BP_s新型分析方法的建立及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BPs是近20年来发展起来的抗代谢性骨病的一类新药,临床上主要用于治疗骨质疏松症、变形性骨炎、恶性肿瘤骨转移引起的高钙血症和骨痛症等。
     由于BPs具有极性强、易电离、大部分无生色团、不挥发、生物利用度低等性质,给该类药物的分析带来一定的困难。目前,在该类药物的质量控制中仍然采用钼蓝比色法,该方法是将BPs氧化成正磷酸盐后,进行磷钼蓝比色,其有关物质(磷酸盐、亚磷酸盐)及还原性辅料对测定结果均有影响,专属性差。虽然已有文献报道专属的HPLC-ELSD方法,但其灵敏度仍然较低,仅适用于该类药物的原料药或制剂的分析,不能满足生物样品中痕量BPs检测的要求。少数含伯胺基的BPs,如Alen、Pami等,通过对其氨基衍生,进行色谱分析,提高了灵敏度,能够满足痕量生物样品分析的要求。但这些方法不适合绝大多数不含衍生基团的BPs,且操作繁琐、费时。
     本文课题的目的是建立专属的、灵敏的BPs分析方法,为该类药物的质量控制提供可靠的、更完善的分析手段。本课题主要从以下两个部分进行了研究:
     第一部分新型OPM的形成及其在药物分析中的应用一、新型OPM的形成机理及性质的研究
     目的:研究新型OPM的形成机理及其性质,如配比、摩尔吸收系数等。
     方法:酸性条件下,BPs与MoO反应生成具有较强紫外吸收的OPM;采用紫外分光光度计扫描,确定最大吸收处波长;采用Job法和平行移动法确定OPM分子结构中BPs和Mo的配比。
     结果:新型OPM较稳定;OPM分子结构中BPs和Mo的配比均为1:5,Alen, Pami, Zole, Eti, Inca和Iban与MoO形成的OPM的摩尔吸收系数分别为8.61×10~3、9.58×10~3、6.89×10~3、7.53×10~3、8.08×10~3、8.80×10~3 (L·mol·1·cm~(-1))。不论BPs分子结构中是否含有氨基,BPs与MoO在酸性条件下反应均能形成OPM。
     结论:在酸性条件下,BPs与MoO反应生成稳定的、强紫外吸收的络合物-OPM。OPM分子的中心原子是有机膦原子。
     二、基于新型OPM的分光光度法在BPs制剂分析中应用
     目的:建立灵敏的、专属的分光光度法,分析制剂中BPs含量和小剂量伊班膦酸钠片剂的溶出度。
     方法:依据BPs和MoO在酸性条件下反应生成的OPM具有较强紫外吸收的性质,采用紫外分光光度法,检测波长为254nm。
     结果:OPM较稳定,室温放置24h最大吸收强度没有变化;以试剂空白为参比,OPM在254nm处的吸收强度与BPs浓度成良好的线性关系,Alen、Pami、Zole、Eti、Inca和Iban线性范围分别为5.00~50.0、4.92~49.2、5.26~52.6、5.00~50.0、5.16~51.6、4.92~49.2μg·ml-1 (r≥0.9989),检测限分别为0.677、0.916、0.710、0.607、0.810、0.781μg·mL~(-1),定量限分别为0.203、0.275、0.213、0.182、0.243、0.234μg·mL~(-1),平均回收率为96.8~102.6% (n=3),RSD小于1.5%;Iban片剂在8分钟时溶出度达到86%,10分钟时基本完全溶出。
     结论:该方法专属性好、灵敏度高、简便快速,适用于BPs制剂的分析和小剂量Iban片剂溶出度的分析。该方法与传统的磷钼蓝比色法相比较,不但不受磷酸盐、亚磷酸盐和还原性辅料的干扰,而且简便快速,不需要复杂的样品预处理。
     第二部分BPs的色谱分析方法的应用研究
     一、CE-间接紫外检测法测定Eti和Iban片剂含量
     目的:建立简便、快速、经济的CE-间接紫外检测方法,用于Eti和Iban的制剂分析。
     方法:以未涂层熔融石英毛细管柱为分离通道;背景电解质为7mmol·L~(-1)苯甲酸钠溶液;运行缓冲溶液为7mmol·L~(-1)磷酸二氢钾(pH 8.0);分离电压为20kV;进样电压为10kV,进样时间为5s;检测波长为224nm。
     结果:Eti和Iban在62.60~1002μg·mL~(-1)和61.00~975μg·mL~(-1)的浓度范围内线性关系良好(r均大于0.999),检测限分别为7.825μg·mL~(-1)和7.744μg·mL~(-1),平均回收率在99.5%~100.3%之间,RSD小于1.5%(n=3)。
     结论:采用CE-间接紫外分离检测Eti和Iban的方法简便、快速、经济,适用于Eti和Iban制剂的常规分析,为该药物的质量控制提供了一个新的、专属的、灵敏的分析方法。
     二、离子对RP-HPLC-ELSD法测定Iban制剂的含量
     目的:建立专属的、灵敏的分析Iban制剂含量的离子对RP-HPLC-ELSD方法。
     方法:以UltimateTM XB-C18(4.6×250mm, 5μm)色谱柱为固定相,流动相为20mM三乙胺(用冰醋酸调pH至8.5)-甲醇-乙腈(90:2:8),流速为1.0ml·L~(-1),柱温为室温,检测器为ELSD。
     结果:Iban在30.70~980.0μg·L~(-1)的浓度范围内线性关系良好,回归方程为lgA=1.960 lgC+2.047 (r=0.999),最低检测限为7.675μg·mL~(-1),平均回收率为98.9~100.5%,RSD小于1.1%。
     结论:本文建立的RP-HPLC-ELSD方法专属性好、灵敏度高。与文献报道的RP-HPLC-ELSD方法相比较,由于采用了分子量小、挥发性更强的三乙胺作为离子对试剂,提高了检测灵敏度,为Iban的生产及制剂过程中的质量控制提供了可靠的分析手段。
     三、在线柱后光化学反应离子对RP-HPLC-UV法测定Zole制剂的含量
     目的:建立灵敏的、专属的在线柱后光化学衍生离子对RP-HPLC-UV法测定Zole制剂含量的方法。
     方法:以Phenomenon C18色谱柱为固定相,流动相为三乙胺(20mM用冰醋酸调pH为7.0)-甲醇(99:1),流速为1mL·min~(-1),柱温为室温。色谱流出液与过硫酸钾混合后流经一聚四氟乙烯盘管制成的光化学反应器时,Zole被氧化成正磷酸盐,正磷酸盐再与MoO、维生素C反应生成磷钼杂多络合物,用紫外-可见检测器检测,检测波长为650nm。
