云南昭通毛坪铅锌矿床地质地球化学特征及隐伏矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在研究滇东北区域成矿地质背景的基础上,运用矿田地质力学理论,依据不同方向、不同性质结构面力学性质转变的特征,划分了矿区构造体系,概括了构造控矿特征,并以此为基础讨论了毛坪铅锌矿床846、910中段矿体分布区断裂构造岩的稀土元素配分模式。在分析矿床Pb、S、D、O、C稳定同位素和流体包裹体组成特征的基础上,阐明了矿床物质来源,提出了矿床的成矿模式,并运用构造地球化学的理论和方法,借助数学地质和相关计算机软件,将毛坪铅锌矿床的成矿物质条件和构造条件结合起来,探讨了成矿元素在空间上的运移和富集规律,总结出构造地球化学预测准则,优选出矿区、矿床的有利成矿靶区。
     毛坪铅锌矿床是该区典型的受构造控制的矿床之一。矿区内发育的不同方向构造形迹归属于四种主要的构造组合,代表四种不同的构造体系,反映四期构造的演化和发展。其中,NE向构造带是毛坪铅锌矿区最为主要的控矿构造型式,其呈现出典型的“多”字型控矿型式,反映为NE向压扭性断裂和猫猫山倒转背斜控矿的特征。
     通过对矿区稳定同位素及微量元素的研究认为:
     矿床金属硫化物Pb同位素组成反映了铅源主要来自上地壳,部分来自造山带和区域广布的峨眉山玄武岩;S同位素组成则显示了富重硫为特征,指示了硫源来自海水。脉石矿物D、O同位素组成代表了岩浆水、变质水、建造水及大气降水混合作用的结果;C同位素组成则反映来自受热液改造的含有机质的地层,说明地层受成矿流体溶解、淋滤、萃取而提供了部分成矿物质和储矿空间。
     流体包裹体地球化学反映了有机质参与了成矿作用,同时成矿流体为一中-弱碱性的Na~+-Cl~--Ca~(2+)型,具有中-低盐度、中低温度、中等压力的成矿热卤水。
     微量元素地球化学中各中段断裂构造岩(矿石)的稀土元素配分模式表明:δ Eu弱亏损-缓斜型代表各中段强铅锌矿化-浸染状矿石的稀土元素的配分模式,其为矿区的地球化学找矿标志;不同矿体矿石中Eu异常,反映了流体运移和滞留过程中在物质来源及成矿环境上的差异。
     在上述研究的基础上,将该矿床的成矿条件与世界典型的MVT、SEDEX型及滇东
    
    昆明理工大学硕士论文
    北会泽铅锌矿床进行了对比研究,认为该矿床属于“沉积一流体贯入”的成矿模式。
     断裂构造岩采用R型聚类分析表明,矿区内成岩、成矿元素组合主要有三种:卜碳酸盐岩
    造岩主元素组合;H一铅和域锌矿化成矿元素组合:m一黄铁矿化成矿元素组合。第一组合代表
    了赋矿地层与成矿流体间相互作用的成矿元素组合;第二组合代表了主成矿流体成
    矿元素及伴生元素的组合特征;第三组合则显示沉积和成矿流体贯入期形成以为黄
    铁矿主的元素共生组合;
     矿床各中段因子得分异常为:910中段为zn一In和Pb一cu一Ge一As一Ag一sb一Bi;在846
    中段(I号矿体)为Zn一Cu一Ge一Ag一Cd一In和Pb一As一Sb一Tl一Bi矿化元素组合;846中
    段(11、111号矿体)为zn一Pb一Mn一Ag一In一Sb一Bi矿化元素组合。
     根据断裂构造岩矿化元素构造地球化学特点及找矿标志认为:矿区内的找矿远
    景区为:
     (1) NIV倒转翼所在的846中段NE段(倒转背斜的轴部)及846中段SW段;
     (2)褶皱NW倒转翼Clb中部与D3z犷上部;
     矿床内的找矿靶区为
     (l)846中段11、111号矿体分布区的NE段
     (2)846中段11、111号矿体分布区SW段
     通过矿山工程验证,取得了良好的找矿效果。
On the basis of study on metallogenic setting in the northeastern Yunnan province, the REE distribution models for the fault tectonites, which distribute around the ore-bodies were classified into the division tectonic system by means of the different trend and property mechanical conversion structural planes are discussed and some ore-conduit characteristics are summarized in this paper. At the same time, the deposit genesis has been put forward after the ore-forming sources were clarified by analysis the stable isotopic (Pb, S, D, O, C) and the compositions of fluid inclusions. According to the above research, the migration and concentration of ore-forming elements are dealed with in three dimensions for the Maoping Zinc-Lead deposit. On the basis of deducing the criteria of tecto-geochemistry for the prognoses of metallogensis, the forecasting areas have been selected by means of the analytical method and theory of tecto- geochemistry in combination with the ore-forming conditions. The computer and relative software for mutirariance analysis perform these works.
