基于RVA框架的水库生态调度研究及决策支持系统开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着三峡水库成功蓄水至175米,公众对水库运行带来的潜在生态问题日渐关注。大型水库在防洪、发电、保障航运及提供城市工农业用水等方面对人类社会带来巨大效益的同时,也给对人类社会十分宝贵的河流生态系统健康带来深远影响。如何在其传统兴利效益的基础上,兼顾生态恢复和保护,充分发挥综合效益,是水库生态调度的热点与难点,也是本文的研究所在。
     首先,研究一般情况下水库运行造成的生态环境胁迫(即干扰,在生态学中被称为胁迫),归纳总结了国内外对于水库运行胁迫生态环境的研究成果。针对三峡-葛洲坝梯级水库,从水文角度出发,对其运行带来的生态环境胁迫进行了分析。
     其次,着眼于河流动态特性对河流生态系统健康所起的重要作用,提出了以水文情势描述河流动态特性、以RVA框架指导制定河流动态特性变化控制目标的恢复与保护性生态径流研究思路。综合考虑淡水生物不同生命阶段对生境的需求及水环境因子的季节性变化,建立了面向生态水文事件非参数统计的生态径流推求方法。在此基础上,针对三峡梯级水库所处的长江中上游河段,以宜昌站为典型断面,分析并得出了面向河流生态系统整体与特定淡水生物(四大家鱼、中华鲟)的恢复与保护性生态径流。
     第三,建立以恢复与保护性生态径流为约束的梯级水库生态调度模型,并给出相应算法。提出综合考虑河流动态特性的生态适宜度评价指标体系。以三峡梯级水库为研究对象,结合上文分析得出的恢复与保护性生态径流,从面向河流生态系统整体与特定淡水生物恢复和保护两个角度对生态调度进行研究。结合生态适宜度评价指标体系,针对生态调度中生态指标的不同侧重、生态—经济效益间冲突分别提出了多种非劣方案,并采用TOPSIS多属性决策模型,在不同侧重情况下分别对非劣方案集进行优选。
     第四,以上述研究为依据,采用Delphi2010开发环境,结合微软SQL Server数据库引擎,开发了基于三层体系结构、兼顾生态恢复与保护的长江中上游梯级水库优化调度决策支持系统。系统提供生态信息管理、生态评价体系管理、生态径流分析、生态调度和GIS展示等功能服务,为决策者制定合理的生态调度方案提供强有力的支持。
With the success of Three Gorges reservoir impounding to 175 meters, the public is more and more concerning the adverse ecological consequences of reservoir operation. Large reservoirs bring tremendous benefits to human society in power generation, flood control, shipping, industrial and agricultural water supply. Also they greatly undermine the health of river ecosystem health. How to balance ecological benefits and economic benefits is where the hotspot and difficulty of reservoir operation lie. And this study also lies.
     First, the eco-environmental stress caused by reservoir operation in general case is studied. Then the relative research results at home and abroad are summarized. According to the operation of Three Gorges-Gezhouba cascade reservoir, from the view of hydrological point, the eco-environmental stress which reservoir operation brings is analyzed.
     Second, according the important role which dynamic characteristics of the river ecosystem health of rivers plays in the hydrological system, the dynamic characteristics which described by regime and the ecological flow which guided by the RVA framework are proposed, then considering the ecological demand of freshwater habitat in different life stages and the seasonal changes of environmental factors in water, the methods for ecological flow calculation which oriented to the non-parametric statistics of eco-hydrological events are established. On the base of these, aiming at upper and middle Yangtze River which Three Gorges cascade reservoir is located, taking Yichang station as the typical section, the ecological flow process which considers the restoration of whole river ecosystem and specific protection of freshwater habitat is analyzed.
     Third, the ecological operation model of cascade reservoirs which takes the ecological runoff as constraints is established, and the corresponding algorithm is also given. The eco-suitability evaluation index system which considers the dynamic characteristics of the river is proposed. The this paper take the Three Gorges cascade reservoir as a research object, combines the ecological flow which analyzed above, the ecological operation from the restoration of whole river ecosystem and specific protection of freshwater habitat is studied. Combined with the eco-suitability evaluation index system, a variety of non-inferior solutions are proposed based on the conflict of ecological indicators and ecological economic benefits, then the multi-attribute decision model of TOPSIS is adopted and the solutions is optimized.
     Fourth, this paper takes the research above as a basis, uses the development environment of Delphi2010, combines with Microsoft SQL Server database engine, and develops the decision support system for cascade reservoir ecological operation in upper and middle Yangtze River which considers ecological restoration and conservation and based on three-layer architecture. The system includes the functions such as ecological information management, ecological evaluation management, ecological flow analysis, ecological operation and GIS display which provides strong support for policy makers to develop a reasonable ecological operation scheme.
引文
[1]麦卡利.大坝经济学.北京:中国发展出版社, 2005.
    [2]董哲仁.水利工程对生态系统的胁迫.水利水电技术, 2003, 34(7): 1-5.
    [3]余文公.三峡水库生态径流调度措施与方案研究: [硕士学位论文]:河海大学, 2007.
