.010)、PAPP-A≥0. lOlng/ml (OR值为14.29,95%CI为2.69~75.90,P=0.002)与颈动脉斑块的易损性相关。
     稳定斑块组与不稳定斑块组之间、稳定斑块组与不稳定未破裂斑块组之间、稳定斑块组与破裂斑块组之间、不稳定未破裂斑块组与破裂斑块组之间血清MCP-1、MMP-2和MPO的浓度水平均无显著性差异。
     结论:存在颈动脉粥样硬化斑块的缺血性脑血管病患者血清中sCD40L、MMP-9、PAPP-A水平与颈动脉斑块的不稳定可能相关,较高的血清sCD40L、MMP-9、PAPP-A水平可能提示斑块易损或破裂。因此,sCD40L、MMP-9、PAPP-A可以作为评价颈动脉斑块稳定程度的标志物,以大样本的血清免疫学实验结果作为标准,通过测定其血清浓度来判断颈动脉斑块是否易损或破裂在一定程度上是可行的,这可能成为早期识别颈动脉易损斑块的新方法。
Objective:
     To study the relationship between serum levels of inflammatory markers and stability of carotid plaques in patients with ischemic cerebrovascular diseases and evaluate the ability of each serum marker in identifying vulnerable carotid plaques. To explore a new approach for identifying vulnerable carotid plaques early.
     Methods:
     The study included 65 consecutive patients with ischemic cerebrovascular diseases and with carotid plaques confirmed by imaging examinations. Of these patients,17 were diagnosed as transient ischemic attack,44 cerebral infarction and 4 were detected with carotid stenosis incidentally. Patients were excluded if they have any other disease or disease state influencing the expression of serum inflammatory markers.
     All the patients were examined by digital subtraction cerebral angiography and high resolution magnetic resonance imaging. Patients were classified as stable plaques group (n=21) or unstable plaques group (n=44) according to the characteristic findings of plaques in MRI such as the thickness of fibrous cap, the existence of a large lipid core and intra-plaque hemorrhage. The patients of unstable plaques group were further classified as unrupture plaques group (n=29) and rupture plaques group (n=15) according to the integrity of fibrous cap.
     Peripheral blood samples of the study patients were collected in tubes containing ethylenediamine tetraacetic acid (EDTA). After centrifugation the serum was siphoned into freezing vials and stored at-80℃. Serum levels of sCD40L, MCP-1, MMP-2, MMP-9, MPO and PAPP-A were determined by enzyme-linked immunosorbent assay (ELISA).
     Results:
     Serum levels of sCD40L in patients of unstable plaques group, unrupture plaques group and rupture plaques group were all significantly enhanced compared to individuals of stable plaques group, P value being 0.011,0.001 and 0.000 respectively. There was no significant difference in serum levels of sCD40L between unrupture plaques group and rupture plaques group, P value being 0.085.
     Serum levels of MMP-9 in patients of unstable plaques group, unrupture plaques group and rupture plaques group were all significantly enhanced compared to individuals of stable plaques group, P value being 0.045,0.032 and 0.003 respectively. There was no significant difference in serum levels of MMP-9 between unrupture plaques group and rupture plaques group, P value being 0.192.
     Serum levels of PAPP-A in patients of unstable plaques group and rupture plaques group were all significantly enhanced compared to individuals of stable plaques group, P value being 0.008 and 0.000 respectively. Serum levels of PAPP-A in patients of rupture plaques group were significantly enhanced compared to individuals of unrupture plaques group, P value being 0.000. There was no significant difference in serum levels of PAPP-A between unrupture plaques group and stable plaques group, P value being 0.745.
     Spearman rank correlation indicated that the serum levels of sCD40L, MMP-9 and PAPP-A were positively correlated with the degrees of vulnerability of plaques, r value being 0.556,0.424 and 0.424 respectively, P value being 0.000,0.000 and 0.000 respectively.
     Logistic regression indicated that the serum levels of sCD40L≥673.22 pg/ml (OR=22.47,95%CI 2.11-239.81), MMP-9≥84.09 ng/ml (OR=10.01,95%CI 1.74-57.78) and PAPP-A≥0.101 ng/ml (OR=14.29,95%CI 2.69-75.90) were all significantly correlated with the vulnerability of carotid plaques, P value being 0.010, 0.010 and 0.002 respectively.
     There was no significant difference in the serum levels of MCP-1, MMP-2 and MPO between any two groups.