    The Maoping zinc-lead deposit is one of the most ore-conduit deposit in this area. The trails of faults are plentiful on the structural plane, which belongs to four structural associations, and delegates four different structural systems, reflects the fault activities of four periods. The NE trending belt is mostly important ore-conduit structure, which includes the NE-trending Maoping press-shear fault and inverted Maomaoshan fold, which are the subordinate xi-type structure in the ore field.
    The characteristic compositions of the stable isotopic and the fluid inclusions in Maoping mineral district show that the main sources of Pb origin the Upper Earth's Crust, partly froin orogenetic belt and/or Emeishan basalt; the S isotopic composition hints sulfur sources from the seawater; The D and O isotopic compositions show that they emerge from the compound results of the magma water, metamorphic water, hosted water and rain water; the origination of the C isotopic shows that C resource strata. The ore-forming fluid
    
    
    
    features enlighten that the strata had been affected by solution, leaching, exaction.
    The compositions of the fluid inclusion show the fluid is a hot ore-forming bittern Na+-Cl--Ca2+ type, which have a mid-low salinity, tempter, and pressure.
    Trace elements, especially, the strongly mineralized-tectonites and impregnated-ores' REE distraction model reflects the ore-finding symbols of geo-chemistry, and shows the fluid transferring environment or material exchanging between wall-rock and the fluid.
    From above discussion, we compare the patterns of mettallogeny with MVT,SEDEX deposits and Huize znic-lead deposit, the model for the Maoping deposit is "sediment-ore fluid injection".
    The ore-forming elements in the deposit have three main kinds of association. The first association is one of the carbonate forming element composition; the second is one of zinc and /or lead mineralization; The third is one of pyrite between the mettallogenic periods. The first element association indicates the activities between strata and ore-forming fluids; the other association indicates the main ore-forming elements and accompanying elements in the ore-forming fluid; the last association indicate the element combination of two periods pyrite.
    There are mineralization factor scores in every ore body distribution and can have been draw anomaly diagram as following:910 meters,Zn-In and Pb-Cu-Ge-As-Ag-Sb-Bi; 846 metersCNo. I ore body), Zn-Cu-Ge-Ag-Cd-In and Pb-As-Sb-Tl-Bi; 846 meters(No. II, III ore bodies) ,Zn-Pb-Mn-Ag-In-Sb-Bi.
    According to the features of fault tecto-geochemistry of the faults and ore-finding criteria, the deposit forecasting areas have suggested as following:
    Mineral district forecasting areas are the NE (axial plane of inverted fold ) ,SW-trend of part NW inverted limb in 846 meter height and the middle part in C\b and upper part in D3zg2 NW inverted limb;
    The ore-finding target areas of deposit the NE trend of No. II and No.III ore bod
引文
[1]中国矿床编委会.中国矿床(上册)[M].北京:地质出版社,1994,1~200.
    [2]柳贺昌,林开达.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1999, 129~131.
    [3]廖文.滇东黔西北铅锌金属区硫铅同位素组成特征与成矿模式探讨[J].地质与勘探(1),1~6.