    [4] Shuttleworth, W. J. and D. R. Maidment. Handbook of Hydrology: McGraw-Hill New York, 1993.
    [5] Poff, N. L., J. D. Allan and M. B. Bain, et al. The natural flow regime: A paradigm for river conservation and restoration. BioScience, 1997, 47(11): 769-784.
    [6] Brian D. Richter, Jeffrey V. Baumgartner David. A spatial assessment of hydrologic alteration within a river network. Regulated Rivers: Research & Management, 1998, 14(4): 329-340.
    [7] Mathews, Ruth and Brian D. Richter. Application of the Indicators of Hydrologic Alteration Software in Environmental Flow Setting. Journal of the American Water Resources Association, 2007, 43(6): 1400-1413.
    [8] Tennant, Donald Leroy. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1976, 1(4): 6-10.
    [9]李捷,夏自强,马广慧等.河流生态径流计算的逐月频率计算法.生态学报, 2007, 27(7): 2916-2921.
    [10]长江四大家鱼产卵场调查队.葛洲坝水利枢纽工程截流后长江四大家鱼产卵场调查.水产学报, 1982, 6(4): 287-304.
    [11]郭文献,夏自强,王远坤等.三峡水库生态调度目标研究.水科学进展, 2009, 20(4): 554-559.
    [12]陈永柏,廖文根,彭期冬等.四大家鱼产卵水文水动力特性研究综述.水生态学杂志, 2009, 2(2): 130-133.
    [13]邱顺林,刘绍平,黄木桂等.长江中游江段四大家鱼资源调查.水生生物学报, 2002, 26(6): 716-718.
    [14]王尚玉,廖文根,陈大庆等.长江中游四大家鱼产卵场的生态水文特性分析.长江流域资源与环境, 2008, 17(6): 892-897.
    [15]李翀,彭静,廖文根.长江中游四大家鱼发江生态水文因子分析及生态水文目标确定.中国水利水电科学研究院学报, 2006, 4(3): 170-176.
    [16]班璇,李大美.大型水利工程对中华鲟生态水文学特征的影响.武汉大学学报(工学版), 2007, 40(03): 10-13.
    [17]班璇,李大美.葛洲坝枢纽工程对中华鲟产卵场的生态水文学影响研究.见:中国水利学会中国水力发电工程学会中国大坝委员会.水电2006国际研讨会.中国云南昆明, 2006.
    [18]杨德国,危起伟,陈细华等.葛洲坝下游中华鲟产卵场的水文状况及其与繁殖活动的关系.生态学报, 2007, 27(3): 862-869.
    [19]班璇,李大美,李丹.葛洲坝下游中华鲟产卵栖息地适宜度标准研究.武汉大学学报(工学版), 2009, 42(2): 172-177.
    [20]易雨君,王兆印,姚仕明.栖息地适合度模型在中华鲟产卵场适合度中的应用.清华大学学报(自然科学版), 2008, 48(3): 340-343.
    [21]余文公,夏自强,于国荣等.三峡水库水温变化及其对中华鲟繁殖的影响.河海大学学报(自然科学版), 2007, 35(1): 92-95.
    [22]陈永柏.三峡水库运行影响中华鲟繁殖的生态水文学机制及其保护对策研究: [博士学位论文]:中国科学院研究生院(水生生物研究所), 2007.
    [23]易雨君,王兆印,陆永军.长江中华鲟栖息地适合度模型研究.水科学进展, 2007, 18(4): 538-543.
    [24] Guohua, Zhang, Chang Jianbo and Shu Guangfu. Applications of factor-criteria system reconstruction analysis in the reproduction research on grass carp, black carp, silver carp and bighead in the Yangtze River. Int J General System, 1998, 29(3): 419-428.
    [25] Hui, Qin, Zhou Jianzhong and Lu Youlin, et al. Multi-objective Cultured Differential Evolution for Generating Optimal Trade-offs in Reservoir Flood Control Operation. Water Resources Management, 2010, 24(11): 2611-2632.
    [26] Reddy, M. Janga and D. Nagesh Kumar. Multiobjective Differential Evolution with Application to Reservoir System Optimization. Journal of Computing in Civil Engineering, 2007, 21(2): 136-146.
    [27] Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 2003, 19(5-6): 397-441.
    [28] Yang, T., Q. Zhang and Y. D. Chen, et al. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China.Hydrological Processes, 2008, 22(18): 3829-3843.
    [29] Taylor, V., R. Schulze and G. Jewitt. Application of the Indicators of Hydrological Alteration method to the Mkomazi River, KwaZulu-Natal, South Africa. African Journal of Aquatic Science, 2003, 28(1): 1-11.
    [30] Richter, Brian D., Ruth Mathews and David L. Harrison, et al. Ecologically Sustainable Water Management: Managing River Flows For Ecological Integrity. Ecological Applications, 2003, 13(1): 206-224.
    [31] Atkinson, Giles and Susana Mourato. Environmental Cost-Benefit Analysis. Annual Review of Environment and Resources, 2008, 33(1): 317-344.