     结果:实现了Zole及其有关物质(磷酸盐和亚磷酸盐)分离和检测。Zole在20.00~250.0μg·mL~(-1)浓度范围内线性关系良好(r=0.999),检测限为1μg·mL~(-1)。对于注射用Zole的平均回收率为98.7~101.0%,RSD小于2.1%,对于Zole注射液回收率为99.6~100.4%,RSD小于1.6%。
     结论:本文建立的离子对RP-HPLC-UV专属性好、灵敏度高、分析速度快,不需要繁琐的样品预处理过程,适用于Zole制剂的分析,为该药物制剂的常规的分析及质量控制提供了有效地可靠的分析手段。
BPs are new category of bone resorption inhibitor drugs developing in the recent 20 years, which had been widely used in the management of skeletal disorder, including malignant hypercalcemia, postmenopausal osteoporosis, Paget’s disease and so on.
     The assays for BPs presented some difficulties, since the flowing characters: strong polar, ionic, low bioavailability and so on. Molybdenum blue spectrophotometry method is still used in routine quality control analysis of BPs, in which BPs were oxidized to orthophosphate ions firstly, so it was inevitable that trace phosphate, phosphite and excipients interfere with analysis of BPs, thus the precision and accuracy were low relatively. Although ion-pair HPLC-ELSD method for identification and routine determination of BPs was established, the sensitivity was so low that was not suitable for trace quantity biological specimen. Many indirect methods based on derivatization have been reported for the chromatographic separation and determination of BPs, which contain primary or secondary amine groups, for example alendronate and pamidronate, but the indirect methods were tedious, time-consuming and can be used for only analysis a few of BPs, as majority of BPs without derivative group, therefore there is still a need for specific methods for assay of BPs.
     The aim of our research is to introduce specific, simple and sensitive methods for routine analysis and quality control of BPs, which is helpful for developing BPs quality. Here, we present specific, simple and sensitive methods for assay of BPs according to the flowing the two parts:
     PART 1 Formation of Novel OPM and Analytical Application in Pharmaceutical
     Ⅰ. Studies on the Mechanism of Novel OPM Formation and Characters of OPM
     Objective: To study the formation mechanism of novel OPM and some characters of OPM, such as stoichiometric ratio and molar absorptivity.
     Methods: OPM were formed directly when mixing BPs with MoO in acidic media; their characters were studied by UV spectrophotometry method. Job’s method of consecutively variation and continuous variation method were applied for definition of stoichiometric ratio of BPs to Mo in OPM, according to the strong absorbance of OPM in wave range of 220~300nm.
     Results: The novel OPM are obtained, which are stable and have strong absorbance at 254nm. The stoichiometric ratio of BPs to Mo in OPM was determined to be 1:5. The molar absorptivity of OPM are 8.61×10~3、9.58×10~3、6.89×10~3、 7.53×10~3、8.08×10~3、8.80×10~3 (L·mol~(-1)·cm~(-1)) of Alen, Pami, Zole, Eti, Inca and Iban respectively. The forming of the OPM does not depend on the presence of N-substituendum in BPs.