     Conclusions:
     There appear to be a relationship between the serum levels of sCD40L, MMP-9 and PAPP-A and the instability of carotid plaques in patients with cerebrovascular diseases and with carotid plaques. High serum levels of the above-mentioned markers may indicate that the plaques were vulnerable or ruptured. Therefore, sCD40L, MMP-9 and PAPP-A can be used as the markers of stability of carotid plaques. It is feasible in some extent to judge whether the plaques are vulnerable or ruptured by the serum levels of the mentioned markers if we take the results from large-sample trials as standards. And it maybe a new approach to identify vulnerable plaques early.
引文
[1]卫生部新闻办公室.第三次全国死因调查主要情况[J].中国肿瘤,2008,17(5):344-345.
    [2]Chaturvedi S, Bruno A, Feasby T, et al. Carotid endarterectomy-an evidence-based review:report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology [J]. Neurology,2005,65 (6):794-801.
    [3]DaskaloPoulou SS, DaskaloPoulos ME, Perrea D, et al. Carotid artery atherosclerosis: what is the evidence for drug action? [J]. Current pharmaceutical design,2007,13 (11):1141-1159.
    [4]Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:Part Ⅰ [J]. Circulation,2003, 108(14):1664-1672.
    [5]他汀类药物预防缺血生卒中/短暂性脑缺血发作专家组.他汀类药物预防缺血性卒中/TIA专家建议[J].中国卒中杂志,2007,2(4):340-343.
    [6]短暂性脑缺血发作中国专家共识组.短暂性脑缺血发作的中国专家共识[J].中华内科杂志,2007,46(10):883-885.
    [7]American College of Cardiology Foundation, American Society of Interventional & Therapeutic Neuroradiology, Society for Cardiovascular Angiography and Interventions, et al. ACCF/SCAI/SVMB/SIR/ASITN 2007 clinical expert consensus document on carotid stenting:a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents (ACCF/SCAI/SVMB/SIR/ASITN Clinical Expert Consensus Document Committee on Carotid Stenting) [J]. J Am Coll Cardiol,2007,49 (1):126-170.
    [8]Rothwell PM, Mehta Z, Howard SC, et al. Treating individuals 3:from subgroups to individuals:general principles and the example of carotid endarterectomy[J], Lancet, 2005,365(9455):256-265.
    [9]中华医学会神经外科分会,中国医师协会神经外科分会,中国医师协会神经内科分会.介入神经放射诊断治疗规范Ⅲ(修订稿)[J].中国脑血管病杂志,2005,2(10):476-480.
    [10]Cai JM, Hatsukami TS, Ferguson MS, et al. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging [J]. Circulation.2002 Sep 10;106(11):1368-73.
    [11]Raines EW, Ross R. Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis[J]. Br Heart J,1993,69(1 Suppl):S30-S37.
    [12]Shah PK. Mechanisms of plaque vulnerability and rupture [J]. J Am Coll Cardiol, 2003,41 (4 Suppl S):15S-22S.
    [13]Golledge J, Siew DA. Identifying the carotid high risk plaque:is it still a riddle wrapped up in an enigma? [J]. Eur J Vasc Endovasc Surg,2008,35 (1):2-8.
    [14]Nighoghossian N, Derex L, Douek P, et al. The vulnerable carotid artery plaque: current imaging methods and new perspectives [J]. Stroke,2005,36(12): 2764-2772.
    [15]Koenig W, Khuseyinova N. Biomarkers of atherosclerotic plaque in-stability and rupture [J]. Arterioscler Thromb Vasc Biol,2007,27(1):15-26.
    [16]Chalela JA. Evaluating the carotid plaque:going beyond stenosis [J]. Cerebrovasc Dis 2009,27(Suppl1):19-24.
    [17]Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:Part Ⅱ [J]. Circulation,2003, 108(14):1772-1778.
    [18]Lowe GD. The relationship between infection, inflammation, and cardiovascu-lar diseases:an overview [J]. Ann Periodontol,2001,6(1):1-8.
    [19]Golledge J, Greenhalgh RM, Davies AH. The symptomatic carotid plaque [J]. Stroke, 2000,31(3):774-781.
    [20]Golledge J, Siew DA. Identifying the carotid high risk plaque:is it still a riddle wrapped up in an enigma? [J]. Eur J Vasc Endovasc Surg,2008,35:2-8.
    [21]刘承基.脑血管外科学[M].南京:江苏科学技术出版社,2000:270.
    [22]Heeschen C, Dimmeler S, Hamm CW, et al. Soluble CD40 ligand in acute coronary syndromes [J]. N Engl J Med,2003,348 (12):1104-1111.
