云南大红山铜铁矿床地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以云南省大红山铜铁矿床为研究对象,通过广泛收集前人资料,继而进行野外地质调查,采集样品加以分析测试,经过室内综合研究,对该矿床的矿体特征、地球化学、成矿流体性质及成矿环境等做了系统的总结。
     大红山式的铜铁矿床在我国乃至世界都是比较著名并得到广泛关注的矿床类型,位于滇中中台坳南端,介于红河断裂与绿汁江断裂所夹持的三角地区,西临哀牢山群,东为昆阳群。矿床主要赋存于大红山群,为一套古海底火山喷发一沉积变质岩系,该群由老到新分别为:老厂河组、曼岗河组、红山组、肥味河组和坡头组。铜矿主要集中于曼岗河组,铁矿则为红山组。矿区岩浆活动频繁,具有多期、多旋回的特点。伴随各期构造运动,均有不同程度的岩浆活动,从深成岩到喷出岩,从超基性岩到酸性岩均有出露。
     大红山群的形成过程及成因与当时古地理环境、海水沉积及海底火山活动等有关,其沉积旋回与矿床的形成有着相当密切的关系,大红山群自下而上大致分为五个较大的沉积旋回。另外,矿床的分布产出受到构造及火山机构的控制,表现为火山机构控制外围,矿体逐渐尖灭消失。
     矿区围岩和矿石的地球化学特征大体相似,都表现为主量元素富钠,微量元素富铁、铜等及轻稀土相对富集的特点,并具海相火山沉积和正常沉积皆备的特征,同位素分析也证实了这一点。通过包裹体的测试分析,对成矿流体的性质、演化等做了一定深度的研究,对其成矿温度、深度等做了较为客观的推断。
     综合以上研究,对古海底的火山活动引起的成矿过程做了推断和描述,认为在火山活动的不同阶段有着特定的成矿环境及条件,铜矿受火山喷气,火山角砾及火山灰的沉积控制。铁矿则受富铁岩浆溢流及次火山控制,并且在后期受到了不同程度的区域变质影响和热液富化或贫化作用,使之最终形成今天的大红山式铜铁矿床。
In this paper, dahongshan copper iron ore bed in yunnan province as the research object, through the extensive collection of the former data, followed by field geological survey, sample analysis, and indoor comprehensive research, summarized the orebody characteristics of deposits, geochemistry, ore-forming fluid properties and metallogenic environment.
     The type of dahongshan copper iron ore bed in our country and even the world is the more famous, and get more attention, located in the southern part of the dianzhong depression, between the honghe fault and lvzhi river fault, aolaoshan group in the west, the east for the kunyang group. Deposits mainly occur in dahongshan group, a set of ancient undersea volcanic eruption~sedimentary metamorphic rocks. The groups from old to new:laochanghe group, manganghe group, hongshan group, feiweihe group and potou group. Copper is mainly concentrated in mangang group, iron ore at the hongshan group. Mining area magma activity was frequent, with multi-phase, multi-cycle characteristics. Accompanied by phases of tectonic movements,had different levels of magmatic activity, from plutonic rock out to, from the super mafic rocks to acidic rock are the exposed.
     The formation process of dahongshan group and the causes related to the ancient geographical environment, the sea sediments and submarine volcanic activity, its deposition cycles and the formation of deposits had a fairly close relationship, the dahongshan group bottom-up roughly divided into five large deposition cycles. In addition, the output of the distribution of deposits controlled by tectonic and volcanic agencies, in the periphery of the volcanic bodies, the orebody gradually pinchout disappear.
     The geochemical characteristics of mine rock and ore are broadly similar, the main amount of element-rich sodium, trace elements-rich iron、copper and so on,and with thecharacteristics of marine volcanic sedimentary and normal deposition,isotope analysis also confirmed this point. According to the test analysis of the inclusions, studied the nature of the ore-forming fluids、 evolution、ore-forming temperature and depth.
     Comprehensive above research, inferred the mineralization process which ancient undersea volcanic eruption caused. At different stages of volcanic activity, there are special metallogenic environment and condition. Volcanic jet, volcanic breccia and volcanic ash deposition controlled of copper, The iron ore was controlled by the overflow of the iron-rich magma and volcanic, and in the later received a degree of regional metamorphism and hydrothermal influence which richest or dilution effect, made the final form of today dahongshan type copper iron ore bed.
引文
[1]沈远仁.大红山式铁铜矿床的形成机理一海底火山成矿模式.地质科技情报,1982,S1:66-68
    [2]陈云华.沉积地球化学的研究现状和发展趋势[J].内蒙古石油化工2008(1):12-14
    [3]白生顺.大红山地区铜成矿浅析[J].甘肃科技,2009.25(15):35-37,15
    [4]魏民,姚永慧.大红山式铜铁矿床地球化学找矿模型研究[J].地球科学,1998,23(2):205-209
    [5]胡光龙,韩繁国.大红山铜矿Ⅰ号铁铜矿带成矿控矿因素及分布富集规律[J].云南冶金,2006,35(5):6-13.