     Conclusion: Novel OPM are obtained by reacting of BPs with MoO in acidic media, which are stable and have strong absorbance. The organo-phosphorus is coordination center in the OPM molecular structure.
     Ⅱ. Assay of BPs in Pharmaceutical by Spectrophotometry Based on the Novel OPM
     Objective: To establish a novel spectrophotometric method for quantitative analysis of BPs and for dissolution test of low dose Iban tablet with high accuracy and precision.
     Methods: Basing on OPM formed directly mixing BPs with MoO in acidic media, UV spectrophotometry was developed with a detection wavelength of 254nm.
     Results: Good linear relationship between absorbance and the concentrations of Alen, Pami, Zole, Eti, Inca and Iban were established in the range of 5.00~50.0, 4.92~49.2, 5.26~52.6, 5.00~50.0, 5.16~51.6 and 4.92~49.2μg·ml-1 (r≥0.9989), respectively. The LOD of Alen, Pami, Zole, Eti, Inca and Iban were 0.677, 0.916, 0.710, 0.607, 0.810 and 0.781μg·mL~(-1) and LOQ were 0.203, 0.275, 0.213, 0.182, 0.243 and 0.234μg·mL~(-1) respectively. The average recovery were 96.8~102.6% (n=3), RSD were less than 1.5%. The dissolution was quite fast: 86% of Iban was dissolved within 8min and the drug dissolution was complete dissolved about 10min.
     Conclusions: A specific and sensitive method was developed to assay of BPs in Pharmaceutical, and it can be conveniently adopted for dissolution test of low dose Iban tablets. Compared with molybdenum blue method, it could not be interferenced byphosphate, phosphite or common excipients, what’s more, it is so simple and rapid without any pretreatment.
     PART 2 Study of Chromatographic Method for Assay of BPs
     Ⅰ. Assay of Eti and Iban by HPCE with Indirect UV Detection Objective: To establish HPCE with indirect UV detection for assay of Eti and Iban.
     Method: An uncoated fused-silica capillary column was used, and its electrolyte system contained sodium benzoate (7mmol·L~(-1))-KH2PO4 (7mmol·L~(-1)) (pH 8.0), applied voltage 20kV and detection wavelength 224nm.
     Results: Good linear relations of Eti and Iban were obtained in the range of 62.60~1002μg·mL~(-1) and 61.00~975μg·mL~(-1) (r>0.999), with the detection limit of 7.825μg·mL~(-1) and 7.744μg·mL~(-1) respectively. The average recoveries of Eti and Iban during 99.5%~100.3%, RSD were less than 1.5% (n=3).
     Conclusion: The method is simple, rapid and economic, which provides a new reliable means for quality control of Eti and Iban.
     Ⅱ. Analysis of Iban by Ion Pair RP-HPLC-ELSD
     Objective: To establish a sensitive and specific RP-HPLC–ELSD method for analysis of Iban and its preparation.
     Method: Separations were performed on an UltimateTM XB-C18 (4.6×250mm, 5μm) column an isocratic mobile phase: acetonitrile-methanol-20mM triethylamine (pH 8.5, adjusted by acetic acid)-( 90:2:8). The mobile phase flow rate was 1.0ml·L~(-1), at room temperature. Analyses were detected by ELSD.
     Results: In quantitative analysis, the method showed that the calibration curve was linear in the range of 30.70~980μg·mL~(-1), regression equation is lgA=1.960 lgC+2.047 (r=0.999), with the detection limit of 7.675μg·mL~(-1). The average recoveries of Iban tablets were 98.8%, 99.2% and 100.5% and RSD were less than 1.1%.
     Conclusion: A sensitive and specific RP-HPLC-ELSD method was developed for analysis of Iban and its preparation. It is more sensitive than reported RP-HPLC-ELSD method since micro Mol. Wt and stronger volatile ion pair diethylamide was selected. It provides a new reliable means for quality control of Iban.
     Ⅲ. Determination of Zole Dosage Formulation by Ion Pair RP-HPLC-UV with Post-column Photochemical Derivatization
     Objective: To develop a sensitive and specific ion pair RP-HPLC-UV method with post-column photochemical derivatization for the determination of Zola dosage formulation and its related substance.
     Methods: They were separated by Phenomenon C18 column and eluant of triethylamine (20mM adjusted to pH 7.0 with acetic acid)-methanol (99:1) at flow rate of 1.0ml·min~(-1) at room temperature. The sensitive detection of Zole was based on its oxidation to orthophosphate by the on-line peroxydisulfate- assisted photolysis flow by post-column reaction with molybdate and Vitamin C to yield phosphomolybdate, then measured by UV detection.
     Results: Zole was successfully separated from its related substance (phosphate and phosphite). A good linear relation was obtained in the range of 20.00~500.0μg·mL~(-1) (r=0.999), with the detection limit of 1μg·mL~(-1). The average recoveries of Zole for injection and Zole injection were 98.7~101.0% and 99.6~100.4% respectively with RSD less than 2.1%.