    [23]Danese S, Fiocchi C. Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease [J]. Crit Rev Immunol,2005, 25(2):103-21.
    [24]Hermann A, Rauch BH, Braun M, et al. Platelet CD40 ligand (CD40L) sub-cellular localization, regulation of expression, and inhibition by clopidogrel [J].Platelets,2001,12(2):74-82.
    [25]Ding S, Zhang M, Zhao Y, et al. The role of carotid plaque vulnerability and inflammation in the pathogenesis of acute ischemic stroke [J]. Am J Med Sci,2008, 336(1):27-31.
    [26]王静华,丁素菊,邓本强,等.颈动脉粥样硬化斑块CD40L、MMP9的表达及意义[J].第二军医大学学报,2008,29(9):1065-1068.
    [27]Henn V, SluPsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells [J]. Nature,1998,391 (6667):591-594.
    [28]Blake GJ, Ostfeld RJ, Yucel EK, et al. Soluble CD40 ligand levels indicate lipid accumulation in carotid atheroma:an in vivo study with high-resolution MRI [J]. Arterioscler Thromb Vasc Biol,2003,23(1):e1l-el4.
    [29]Mach F. The role of chemokines in atherosclerosis [J]. Curr Atheroscler ReP,2001, 3(3):243-251.
    [30]Egashira K. Molecular mechanisms mediating inflammation in vascular disease: special reference to monocyte chemoattractant protein-1 [J]. Hypertension,2003 (3 Pt 2),41:834-841.
    [31]Yamamoto T, Eckes B, Mauch C, et al. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 a-loop [J]. J Immunol,2000,164(12):6174-6179.
    [32]Inoue S, Egashira K, Ni W, et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression, and destabilization of estab-lished atherosclerosis in apolipoprotein E-knockout mice [J]. Circulation,2002,106(21):2700-2706.
    [33]李华,蒲传强,门保忠,等.颈动脉粥样硬化斑块内MCP-1表达的研究[J].中风与神经疾病杂志,2006,23(1):28-29.
    [34]Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis:the good, the bad, and the ugly [J]. Circ Res,2002,90(3):251-262.
    [35]Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases:a review of their structure and role in acute coronary syndrome [J]. Cardiovasc Res,2003,59(4): 812-823.
    [36]Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques [J]. J Clin Invest,2004,94(6):2493-2503.
    [37]Sluijter JP, Pulskens WP, Schoneveld AH, et al. Matrix metalloproteinase 2 is associated with stable and matrix metalloproteinase 8 and 9 with vulnerable carotid atherosclerotic lesions:a study in human endarterectomy specimen pointing to a role for different extracellular matrix metalloproteinase inducer glycosylation forms [J]. Stroke,2006,37(1):235-239.
    [38]Pelisek J, Rudelius M, Zepper P, et al. Multiple biological predictors for vulnerable carotid lesions [J]. Cerebrovasc Dis,2009,28(6):601-610.
    [39]成勇,李朝武,涂明义,等.颈动脉斑块类型与MMP-9的相关性研究[J].第三军医大学学报,2007,29(18):1812-1814.
    [40]薛飞,袁新建,杨秀平.MMP-9、TMP-1与颈动脉粥样硬化斑块稳定性的研 究[J].中国老年医学杂志,2008,28(5):992-994.
    [41]Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease [J]. Arterioscler Thromb Vasc Biol,2005,25(6):1102-1111.
    [42]Bergt C, Pennathur S, Fu X, et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport [J]. Proc Natl Acad Sci USA,2004,101 (35):13032-13037.
    [43]Fu X, Kassim SY, Parks WC, et al. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase [J]. J Biol Chem,2001,276(44):41279-41287.
    [44]Sugiyama S, Kugiyama K, Aikawa M, et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression [J]. Arterioscler Thromb Vasc Biol,2004,24(7):1309-1314.
    [45]Yang J, Cheng Y, Ji R, et al. Novel model of inflammatory neointima formation reveals a potential role of myeloperoxidase in neointimal hyperplasia [J]. Am J Physiol Heart Circ Physiol,2006,291(6):H3087-3093.
    [46]Exner M, Miner E, Mlekusch W, et al. Myeloperoxidase predicts progression of carotid stenosis in states of low high-density lipoprotein cholesterol [J]. Journal of the American College of Cardiology,2006,47(11):2212-2218.