    [4]张位及.试论滇东北Pb-Zn矿床的沉积成因和成矿规律[J].地质与勘探,1984,(7):11~16.
    [5]陈士杰.黔西滇东北铅锌矿床的成因探讨[J].贵州地质,1986,3(3):212~215.
    [6]赵准.滇东、滇东北地区铅锌矿床的成矿模式.云南地质,1985,14(4):350~354.
    [7]陈进.麒麟厂铅锌硫化物矿床成因及成矿模式探讨[J].有色金属矿产与勘查,1993,(2):89~94.
    [8]柳贺昌.峨眉山玄武岩与铅锌成矿[J].地质与勘探,1995,31(4):1~7.
    [9]柳贺昌.滇、川、黔铅锌成矿区的构造控矿[J].云南地质,1995,14(3):173~189.
    [10]柳贺昌.滇、川、黔成矿区的铅锌矿源层(岩)[J].地质与勘探,1996,32(2)12~18.
    [11]郑庆鳌.云南会泽矿山厂、麒麟厂铅锌矿床对流循环成矿及热水溶硐赋存块状富铅锌矿体的实践与认识[J].西南矿产地质,1997.11(1~2):8~16.
    [12]周朝宪,魏春生,叶造军.密西西比河谷型铅锌矿床[J].地质地球化学,1997,(1)65~75.
    [13]周朝宪.滇东北麒麟厂锌铅矿床成矿金属来源、成矿流体特征和成矿机理研究[J].矿物岩石地球化学通报,1998,17(1):34~36.
    [14]Chaoxian Zhou,Chunsheng Wei,Jiyun Guo etal,(2001).The Source of Metals in the Qilinchang Zn-Pb Deposit,Northeast Yunnan,China:Pb-Sr Isotope Constraints[J].Economic Geology,96,583~598. .
    [15]孙志伟.会泽麒麟厂铅锌矿床隐伏矿体的发现及其预测的基础与方法[J].云南地质,1998,17(2):159~167
    [16]黄智龙,陈进,刘丛强等,峨眉山玄武岩与铅锌矿床成矿关系初探[J].矿物学报,2001,21(4):681~688.
    [17]韩润生,刘丛强,陈进等.云南会泽铅锌矿构造控矿特征及断裂构造岩稀土元素组成特征[J].矿物岩石.2000,20(4):12~18.
    
    
    [18]韩润生,陈进,李元.云南麒麟厂铅锌矿床八号矿体发现[J].地质地球化学.地质地球化学.2001,29(3):191~195.
    [19]张立生.滇东北地区层控Pb-Zn-(F-Ba)矿床的热液喀斯特成因[J].地球学报.1997.18(1):41~52.
    [20]高子英.云南主要铅锌矿床的铅同位素特征[J].云南地质.16(4):359~367.
    [21]管士平,李忠雄.康滇地轴东缘铅锌矿床铅硫同位素地球化学研究[J].地质地球化学.1999,27(4):45~54.
    [22]王奖臻,李朝阳,李泽琴等.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学.2001,29(2)41~45.
    [23]云南省地质矿产勘查开发局第一地质大队.云南省彝良县洛泽河镇大明槽铅锌矿勘探地质报告.2001,6.(内部资料)
    [24]吴建明.铅锌矿床研究与找矿进展[J].矿产与地质.1990,4(15):25~30.
    [25]涂光炽.从一个侧面看矿床事业的发展[J].矿床地质.2002,21(2):97~105.
    [26]Ohle, E.L.Some considerations in determing the origin of ore deposits of the MississippiValley-Type.Economic Geology, 1959,54,769~789.
    [27]Ohle,E.L.Some considerations in determing the origin of ore deposits of the MississippiValley-Type-Part Ⅱ .Economic Geology, 1980,75,161~172.
    [28]Sverjenki,D.A.. Genesis of Mississippi Valley-Type ,lead-zinc deposits. Annual Reviews of Earth Planetary Sciences, 1986,14,177~199.