     Conclusion: The ion pair RP-HPLC-UV method is simple, accurate and specific,and tedious sample pretreatment is unnecessary. The ion pair RP-HPLC-UV method provides an approach for the routine analysis and quality control of Zole in pharmaceutical.
引文
1 Baoxin Li, Yuezhen He, Chunli Xu. Simultaneous determination of three organophosphorus pesticides residues in vegetables using continuous-flow chemiluminescence with artificial neural network calibration. Talanta, 2007, 72:223~230
    2 Manas Chakrabarty, Ajanta Mukherji, Ratna Mukherjee, Shiho Arimab and oshihiro.A Keggin heteropoly acid as an efficient catalyst for an expeditious, one-pot synthesis of 1-methyl-2-(hetero) arylbenzimidazoles. Tetrahedron Letters, 2007, 48:5239~5242
    3 Rafiee. E; Jafari. H. A practical and green approach towardssynthesis of dihydropyrimidinones: Using heteropoly acids as efficient catalysts. Bioorganic and Medicinal Chemistry Letters, 2006, 16:2463~2466
    4 Devassy B.M, Lefebvre F, B?hringer W, et al. Synthesis of linear alkyl benzenes over zirconia-supported 12-molybdophosphoric acid catalysts. Mol Catal A: Chem, 2005, 236:162~167
    5 Yan Xue, Xingwang Zheng, Guixin Li. Determination of phosphate in water by means of a new electrochemiluminescence technique based on the combination of liquid–liquid extraction with benzene-modified carbon paste electrode. Talanta, 2007, 72:450~456
    6 CHEN Jing rong, FU Xiang kai, LI Long qin, MA Xue bing. Preparation Characterization and Acid Number Measurement by the Potentiometric Titration Method for the Keggin Type Organo-phosphorus-heteropolytungstic Acids. Journal of Southwest China Normal University (Natural Science ), 2001, 26:179~182
    7 Russell R.G.G, Rogers M.J. Bisphosphonates: from the laboratory to the clinic and back again. Bone, 1999, 25(1):97~106
    8 Davas I, Altintas A, Yoldemir T, et al. Effect of daily hormone therapy and alendronate use on bone mineral density in postmenopausal women. Fertility and Sterility, 2003, 80:536-~540
    9 Vosburgh, W.C; Copper, G.R; Am, J. Chem. Soc. 1941,63:437
    1 Russell R.G.G, Rogers M.J. Bisphosphonates: from the laboratory to the clinic and back again. Bone, 1999, 25(1):97~106
    2 Davas I, Altintas A, Yoldemir T, et al. Effect of daily hormone therapy and alendronate use on bone mineral density in postmenopausal women. Fertility and Sterility, 2003, 80:536-~540
    3 Ptácek P., Klíma J., Macek J. Determination of alendronate in human urine as 9-fluorenylmethyl derivative by high-performance liquid chromatography. J. Chromatogra. B, 2002, 767:111~116
    4 Sparidans R.W., Hartigh, Jan., Beijnen, J. H.. Pieter Vermeij. Derivatization of pamidronate and other amino(bis)- phosphonates with different isothiocyanates prior to ion-pair liquid chromatography. J. Chromatogra. A, 1997, 782:211~217
    5 Han Y. H. R., Qin X. Z. Determination of alendronate sodium by ion chromatography with refractive index detection. J. Chromatogra. A, 1996, 719:345~352
    6 Eric W. T., Dominic P. Ip and Marvin A. Brooks. Determination of alendronate in pharmaceutical dosage formulation by ion chromatography with conductivity detection. J. Chromatogra. A, 1992, 596:217~224
    7 Kovacevic M., Gartner A., Novi? M. Determination of bisphosphonates by ion chromatography–inductively coupled plasma mass spectrometry. J. Chromatogra. A, 2004, 1039:77~82
    8 Endele R., Loew H., Bauss F. Analytical methods for the quantification of ibandronate in body fluids and bone. J.Pharm. Biomed. Anal, 2005, 39:246~256
    9 Jiang Y., Xie Z. Determination of ibandronate and its Degradation Products by Ion-Pair RPLC with Evaporative Light-Scattering Detection. Chromatogra, 2005, 62:257~ 261
    10 Jiang Y., Xie Z. Simple analysis of four bisphosphonates simultaneously by reverse phase liquid chromatography using n-amylamine as volatile ion-pairing agent. J. Chromatogra. A, 2006, 1104:173~178