    [47]Meuwese MC, TriP MD, van Wissen S, et al. Myeloperoxidase levels are not associated with carotid atherosclerosis progression in patients with familial hypercholesterolemia [J]. Atherosclerosis,2008,197(2):916-921.
    [48]唐水娟,朱文晖,何炜,等.颈动脉斑块超声的显像特征与血清MPO浓度关系的研究[J].中国医学影像技术,2008,24(2):217-220.
    [49]Peeters W, Hellings WE, de Kleijn DP, et al. Carotid atherosclerotic plaques stabilize after stroke:insights into the natural process of atherosclerotic plaque stabilization [J]. Arterioscler Thromb Vasc Biol,2009,29(1):128-133.
    [50]Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes [J]. N Engl J Med,2001, 345(14):1022-1029.
    [51]Bunn RC, Fowlkes JL. Insulin-like growth factor binding protein proteolysis [J]. Trends Endocrinol Metab,2003,14(4):176-181.
    [52]Sangiorgi G, Mauriello A, Bonanno E, et al. Pregnancy-associated plasma protein-a is markedly expressed by monocyte-macrophage cells in vulnerable and ruptured carotid atherosclerotic plaques:a link between inflammation and cerebrovascular events [J]. J Am Coll Cardiol,2006,47(11):2201-2211.
    [53]Heider P, Pfaffle N, Pelisek J, et al. Is serum pregnancy-associated plasma protein A really a potential marker of atherosclerotic carotid plaque stability? [J]. Eur J Vasc Endovasc Surg,2009,203(2):346-352.
    [54]Setacci C, de Donato G, Chisci E, et al. Deferred urgency carotid artery stenting in symptomatic patients:clinical lessons and biomarker patterns from a prospective registry [J]. Eur J Vasc Endovasc Surg,2008,35(6):644-51.
    [1]Chaturvedi S, Bruno A, Feasby T, et al:Carotid endarterectomy-an evidence-based review:report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology [J]. Neurology,2005,65(6):794-801.
    [2]Wasserman BA, Wityk RJ, Trout HH, et al. Low-grade carotid stenosis:looking beyond the lumen with MRI [J]. Stroke,2005,36(11):2504-2513.
    [3]DaskaloPoulou SS, DaskaloPoulos ME, Perrea D, et al. Carotid artery atherosclerosis: what is the evidence for drug action? [J]. Current Pharmaceutical design,2007, 13(11):1141-1159.
    [4]Chalela JA. Evaluating the carotid plaque:going beyond stenosis [J]. Cerebrovasc Dis,2009,27(Suppl 1):19-24.
    [5]Golledge J, Siew DA. Identifying the carotid'high risk'plaque:is it still a riddle wrapped up in an enigma? [J]. Eur J Vasc Endovasc Surg,2008,35(1):2-8.
    [6]Nighoghossian N, Derex L, Douek P, et al. The vulnerable carotid artery plaque: current imaging methods and new perspectives [J]. Stroke,2005,36(12):2764-2772.
    [7]Norris JW, Morriello F, Rowed DW, et al. Vascular imaging before carotid endarterectomy [J]. Stroke,2003,34(5):e16.
    [8]Streifler JY, Eliaziw M, Fox AJ, et al. Angiographic detection of carotid plaque ulceration. Comparison with surgical observations in a multicenter study. North American Symptomatic Carotid Endarterectomy Trial [J]. Stroke,1994,25(6): 1130-1132.
    [9]Mathiesen EB, B(?)naa KH, Joakimsen O. Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis:the troms(?) study [J]. Circulation,2001,103(17):2171-2175.
    [10]Tegos TJ, Sohail M, Sabetai MM, et al. Echomorphologic and histopathologic characteristics of unstable carotid plaques [J]. Am J Neuroradiol,2000,21(10): 1937-1944.
    [11]Biggs KL, Moore WS. Current trends in managing carotid artery disease [J]. Surg Clin North Am,2007,87(5):995-1016, vii.
    [12]HelioPoulos J, Vadikolias K, Mitsias P, et al. Three-dimensional ultrasonographic quantitative analysis of non-ulcerated carotid plaque morphology in symptomatic and asymptomatic carotid stenosis [J]. Atherosclerosis,2008,198(1):129-135.
    [13]Meairs S, Hennerici M. Four-dimensional ultrasonographic character-ization of plaque surface motion in patients with symptomatic and asymptomatic carotid artery stenosis [J]. Stroke,1999,30(9):1807-1813.