    [6]张苗云,张玉学.大红山铜矿床稀土元素地球化学特征研究[J].地质地球化学,1996(5):15-17.
    [7]王峰.大红山铜矿控矿条件及找矿方向[J].有色金属设计,2002,29(1) :24-26,38.
    [8]周永章.低温地球化学研究与发展[J].地球科学进展,1995,10(5):442-444.
    [9]P·亨德森.稀土元素地球化学.北京:地质出版社,1989,1-284.
    [10]於崇文.成矿作用动力学[J].地学前缘.1994,3-4,54-81.
    [11]Knapp R, Norton D. Prelininary numerical analysis of process--es related to magma crystallization and stress evolution in cooling pluton environments. Amer J Sci,1981,281:35-68.
    [12]陆继龙.地球化学动力学研究现状与趋势[J].世界地质,1999,18(4):1-4.
    [13]陈琪,胡文瑄,王小林等.川东北盘龙洞长兴组_飞仙关组白云岩稀土元素配分特征及成因[J].石油实验地质,2011,33(6):624-633
    [14]朱立新.地热勘查的重要方法一微量元素地球化学方法的研究现状[J].国外地质勘查技术,1989(1):9-11.
    [15]龙莎莎等.浅析环境地球化学的研究现状[J].云南地理环境研究,2005,17:81-84
    [16]陈运勃,王道铭,钱锦和等.大红山矿区东段铁矿详细勘探及铜矿初步勘探地质报告.云南省地质矿产局第一地质大队,1983.11
    [17]Cuney M, Coulibaly Y and Boiron MC.High-densityearlyCO2 Fluids in the ultrahigh-temperature granulites of Ihouhaouene (In ouzzal, Algeria).Lithos, 2007,96:402—414.
    [18]周家云,郑荣才,朱志敏等.拉拉铜矿黄铁矿微量元素地球化学特征及其成因意义[J].矿物岩石.2008,28(3):64-71.
    [19]余南中.谈大红山矿区开发[J].金属矿山,2008(8):1-4.
    [20]曹德斌.南甘—西拉河地区大红山岩群的变质作用特征[J].云南地质,1997,16(2):184-191
    [21]魏俊浩,王学平,刘铁侠等.铅_氧同位素在矿产勘查中的应用[J].地球科学—中国地质大学学报,1998,23(2):211-244.
    [22]徐勇航,赵太平,彭澎等.山西吕梁地区古元古界小两岭组火山岩地球化学特征及其地质意义[J].岩石学报,2007,23(5):1123-1132.
    [23]蔡剑辉,阎国翰,肖成东等.太行山_大兴安岭构造岩浆带中生代侵入岩Nd-Sr-Pb同位素特征及物质来源探讨[J].岩石学报,2004,20(5):1125-1142
    [24]贾大成,胡瑞忠,卢焱.湘东南玄武质岩石地球化学特征及构造环境[J].吉林大学学报(地球科学版),2002,32(3):209-214.
    [25]李飞等.新平大红山铜矿二期基建探矿控矿构造特征[J].云南地质,2009,28(2):179-184.
    [26]吴孔文,钟宏,朱维光等.云南大红山层状铜矿床成矿流体研究[J].岩石学报,2008,24(9):2045-2056.
    [27]西南有色地质313队.云南省新平县大红山铜矿一期工程基建地质报告[R].1998
    [28]张搜,李飞等.云南省新平县大红山铜矿二期工程基建补充地质报告[R].云南省有色地质313队,2003.
    [29]朱赖民.元素共生分异机制的研究现状和趋势[J].矿物岩石地球化学通报,2001,20(2):19-24.
    [30]刘本立,陈成业.大红山古火山口的碳酸盐围岩的氧和碳同位素研究[J].岩矿测试,1982,1(4):1-5.
    [31]舒荣波.云南大红山铜矿化学浸出研究[J].矿产综合利用,2008(2):6-8.
    [32]唐世新,马生明,朱立新.罕达盖矽卡岩型铁铜矿体与围岩稀土元素地球化学特征[J].物探与化探,2011,35(6):727-732.
    [33]王泽鹏,夏勇,宋谢炎等.太平洞_紫木凼金矿区同位素和稀土元素特征及成矿物质来源探讨[J].矿物学报,2012,32(1):93-100.
    [34]邓明国.新平大红山_元江撮科铜铁多金属成矿系列及成矿预测:《昆明理工大学博士论文》.昆明:昆明理工大学,2007.
    [35]熊小辉,肖加飞.沉积环境的地球化学示踪[J].地球与环境,2011,39(3):405-414.
    [36]端木合顺.沉积喷流型矿床热水沉积旋回及其地球化学特征[J].西安科技学院学报,2003,23(2):151-155.