    11 Szyd?owska-Czerniak A., Sz?yk E. Spectrophotometric determination of total phosphorus in rape seeds and oils at various stages of technological process: calculation ofphospholipids and non-hydratable phospholipids contents in rapeseed oil. Food Chem, 2003, 81:613~619
    12 Zhang Y.K., Fan S.Y., He L.E. Determination of alendronate tablet by spectrophotometry. Chinese Journal of Analytical Chemistry, 2000, 28:1181
    13 CHEN Jing rong, FU Xiang kai, LI Long qin, MA Xue bing. Preparation Characterization and Acid Number Measurement by the Potentiometric Titration Method for the Keggin Type Organo-phosphorus-heteropolytungstic Acids. Journal of Southwest China Normal University (Natural Science ), 2001, 26:179~182
    14 Miller J.C., Miller J.N Significance tests. In Statistics in Analytical Chemistry, third ed., Ellis Horwood, 1993, Chichester, (Chapter 3)
    15 The United States Pharmacopoeia, 28th ed., USPC, Rockville, 2005
    1 Michèle Tubiana-Hulin, Marc Spielmann, Christian Roux, et al. Physiopathology and management of osteonecrosis of the jaws related to bisphosphonate therapy for malignant bone lesions. A French expert panel analysis. Critical Reviews in Oncology/Hematology, 2008
    2 Tobias Johannes de Villiers, MBChB, MMed (O&G), et al. Bone health and osteoporosis in postmenopausal women. Best Practice & Research Clinica Obstetrics and Gynaecology, 2009, 23:73~85
    3 Jesús Torres, DDS, PhD, et al. Dental implants in a patient with Paget disease under bisphosphonate treatment: A casereport. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 107:387-392
    4邢玉仁,刘金荣. EHDP含量测定的研究.山东医药工业, 1997, 16 (2):17
    5 USPⅩⅩⅡ版, 1990:556
    6徐继红,陈卫民. Th-EDTA络合滴定法测定羟乙膦酸二钠片含量.解放军药学学报, 1999, 15 (4):56~57
    7王秀文,张继红,刘素艳,等.羟乙膦酸二钠的电位滴定法测定.中国医药工业杂志, 2002, 33 (3):140~141
    8方洪壮,孙长海.依替膦酸钠的电位滴定.中国医药工业杂志, 1998, 29 (4):174~176
    9邵青,李士敏,郑琦,等.血浆中羟乙膦酸钠含量测定方法研究.中国药科大学学报, 1997, 28 (4):222~224
    10邵青,李士敏,曾苏,等.健康人口服羟乙膦酸钠胶囊剂相对生物利用度试验.中国药学杂志, 2000, 35 (3): 177~179
    11方洪壮,雷力力,武铁生. pH指示剂吸光度比值法测定羟乙二膦酸钠的含量.中国药学杂志, 1997, 32 (5): 306~307
    12 Zan Xie, Ye Jiang, Di-qun Zhang. Simple analysis of four bisphosphonates simultaneously by reverse phase liquid chromatography using n-amylamine as volatile ion-pairing agent. Journal of Chromatography A, 2006, 1104:173~178
    13张晓青,蒋晔,徐智儒.依替膦酸钠及其有关物质的反相离子对色谱分析.分析测试学报, 2005, 24(4):105~107
    1 Ralph M, Robert RR. Bisphosphonate action on bone structure and strength: Preclinical and clinical evidence for ibandronate. Bone, 2007, 41(5):S16~S23
    2 Rizzoli R, David MR. Ibandronate: An IV injection for the treatment for postmenopausal osteoporosis. Bone, 2007, 41(5):S24~S28
    3赫立恩,张嫡群,房桂珍,等.荧光淬灭法测定伊班膦酸钠注射液含量.药物分析杂志, 2005, 25(2):220~222
    4周杏琴,胡名扬,王博诚.毛细管电泳-问接紫外检测伊班膦酸钠片的含量.生命科学仪器, 2004, 4(2):34~35
    5周杏琴,胡名扬,杨敏等.伊班膦酸钠片含量分析方法的研究.药物分析杂志, 2001, 21(6):396~398
    6谢赞,蒋晔.离子对反相色谱高效液相色谱法分离伊班膦酸钠及其有关物质.分析实验室, 2006, 25(3):37~41
    1 Marcin Kos, K. Luczak. Bisphosphonates promote jaw osteonecrosis through facilitating bacterial colonization. Bioscience Hypotheses, 2009, 2:34~36
    2 E. Michael Lewiecki. A Clinician's Perspective on the Use of Zoledronic Acid in the Treatment of Postmenopausal Osteoporosis. Journal of Clinical Densitometry, 2008, 11 ( 4):478~484
    3国家药典委员会,中华人民共和国药典, 2000年版,二部,北京化学工业出版社, 2000, 429
    4蒋晔,张晓青,徐智儒,等.唑来膦酸的电位滴定法测定.中国医药工业杂志, 2005, 36(1):37~38
    5赵怀清,鲁鑫众,张超,等.酸碱滴定法测定唑来膦酸的含量及其相关物质.中国新药杂志, 2005, 14(2):191~ 194
    6 Francois Legay, Sonia Gauron, Fabienne Deckert, et al.Development and validation of a highly sensitive RIA for zoledronic acid, a new potent heterocyclic bisphosphonate,in human serum, plasma and urine. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30:897~911
    7 B. Mallikarjuna Rao, M.K. Srinivasu, Ch. Prathima Rani,et al.A validated stability indicating ion-pair RP-LCmethod for zoledronic acid. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39:781~790
    8王玲玲,高篙,宗国军,等.高效液相色谱法测定注射用唑来膦酸的含量及有关物质.中国新药杂志, 2006, 15(8):624~626