    [14]Lal BK, Hobson RW, PaPPas PP, et al. Pixel distribution analysis of B-mode ultrasound scan images predicts histologic features of atherosclerotic carotid plaques [J]. J Vasc Surg,2002,35(6):1210-1217.
    [15]Gronholdt ML, Nordestgaard BG, Bentzon J, et al. Macrophages are associated with lipid rich carotid artery plaques, echolucency on B-mode imaging, and elevated plasma lipid levels [J]. J Vasc Surg,2002,35(1):137-145.
    [16]Wain RA, Lyon RT, Veith FJ, et al:Accuracy of duplex ultrasound in evaluating carotid artery anatomy before endarterectomy [J]. J Vasc Surg,1998,27(2): 235-242.
    [17]Nissen SE, Yock P. Intravascular ultrasound:novel pathophysiological insights and current clinical applications [J]. Circulation,2001,103(4):604-616.
    [18]Stefanadis C, Vavuranakis M, Toutouzas P. Vulnerable plaque:the challenge to identify and treat it [J]. J Interv Cardiol,2003,16(3):273-280.
    [19]Schuknecht B. High-concentration contrast media(HCCM) in CT angiography of the carotid system:impact on therapeutic decision making [J]. Neuroradiology,2007, 49(Suppl 1):S15-26.
    [20]Cumming MJ, Moore I. Carotid artery stenosis:a prospective comparison of CT angiography and conventional angiography [J]. AJR Am J Roentgenol,1994, 163(3):517-523.
    [21]de Weert TT, Ouhlous M, Meijering E, et al. In vivo characterization and quantification of at-herosclerotic carotid plaque components with multidetector computed tomography and histopathological correlation [J]. Arterioscler Thromb Vase Biol,2006,26(10):2366-2372.
    [22]Saba L, Mallarini G. MDCTA of carotid plaque degree of stenosis:evaluation of interobserver agreement [J]. AJR Am J Roentgenol,2008,190(1):W41-46.
    [23]Gronholdt ML. B-mode ultrasound and spiral CT for the assessment of carotid atherosclerosis [J]. Neuroimaging Clin N Am,2002,12(3):421-435.
    [24]U-King-Im JM, Tang TY, Patterson A, et al. Characterization of carotid atheroma in symptomatic and asymptomatic patients using high-resolution MRI [J]. J Neurol Neurosurg Psychiatry,2008,79(8):905-912.
    [25]Yuan C, Kerwin WS, Ferguson MS, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization [J]. J Magn Reson Imaging, 2002,15 (1):62-67.
    [26]Chaabane L, Pellet N, Bourdillon MC, et al. Contrast enhancement in atherosclerosis development in a mouse model:in vivo results at 2 Tesla [J]. MAGMA,2004,17 (3-6):188-195.
    [27]Amirbekian V, LiPinski MJ, Briley-Saebo KC, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis non-invasively using molecul ar MRI [J]. PNAS,2007,104 (3):961-966.
    [28]Smith BR, Heverhagen J, Knopp M, et al. Localization to atherosclerotic plaque and bio-distribution of biochemically derivatized superparamagnetic iron oxide nanoparticles(SPIONs) contrast particles for magnetic resonance imaging(MRI) [J]. Biomed Microdevices,2007,9(5):719-727.
    [29]Winter PM, Neubauer AM, Caruthers SD, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis [J]. Arterioscler Thromb Vasc Biol,2006,26(9):2103-2109.
    [30]Shah PK. Mechanisms of plaque vulnerability and rupture [J]. J Am Coll Cardiol, 2003,41(4 SupplS):15S-22S.
    [31]Ridker PM, Cushman M, StamPher MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men [J]. N Engl J Med,1997, 336(14):973-979.
    [32]Kushner I, Broder ML, KarP D. Control of the acute phase response. Serum C-reactive protein kinetics after acute myocardial infarction [J]. J Clin Invest,1978, 61(2):235-242.
    [33]Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells [J]. Circulation, 2003,108(16):1930-1932.
    [34]Burke AP, Tracy RP, Kolodgie F, et al. Elevated C-reactive protein values and atherosclerosis in sudden coronary death:association with different pathologies [J]. Circulation,2002,105(17):2019-2023.
    [35]PhiliP S. Mullenix. C-reactive protein level and traditional vascular risk factors in the prediction of carotid stenosis [J]. Arch Surg,2007,142(11):1066-1071.
    [36]Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease [J]. Arterioscler Thromb Vasc Biol,2005,25(6):1102-1111.