    [29]Guilbert, J.M. and Park, C.F..The Geology of Ore Deposits. Freeman and Company, New York, 1986,985pp,
    [30]Leach,D.L., and Sangster D.F.. Mississippi Valley-Type lead-zinc deposits. In: Kirkham, R.V., Sinclair, W.D., Thorpe, R.T. and Duke, J.M. (eds.), Mineral Deposit Modelling. Geological Association of Canada, Special PAPER, 1993,40, 289~314.
    [31]Cathle L.M.and Smith A.T.,Thermal constraints on the formation of Missippi Valley-Type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Economic Geology. 1994,78,983~1002.
    [32]Oliver.J,Fluids expelled tectonically from orogenic belt: Their role in hydrocarbon migration and other geologic phenomena. Geology, 1986,14:99~102.
    [33]Sicree,A.A.and Barnes,H.L..Upper Mississippi Valley district ore fluid model:the role of organic complexes.Ore Geology Review, 1996,11,105~131.
    [34]Wood,S.A. and Samson,I.M.. Solubility of ore minerals and complexation of ore
    
    metals in hydrothermal solutions. In: Richards,J.P. and Larson,P.B.(eds.),Techniques in hydrothermal ore deposits geology. Society of Economic Geologists Inc.,Reviews in Economic, 1998,10,p.33~88.
    [35]Sato.Behaviors of ore-forming solution in seawater[J].Mining Grology , 1972,22:31~42.
    [36]Spooner E T C,Chapman H J, Strontium isotopic contam intation and oxidation during ocean floor hydrothermal metamorphism of ophiolitic rocks Masiff, Cyprus[J].Geochim et Comsmochim Acta, 1977b,41:873~890.
    [37]Solomon M. "Volcanic" massive sulphide deposits and their host rocks--a review and an esplanation [A]. In: Wolf K A ed. Handbook of strata-bound and stratiform ore deposits (Ⅱ :Regional studies and specific deposits)[C].Amsterdam:Elsevier Scientific Publishing company. 1976.21-50.
    [38]Frankin,J M. Sangster D F, Lydon J W. Volcanic-associated massive sulfide deposits[J]. Econ Geol, 1981(75th Anniv):485-627.
    [39]Ohmoto H, Skinner B G. The kuroko and related volcanogenic massive sulfide deposit[J]. Econ. Geol,1985,Mongr(5):604.
    [40]D.F.Sangster. 《Sediment-hosted Stratiform Lead-zinc Deposits》 .
    [41]Large, D.E.(1981).Sediment-hosted Submarine Exhalatice Sulphide Deposits- a Review of their Geological Characteristics and Genesis; in Handbook of Stratabound and Stratiform Ore Deposits, Wolf K. A, Editor, Geological Association of Canada, Volume 9:459~507.
    [42]Large, D.E.(1983). Sediment-hosted Submarine Exhalatice Sulphide Deposits; in Short Course in Sedimentary Stratiform Lead-zinc Deposits, Sangster, D.F., Editor, Mineralogical Association of Canada: 11~29.
    [43]Gustafson, L.B. and Williams,N.(1981): Sediment-hosted Stratiform Deposits of Copper, Lead-zinc;in Economic Geology Senventy-fifth Anniversary Volume, 1905-1980, Skinner, B.J., Editor, Economic Geology Publishing Co.: 19~178.
    [44]Carne, R.C. and Cathro, R.J. (1982).Sedimentary-exhalative (Sedex) Zn-Pb-Ag Deposits, Northern Canadian Cordillera; Canadian Institute of Mining and Metallurgy, Bulletin, Volume 75:66~78.
    [45]Briskey, J.A.,(1986). Descriptive Model of Sedimentary Exhalative Zn-Pb; in Mineral Deposit Models, Cox, D.P. and Singer, D.A., Editors, U.S. Geological Survey, Bulletin
    
    1693:379.
    [46]Sangster D.F., Mississippi Valley-type and SEDEX lead-zinc deposits: a comparative examination. Trans. Instn. Min.Metall.(Sect. B : Appl. Earth Sci.),1990,99:B21~B42.
    [47]Mackenzie D. Some remarks on the development of sedimentary basins[J].Earth Planet. Sci.Lett., 1978,40(1):25~32.