    9蒋晔,张晓青,徐智儒,等.反相离子对色谱/蒸发光散射检测器分离唑来膦酸及其有关物质.分析化学研究简报, 2005, 33(10):1455~1458
    10 Tomás Pérez-Ruiz, Carmen Martínez-Lozano, Virginia Tomás, et al. High-performance liquid chromatographic assay of phosphate and organophosphorus pesticides using a post-column photochemical reaction and ?uorimetric detection. Analytica Chimica Acta, 2005,540:383~391
    11 Tomás Pérez-Ruiz, Carmen Martínez-Lozano, María Dolores García-Martínez. A sensitive post-column photochemical derivatization/?uorimetric detection system for HPLC determination of bisphosphonates. Journal of Chromatography A, 2009, 1216:1312~1318
    12 Rolf W. Sparidans, Jan den Hartigh, Jos H. Beijnen,et al. Derivatization of pamidronate and other amino(bis) phosphonates with different isothiocyanates prior to ion-pair liquid chromatography. Journal of ChromatographyA, 1997, 782:211~217
    13 R.W. Sparidans, J. denHartigh, S. Cremers, et al. Semi-automatic liquid chromatographic analysis of olpadronate in urine and serum using derivatization with (9-fluorenylmethyl) chloroformate. J. Chromatogr.B, 2000, 738:331~341
    14 E.Muntoni, R. Canaparo, C. Della Pepa, et al. Determination of disodium clodronate in human plasma and urine using gas-chromatography–nitrogen-phosphorous detections: validation and application in pharmacokinetic study. J. Chromatogr. B, 2004, 799:133~139
    1 Michèle Tubiana-Hulin, Marc Spielmann, Christian Roux, et al. Physiopathology and management of osteonecrosis of the jaws related to bisphosphonate therapy for malignant bone lesions. A French expert panel analysis. Critical Reviews in Oncology/Hematology, 2008
    2 Tobias Johannes de Villiers, MBChB, MMed (O&G), et al. Bone health and osteoporosis in postmenopausal women. Best Practice & Research Clinica Obstetrics and Gynaecology, 2009, 23:73~85
    3 Jesús Torres, DDS, PhD, et al. Dental implants in a patient with Paget disease under bisphosphonate treatment: A case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009, 107:387~392
    4邢玉任,刘金荣. EHDP含量测定的研究.山东医药工业, 1997, 16(2):17~19
    5徐继红,陈卫民. Th-EDTA络合滴定法测定羟乙膦酸二钠片含量.解放军药学学报, 1999, 15(4):56~58
    6肖奕阳,潘锡强.氯膦酸二钠的络合滴定法测定,中国医药工业杂志, 1999, 30(9):411~423
    7 Liggett S J. Determination of ethane-1-hydroxy-1, 1-diphosphonic acid (EHDP) in human feces and urine. Biochem Med, 1973, 7(1):68~70
    8王秀文,张红梅,刘素艳,等.乙膦酸二钠的电位滴定法测定.中国医药工业杂志, 2002, 33(3):140~141
    9吴宏斌,魏宇宁,陈丽艳, pH滴定法测定羟乙膦酸钠的含量,黑龙江医药科学, 1999, 22(6):22~24
    10龙明立,黄红林,沈元琼,等.比色法测定复方阿仑膦酸钠缓释片中阿仑膦酸钠的含量.南华大学学报·医学版, 2007, 35(1):101~103
    11 Y. Jiang, X.Q.Zhang, Z.R.Xu. Analysis of Zoledronic Acid and Its Related Substances by Ion-Pair RP-LC. Chromatographa, 2004, 60 (7/8):405~409
    12 H. Aluoch, R. Tatini, D.M. Parsons, O. Sadik, J. Liquid Chromatogr. Related Technol, 2005, 27:2799~2813
    13 Demetra Kyriakides, Irene Panderi. Development and validation of a reversed-phase ion-pair high-performance liquid chromatographic method for the determination of risedronate in pharmaceutical preparations. Analytica Chimica Acta, 2007, 584:153~159
    14 E.W. Tsai, D.P. Ip, M.A. Brooks, Determination of etidronate disodium tablets by ion chromatography with indirect UV detection. J. Pharm. Biomed. Anal, 1993,11:513~516
    15 Oscar Quattrocchi, Luciano Frisardi, Mariana Iglesias,et al. Ion exchange chromatographic determination of olpadronate, phosphate, phosphite, chloride and methanesulfonic acid. Journal of Pharmaceutical and Biomedical Analysis, 2001, 24:1011~1018
    16 E.W. Tsai, S.D. Chamberlin, R.J. Forsyth, et al. Determination of bisphosphonate drugs in pharmaceutical dosage formulations by ion chromatography with indirect UV detection. J. Pharm.Biomed. Anal, 1994, 12:983~991
    17 C. Fernades, R.S. Leite, F.M. Lancas. J. Chromatogr. Sci, 2007, 45:236~241
    18 Ye Jiang, Xie Zan. Determinaton of Ibandronate and its Degradation Products by Ion-Pair RP LC with Evaporative Light-Scattering Detection. Chromatographia, 2005, 62(5/6) 257~261