    [37]毛光周,刘池洋.地球化学在物源及沉积背景分析中的应用[J].地球科学与环境学报,2011,33(4):337-348.
    [38]李珉,牛志军,赵小明等.鄂西地区泥盆系_石炭系泥质岩沉积地球化学特征及沉积环境研究[J].华南地质与矿产,2011,27(3):238-249.
    [39]廖声林.云南新平大红山铁铜矿床地球化学特征及找矿分析:《昆明理工大学硕士论文》.昆明:昆明理工大学,2009.
    [40]代元平.河南省桐柏县刘山岩铜锌矿带鸭子口矿区地质_地球物理_地球化学特征[J].华南地质与矿产,2009,3:59-64.
    [41]周廷.江西华齐铜多金属矿区含矿硅质岩的地球化学特征及成因探讨[J].资源调查与环境,2011,32(1):57-65.
    [42]刘雪敏,陈岳龙,李大鹏等.内蒙古霍各乞铜多金属矿床原生晕地球化学特征及深部成矿远景评价[J].物探与化探,2012,36(1):1-7.
    [43]祝朝辉,刘淑霞,张乾等.云南白牛厂银多金属矿床喷流沉积成因证据容矿岩石的地球化学约束[J].现代地质,2010,24(1):121-129.
    [44]周涛发,岳书仓,兰天佑.安徽安庆铜矿床硫同位素地球化学[J].地球科学—中国地质大学学报,1995,20(6):705-711.
    [45]孙涛,钱壮志,党新生等.喀拉通克铜镍矿床硫同位素组成特征及其地质意义[J].地球科学与环境科学,2010,32(4):344-349.
    [46]丰成友,丰耀东,张德全等.闽中梅仙式铅锌银矿床矿质来源的硫_铅同位素示踪及成矿时代[J].地质学报,2007,81(7):906-916.
    [47]顾雪详,刘丽,董树义.山东沂南金铜铁矿床中的液态不混溶作用与成矿_流体包裹体和氢氧同位素证据[J].矿床地质,2010,29(1):43-57.
    [48]段士刚,薛春纪,冯启伟等.豫西南赤土店铅锌矿床地质_流体包裹体和S_Pb同位素地球化学特征[J].中国地质,2011,38(2):427-441.
    [49]唐果.云南易门凤山铜矿床流体包裹体特征研究:《昆明理工大学硕士论文》.昆明:昆明理工大学,2011.
    [50]刘建忠,卢良兆,谢鸿森等.孔兹岩系脱水熔融实验中水逸度_氧逸度和氢逸度的确定及意义_以贺兰山北段为例[J].长春科技大学学报,1999,29(1):15-19.
    [51]李晓燕.流体包裹体的氧逸度计算公式及其应用.矿物学报,1995,15(3):291-302.
    [52]Chen YJ.Mineralizaion during collisional orogenesis and its eontrol of the distribution of gold deposit in Junggar Mountains [M]. Xinjiang, China. AetaGeolog--iea Sinica,1997,71:69-79
    [53]BentorY.K, PhosPhorites-the unsolved problems. in:Marine phosphorite, SEPM Spec Publ.no.29,1980, P.3-18.
    [54]RaoV.P and NairR.R, Mierobial Origin of the Phosphoritcs of the Western Continental Shelf of India.MarGed,1984, (84):105-11.
    [55]Giresse.P, The Maastriehtian Phosphate sequence of the Congo. In:Marine Phosphorites.SEPM.Spec.Publ.1980, no29, P:193-205.
    [56]Cook, D.R., The Evolution of Mineral Exploration Teehnology-Past, Present, and Future, Integrated Methods in Explomuon and Diseo--very,1993.
    [57]Bonham-Carter,G.F, Geographic Information systems for Geoseientists: Modelling with GIS, Elsevier Seienee Press, U.S.A,1994.
    [58]LeSley Wyborm.Using GIS for Minerd Potential Evaluation in Areas with F--ew known Mineral Oeeurenees.Seeond National Forum on GIS in the Geoseienees, 1995
    [59]CamPbell IH, MeDougall TJ, and Turner JS, A note on fluid dynamic Proeesses which can influence the deposition of massive sulfides.ECON.GEOL., 1984,79:1905-1913.
    [60]Ohmoto H.Formation of volcanic-assoeiated massive sulfide deposits:the Kuroko perspective [J]. Ore Geologica Review,1996,10:135-177.
    [61]Detrick R S P, Buhle E, Vera J, etal.Multichannel seismic imaging of a crustal magama chamber along the East Pacific Rise[J].Nature,1987,326:35-41.
    [62]Singer D A.Basic concepts in three-part quantitative assessments of undisco-vered mineral resources[J].Nonrenewable Resources,1993,2(2):69-81.
    [63]Windley F B, kroner A, Gao J, etal.Neoproterozoic to Plaeozoic geology of the Altai orogen, NW China:New zircon age data and tectonic evolution[J].J.Geol.,2002,110:719-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700