    [48]Lydon J M. Chemical parameters controlling the origin and deposit of sediment-hosted stratiform lead-zinc deposits [A]. In: Sangater D. F. ed. Short Course in sediment-Hosted Stratiform Lead-Zinc Deposits[C]. Mineralogical Association of Cannada, Victori, 1983,175~250.
    [49]Russell M J. Major sediment-hosted exhalative zinc-lead deposits: formation from hydrothermal convection cells that deepen during crustal extension[A]. In: Sangater D. F. ed. Short Course in sediment-Hosted Stratiform Lead-Zinc Deposits[C]. Mineralogical Association of Cannada, Victori, 1983,251~282.
    [50]顾连兴.块状硫化物矿床研究进展评述.地质论评.1999,45(3):265~275.
    [51]肖新建、倪培.论喷流沉积(SEDEX)成矿与沉积.改造成矿之对比.地质找矿论丛.2000,15(3):238~245.
    [52]彭省临,邵拥军.隐伏矿体定位预测研究现状及发展趋势.大地构造与成矿学[J].2001,25(3):329~334.
    [53]池三川.隐伏矿(床)体的寻找[M].北京:中国地质大学出版社.10~109.
    [54]韩润生,李元.会泽麒麟厂铅锌矿床深部找矿预测研究.昆明理工大学科研报告.(内部资料)
    [55]彝良地质勘探队.云南彝良长发硐铅锌矿区补充中间地质报告书.1963,12.(内部资料)
    [56]张云湘,骆耀南,杨崇喜等.攀西裂谷[M].北京:地质出版社,1988.
    [57]沈苏,金明霞,陆元发等,西昌.滇中地区主要矿产成矿规律及找矿方向[M].重庆:重庆出版社.1988.
    [58]胡耀国.贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制[D].中国科学院地球化学研究所博士论文.2000.
    [59]王林江.黔西北铅锌矿床的地质地球化学特征[J].桂林冶金地质学院学报.1994,14(2):125~130.
    [60]邹海俊、韩润生、胡彬.云南昭通毛坪铅锌矿床成矿物质来源的新证据.地质与勘探.2004(待刊)
    
    
    [61]黎彤,倪守斌.地球和地壳的化学元素丰度[M].北京:地质出版社,1990.1~136.
    [62]中国有色金属总公司.滇东北-黔西北银多金属矿床勘查报告.1994(内部资料)
    [63]彭少梅.褶皱形成过程中常量元素的地球化学行为及岩石体变的估算方法.地质科技情报.1991,10(3):29~36.
    [64]常士骠主编.工程地质手册(第三版)[M].北京:中国建筑工业出版社,1995,212~217.
    [65]刘英俊,曹励明,李兆麟等.元素地球化学[M].北京:科学出版社,1984,77~331.
    [66]孙家骢.矿田地质力学导论(上册)[M].昆明:昆明理工大学(内部资料),1986.
    [67]岳辉.个旧锡-多金属矿东区北部构造-地球化学特征及定位定量成矿预测[M].昆明理工大学硕士学位论文.1989.
    [68]翟裕生.关于构造-流体-成矿作用研究的几个问题[J].地学前缘,1996,3(4)230~236.
    [69]高坪仙.碳酸盐型铅锌矿床成矿的构造制约因素和条件.国外前寒武纪地质.1996,74(2):39~42.
    [70]胡彬,韩润生.云南昭通毛坪铅锌矿构造控矿特征初探及找矿方向初探[J].云南地质,2003,22(3):295~303.
    [71]胡彬,韩润生.会泽铅锌矿与世界典型MVT铅锌矿床的对比研究.矿物岩石地球化学通报.2004(待刊)
    [72]赵伦山,张本仁.地球化学[M].北京:地质出版社,1987,166~208.
    [73]赵玉灵,杨金中,沈远超.同位素地质学测定年方法评述.地质与勘探[J].2002,38(2):63~67.
    [74]张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科技出版社,1983,121~248.