    19 Zan Xie, Ye Jiang, Di-qun Zhang. Simple analysis of four bisphosphonates simultaneously by reverse phase liquid chromatography using n-amylamine as volatile ion-pairing agent. Journal of Chromatography A, 2006, 1104:173~178
    20 J. Den Hartigh, R. Langebroek, P. Vermeij, Ion-exchange liquid chromatographic analysis of bisphosphonates in pharmaceutical preparations. J. Pharm. Biomed. Anal, 1993, 11:977~983
    21 Yieng-Hau R. Han, Xue-Zhi Qin. Determination of alendronate sodium by ion chromatography with refractiveindex detection. Journal of Chromatography A, 1996, 719:345~352
    22 J. Quitasol, L. Krastins. Analysis of pamidronate disodium in pharmaceutical dosage forms by ion chromatography. J. Chromatogr. A, 1994, 671:273~279
    23 J.P. Kosonen. Determination of disodium clodronate in bulk material and pharmaceuticals by ion chromatography with post-column derivatization. J. Pharm. Biomed. Anal, 1992, 10:881~887
    24 R.W. Sparidans, J. den Hartigh, P. Vermeij. High perfor- mance ion-exchange chromatography with in-line complexation of bisphosphonates and their quality control in pharmaceutical preparations. J. Pharm. Biomed. Anal, 1995, 13:1545~1550
    25 Paraskevas DT, Constantinos KZ, Georgios AT, et al. Normal spectrophotometric and stopped-flow spectro- fluorimetric sequential injection methods for the determination of alendronic acid an anti-osteoporosis amino-bisphosphonate drug in pharmaceuticals. Anal. Chim. Acta, 2005, 547(1):98~103
    26 Sami KAD, Imad IH, Samer MAN. Spectroscopic and HPLC methods for the determination of alendronate in tablets and urine. Talanta, 2004, 64(3):695~702
    27 R.W. Sparidans, J. den Hartigh,W.M. Ramp-Koopmans chap, et al. The determination of pamidronate in pharmaceutical preparations by ion-pair liquid chromatography afterderivatization with phenylisothiocyanate. J. Pharm. Biomed. Anal, 1997, 16:491~497
    28 J.D. deMarco, S.E. Biffar,D.G. Reed,M.A. Brooks,The determination of 4-amino-1-hydroxybutane-1, 1- diphosphonic acid monosodium salt trihydrate in pharmaceutical dosage forms by high-performance liquid chromatography. J. Pharm. Biomed.Anal,1989, 7:1719~1727
    29 M. Zeller, R. Kessler, H.J. Manz, G. Szek ely. Determination of disodium 3-amion-1-hydroxypropylidrate-1,-1 bisphosphonate pentahydrate. J. Chromatogr, 1991, 545:421~425
    30 E.W. Tsai, M.M. Singh, H.H. Lu, et al. Application of capillary electrophoresis to pharmaceutical analysis: Determination of alendronate in dosage forms. J. Chromatogr. A, 1992, 626:245~250
    31 Heli Sirén, Anniina M??tt?nen, Marja-Liisa Riekkola, Determination of small anions by capillary electrophoresis using indirect UV detection with sulphonated nitrosonaphthol dyes. Journal of Chromatography A, 1997, 767:293~301
    32 P. Perjesi, T. Kim, A.D. Zharikova, et al. J. Pharm. Biomed. Anal, 2003, 31: 929~935
    33 J.A. Bertinatto Rodríguez, M.F. Desimone,S.L. Iglesias, et al.Validation of a capillary electrophoresis method for the analysis of ibandronate related impurities. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44:305~308
    34 K. Huikko, R. Kostiainen. Development and validation of a capillary zone electrophoretic method for the determination of bisphosphonate and phosphonate impurities in clodronate. J. Chromatogr. A, 2000, 893:411~420
    35 Dorentina Bexheti, Ebo I. Anderson, Andrew J. Hutt, Melissa Hanna-Brown. Evaluation of multidimensional capillary electrophoretic methodologies for determination of amino bisphosphonate pharmaceuticals. Journal of Chromatography A, 2006, 1130:137~144
    36 Rolf W. Sparidans, Jan den Hartigh, Jos H. Beijnen, et al. Derivatization of pamidronate and other amino(bis)- phosphonates with different isothiocyanates prior to ion-pair liquid .chromatography. Journal of Chromatography A, 1997, 782:211~217