    [37]Eiserich JP, Baldus S, Brennan ML, et al. Myeloperoxidase, a leukocyte deri-ved vascular NO oxidase [J]. Science,2002,296(5577):2391-2394.
    [38]Bergt C, Pennathur S, Fu X, et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCAl-dependent cholesterol transport [J]. Proc Natl Acad Sci USA,2004,101(35):13032-13037.
    [39]Fu X, Kassim SY, Parks WC, et al. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin(MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase [J]. J Biol Chem,2001,276(44):41279-41287.
    [40]Sugiyama S, Kugiyama K, Aikawa M, et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression [J]. Arterioscler Thromb Vasc Biol,2004,24(7):1309-14.
    [41]Yang J, Cheng Y, Ji R, et al. Novel model of inflammatory neointima formation reveals a potential role of myeloperoxidase in neointimal hyperplasia [J]. Am J Physiol Heart Circ Physiol,2006,291(6):H3087-3093.
    [42]Exner M, Minar E, Mlekusch W, etl. Myeloperoxidase predicts progression of carotid stenosis in states of low high-density lipoprotein cholesterol [J]. Journal of the American College of Cardiology,2006,47(11):2212-2218.
    [43]Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis:the good, the bad, and the ugly [J]. Circ Res,2002,90(3):251-262.
    [44]Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases:a review of their structure and role in acute coronary syndrome [J]. Cardiovasc Res,2003,59(4): 812-823.
    [45]Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques [J]. J Clin Invest,2004,94(6):2493-2503.
    [46]SaPienza P, Borrelli V, di Marzo L, et al. MMP and TIMP alterations in asymptomatic and symptomatic severe recurrent carotid artery stenosis [J]. Eur J Vasc Endovasc Surg,2009,37(5):525-530.
    [47]Sluijter JP, Pulskens WP, Schoneveld AH, et al. Matrix metalloproteinase 2 is associated with stable and matrix metalloproteinase 8 and 9 with vulnerable carotid atherosclerotic lesions:a study in human endarterectomy specimen pointing to a role for different extracellular matrix metalloproteinase inducer glycosylation forms [J]. Stroke,2006,37(1):235-239.
    [48]Pelisek J, Rudelius M, ZePPer P, et al. Multiple biological predictors for vulnerable carotid lesions [J]. Cerebrovasc Dis,2009,28(6):601-610.
    [49]Mach F. The role of chemokines in atherosclerosis [J]. Curr Atheroscler Rep,2001, 3(3):243-251.
    [50]Egashira K. Molecular mechanisms mediating inflammation in vascular disease: special reference to monocyte chemoattractant protein-1 [J]. Hypertension,2003(3 Pt 2),41:834-841.
    [51]Yamamoto T, Eckes B, Mauch C, et al. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 a-looP [J]. J Immunol,2000,164(12):6174-6179.
    [52]Inoue S, Egashira K, Ni W, et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression, and destabilization of established atherosclerosis in apolipoprotein E-knockout mice [J]. Circulation,2002,106(21):2700-2706.
    [53]Koenig W, Khuseyinova N. Biomarkers of atherosclerotic plaque instability and rupture [J]. Arterioscler Thromb Vase Biol,2007,27(1):15-26.
    [54]Danese S, Fiocchi C. Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease [J]. Crit Rev Immunol,2005, 25(2):103-121.
    [55]Heeschen C, Dimmeler S, Hamm CW, et al. Soluble CD40 ligand in acute coronary syndromes [J]. N Engl J Med,2003,348 (12):1104-1111.
    [56]Schonbeck U, Gerdes N, Varo N, et al. Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells [J]. Circulation,2002,106(23): 2888-2893.
    [57]Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells [J]. Nature,1998,391(6667):591-594.
    [58]Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes [J]. N Engl J Med,2001, 345(14):1022-1029.
    [59]Bunn RC, Fowlkes JL. Insulin-like growth factor binding protein proteolysis [J]. Trends Endocrinol Metab,2003,14(4):176-181.
    [60]Sangiorgi G, Mauriello A, Bonanno E, et al. Pregnancy-associated plasma protein-a is markedly expressed by monocyte-macrophage cells in vulnerable and ruptured carotid atherosclerotic plaques:a link between inflammation and cerebrovascular events [J]. J Am Coll Cardiol,2006,47(11):2201-2211.
    [61]Heider P, Pfaffle N, Pelisek J, et al. Is serum pregnancy-associated plasma protein A really a potential marker of atherosclerotic carotid plaque stability? [J]. Eur J Vase Endovasc Surg,2009,203(2):346-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700