    [32] Vogel, Richard M. and Neil M. Fennessey. Flow Duration Curves II: A Review Of Applications In Water Resources Planning. Journal of the American Water Resources Association, 1995, 31(6): 1029-1039.
    [33] Vogel, Richard M. and Neil M. Fennessey. Flow-Duration Curves. I: New Interpretation and Confidence Intervals. Journal of Water Resources Planning and Management, 1994, 120(4): 485-504.
    [34] Brian Richter, Jeffrey Baumgartner and Robert Wigington. How much water does a river need? Freshwater Biology, 1997, 37(1): 231-249.
    [35] Doyle, Martin W. and David G. Havlick. Infrastructure and the Environment. Annual Review of Environment and Resources, 2009, 34(1): 349-373.
    [36] Hobbs, Richard J. and Viki A. Cramer. Restoration Ecology: Interventionist Approaches for Restoring and Maintaining Ecosystem Function in the Face of Rapid Environmental Change. Annual Review of Environment and Resources, 2008, 33(1): 39-61.
    [37] Brauman, Kate A., Gretchen C. Daily, et al. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annual Review of Environment and Resources, 2007, 32(1): 67-98.
    [38] Costanza, Robert, Ralph D'Arge and Rudolf de Groot, et al. The value of the world's ecosystem services and natural capital. Nature, 1997, 387(6630): 253-260.
    [39]吴佳鹏,陈凯麒.分形理论在水文情势影响评价中的应用.水电能源科学, 2008, 26(1): 37-39.
    [40]钟华平,刘恒,耿雷华等.河道内生态需水估算方法及其评述.水科学进展, 2006, 17(3): 430-434.
    [41]刘静玲,杨志峰,肖芳等.河流生态基流量整合计算模型.环境科学学报, 2005, 25(4): 436-441.
    [42]胡和平,刘登峰,田富强等.基于生态流量过程线的水库生态调度方法研究.水科学进展, 2008, 19(3): 325-332.
    [43]李林兵,穆秀云,于国荣等.径流过程改变对生态系统的影响.东北水利水电, 2009, 27(02): 57-60.
    [44]彭静,李翀,徐天宝.论河流保护与修复的生态目标.长江流域资源与环境, 2007, 16(1): 66-71.
    [45]戴会超,董前进,曹广晶.三峡-葛洲坝梯级水利枢纽调度技术集成研究的现状与展望.四川大学学报(工程科学版), 2009, 41(4): 1-7.
    [46]余文公,夏自强,蔡玉鹏等.三峡水库蓄水前后下泄水温变化及其影响研究.人民长江, 2007, 38(1): 20-22.
    [47]康玲,黄云燕,杨正祥等.水库生态调度模型及其应用.水利学报, 2010, 41(2): 134-141.
    [48]韩帅,夏自强,刘猛等.水库调度对大坝下游河道生态径流的影响.水资源保护, 2010, 26(1): 21-23.
    [49]宋兰兰,陆桂华,刘凌.水文指数法确定河流生态需水.水利学报, 2006, 37(11): 1336-1341.
    [50]拉尔夫?A?沃兹,陈桂蓉.借助水权优先权系统评估可用水量.水利水电快报, 2002, 23(13): 8-11.
    [51]李翀,廖文根,彭静等.宜昌站1900~2004年生态水文特征变化.长江流域资源与环境, 2007, 16(1): 76-80.
    [52]郭瑾,李琼芳,马颖等.长江宜昌站径流量、输沙量趋势变化及突变分析.中国水论坛第四届学术研讨会.郑州, 2006.
    [53] Brian D. Richter, Jeffrey V. Baumgartner Jennifer. A Method for Assessing Hydrologic Alteration within Ecosystems. Conservation Biology, 1996, 10(4): 1163-1174.
    [54] Douglas, E. M., R. M. Vogel and C. N. Kroll. Trends in floods and low flows in the United States: impact of spatial correlation. Journal of Hydrology, 2000, 240(1-2): 90-105.
    [55] Vogel, Richard M. The Probability Plot Correlation Coefficient Test for the Normal, Lognormal, and Gumbel Distributional Hypotheses. Water Resour. Res., 1986, 22.
    [56] Wurbs, Ralph A. Texas Water Availability Modeling System. Journal of Water Resources Planning and Management, 2005, 131(4): 270-279.
    [57] Wurbs, Ralph A., Ranjan S. Muttiah and Fabrice Felden. Incorporation of Climate Change in Water Availability Modeling. Journal of Hydrologic Engineering, 2005, 10(5): 375-385.
    [58] Moliere, Dene R., John B. C. Lowry and Chris L. Humphrey. Classifying the flow regime of data-limited streams in the wet-dry tropical region of Australia. Journal of Hydrology, 2009, 367(1-2): 1-13.
    [59] Poff, N. L., B. D. Richter and A. H. Arthington, et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 2010, 55(1): 147-170.
    [60] Kennard, Mark J., Bradley J. Pusey and Julian D. Olden, et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 2010, 55(1): 171-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700