    37 R.W. Sparidans, J. den Hartigh, J.H. Beijnen, et al. Semi-automatic liquid chromatographic analysis of pamidronate in serum and citrate plasma after derivatization with 1-naphthylisothiocyanate. J. Chromatogr. B, 1998, 705: 331~339
    38 R.W. Sparidans, J. denHartigh, S. Cremers, et al. Semi-automatic liquid chromatographic analysis of olpadronate in urine and serum using derivatization with (9-fluorenylmethyl) chloroformate. J. Chromatogr. B, 2000, 738:331~341
    39 R.W. Sparidans, J. denHartigh, S. Cremers, et al.Semi-automatic liquid chromatographic analysis of pamidronate in urine after derivatization with 1-naphthylisothiocyanate. J. Chromatogr. B, 1999, 730: 95~99
    40 R.W. Sparidans, J. den Hartigh, J.H. Beijnen et al. Semiautomatic liquid chromatographic analysis of pamidronate in serum and citrate plasma after derivatization with 1-naphthylisothiocyanate. J. Chromatogr. B, 1998, 705:331~339
    41 R.W. Sparidans, J. denHartigh, S. Cremers, et al. Semi-automatic liquid chromatographic analysis of olpadronate in urine and serum using derivatization with (9-fluorenylmethyl)chloroformate. J. Chromatogr.B, 2000, 738:331~341
    42 Isabela Tarcomnicu, Luigi Silvestro, Simona Rizea Savu, et al. Development and application of a high-performance liquid chromatography mass spectrometry method to determine alendronate in human urine. Journal of Chromatography A, 2007, 1160:21~33
    43 Qin XZ, Tsai EW, Sakuma T, et al. Ion chromatography- ion spray mass spectrometric characterization of alendronate. J Chromatogr A, 1994, 686:205~212
    44 L.S. Zhu, V.N. Lapko, J.W. Lee, Y.J. Basir, C. Kafonek, R. Olsen, C. Briscoe. Mass Spectrom, 2006, 20:2426~3421
    45 J.A. Wong, K.W. Renton, J.F.S. Crocker, P.A. O’Regan, P.D. Acott, Biomed. Chromatogr, 2004, 18:98~101
    46 G. Flesch, S.A. Hauffe, Determination of the bisphosphonate pamidronate disodium in urine by precolumn derivatization with fluorescamine, high performance liquid chromato- graphy and fluorescence detection. J. Chromatogr, 1989, 489:446~451
    47 G. Flesch, N. Tominaga, P. Degen. Improved determination of the bisphosphonate pamidronate disodium in plasma and urine by precolumn derivatization with fluorescamine, high-performance liquid chromatography and fluorescence detection. J. Chromatogr. B, 1991, 568:261~266
    48 M.J. Lovdahl, D.J. Pietrzyk. Anion-exchange separation and determination of bisphosphonates and related by post-column indirect fluoresecence detection. J. Chromatogr. A, 1999, 850:143~152
    49 V. Virtanen, L.H.J. Lajunen. High-performance liquid chromatographic method for simultaneous determination of clodronate and some clodronate esters, J. Chromatogr, 1993, 617:291~298
    50 P.T. Daley-Yates, L.A. Gifford, et al. Assay of 1-hydroxy-3-aminopropylidene-1,1-bisphosphonate and related bisphosphonates in human urine and plasma by high-performance ion chromatography, J. Chromatogr, 1989, 490:329~338
    51 Tomás Pérez-Ruiz, Carmen Martínez-Lozano, María Dolores García-Martínez. A sensitive post-column photochemical derivatization/fluorimetric detection systemfor HPLC determination of bisphosphonates. Journal of Chromatography A, 2009, 1216(9):1312~1318
    52 E.Muntoni, R. Canaparo, C. Della Pepa, et al. Determination of disodium clodronate in human plasma and urine using gas-chromatography–nitrogen-phosphorous detections: validation and application in pharmacokinetic study. J. Chromatogr. B, 2004, 799:133~139
    53 H.J. Leis,G. Fauter,W.Windischhofer,RapidCommun. Mass Spectrom, 2004, 18:2781~2784
    54 S. Auriola, R. Kostiainen, M. Ylinen, et al. Analysis of (dichloromethylene) bisphosphonate in urine by capillary gas chromatography mass spectrometry. J. Pharm. Biomed.Anal, 1989, 7:1623~1629
    55 Miroslav Kova?evi?, Andrej Gartner, Milko Novi?, Determination of bisphosphonates by ion chromatography– inductively coupled plasma mass spectrometry. Journal of Chromatography A, 2004, 1039:77~82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700