    [75]Hugh.Rollison著-杨学明,杨晓勇,陈双喜(译).岩石地球化学[M].合肥:中国科技大学出版社,2000,206~242.
    [76]孙岩等.构造动力学变质岩带[M].北京:科学出版社,1994.
    [77]胡彬,韩润生,马德云等.毛坪铅锌矿区Ⅰ号矿体分布区断裂构造岩稀土元素地球化学特征及找矿意义[J].地质地球化学,2003,31.(4):22~28.
    [78]胡彬,韩润生,邹海俊.滇东北毛坪铅锌矿床成矿流体运移环境研究[J].昆明理工大学学报(增刊),2003,28(10):5~10.
    [79]J.L.Graf.Jr.稀土元素是火山岩中块状硫化物矿床形成的示踪剂.Economic Geology,1977,72,527~548.
    
    
    [80]Sangster D.F..密西西比河谷型矿床是一类地质特点差异很大的矿床[M].李春明译.国外地质科技,1985(5):25~29.
    [81]Sangster D.F., Mississippi Valley-type and SEDEX lead-zinc deposits: a comparative examination. Trans. Instn. Min.Metall.( Sect. B : Appl. Earth Sci.), 1990,99:B21~B42.
    [82]Leach,D.L., and Sangster D.F.. Mississippi Valley-Type lead-zinc deposits. In: Kirkham, R.V., Sinclair, W.D., Thorpe, R.T. and Duke, J.M. (eds.), Mineral Deposit Modelling. Geological Association of Canada, Special Paper, 40, 1993,289~314.
    [83]Sverjenki,D.A.. Genesis of Mississippi Valley-Type lead-zinc deposits. Annual Reviews of Earth Planetary Sciences, 1986,14,177~199.
    [84]Hagni,R.D..Minor elements in Mississippi Valley-type ore deposits, in Shanks,W.C.,ed., Cameron Volume on Unconventional Mineral Deposits, Society of Economic Geology and Society of Mining Engineers, AIME, New York, 1983,p.44~88.
    [85]Giordano, T.H. and Barnes, H.L.. Lead transport in Mississippi Vally-Type ore Solutions.Economic Geology, 1981,76,2200~2211.
    [86]Seward,T.M.and Barnes,H.L.. Metal transport by hydrothermal ore fluids. Geochemistry of Hydrothermal Ore Deposits (3rd ed), 1997,John Wiley and Sons,New York,P.435~486.
    [87]陈国达,黄瑞华.关于构造地球化学的几个问题.大地构造与成矿学.1984,8(1).
    [88]杨开庆.构造动力作用中地球化学作用.大地构造与成矿学.1984,8(4):327~336.
    [89]刘清泉.构造地球化学的研究及应用.地质与勘探.4(1):53~61.
    [90]章崇真.试论矿田断裂地球化学.地质与勘探.1979,3.
    [91]孙岩等.断裂构造地球化学特征的初步探讨.大地构造与成矿学.1984,8(4):359~368.
    [92]杨国清.构造地球化学.桂林:广西师范大学出版社.1990.
    [93]吴学益.构造地球化学导论[M].贵州科技出版社.1998.
    [94]孙家骢.矿阳地质力学方法[J].昆明理工大学学报,1988,13(3):120~126.
    [95]韩润生.初论构造成矿动力学及其隐伏矿定位预测研究内容和方法[J].地质与勘探,2003,39(1):5~9.
    [96]马德云.易门凤山铜矿床构造地球化学特征及成矿预测[M].昆明理工大学硕士学位论文.1995.
    
    
    [97]徐振邦,娄元仁.数学地质基础[M].北京:地质出版社,1994:226.
    [98]吴功建、林清.地球物理方法在地质和找矿中的应用[M].北京:地质出版社,1988.
    [99]於崇文、岑况、鲍征宇等,热液成矿作用动力学(M).武汉:中国地质大学出版社,1993,74~94.
    [100]卢家烂,庄汉平,刘文均.有机质在层控铅锌矿床中作用的实验研究[J].沉积学报,1997,15(2):226~231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700