SCF~(FBXL19)调节Rac3蛋白泛素化和降解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景Rac3是一种多功能的小GTP酶蛋白,可以调节细胞的粘附、迁移和分化。Rac3蛋白被认为是乳腺癌的致癌基因之一,然而该蛋白在食道癌中的表达以及其稳定性的调节方式尚未被研究。F-box蛋白是泛素蛋白酶水解系统中泛素连接Skp1-Cullin-1-F-box(SCF)E3的重要亚单位,参与蛋白质的泛素化和蛋白酶降解。前期研究中,我们发现F-box蛋白家族中的SCFFBXL19作用于Rho-GTP酶Rac1和RhoA,介导其泛素化和降解。本论文研究中,将探讨FBXL19调节Rac3的泛素化和稳定性。转化生长因子β1(TGFβ1)与食道癌的预后不良密切相关,它可以降低多种上皮源性肿瘤细胞中钙黏连蛋白(E-cadherin)的表达,进而导致肿瘤细胞的转移。本研究中,我们将探讨在食道癌细胞中,FBXL19通过介导Rac3蛋白的降解和泛素化进而抑制TGFβ1诱导的食道癌细胞钙黏连蛋白下调。
     实验方法本研究采用免疫印迹法和免疫共沉淀法测定F-box介导Rac3蛋白的稳定性;采用免疫印迹法和免疫染色法探讨转化生长因子β1(TGFβ1)介导食道癌细胞(OE19和OE33)中钙黏连蛋白(E-cadherin)的下调。
     实验结果
     1. FBXL19降低Rac3蛋白的表达量。
     (1)构建了FBXL19质粒(FBXL19-V5,FBXL19-HA),转染人胚肾细胞(HEK293),均可以导致HEK293细胞内源性Rac3蛋白表达下降;
     (2)检测不同细胞系中Rac3蛋白的表达量,食道癌细胞系(OE19)、人胚肾细胞系(HEK293)中Rac3蛋白高表达,非小细胞肺癌细胞系(A549)中Rac3蛋白低表达,鼠肺泡上皮细胞(MLE12)中Rac3蛋白未见表达;
     (3)构建Rac3质粒(Rac3-V5),将其与FBXL19质粒共同转染MLE12细胞,结果表明FBXL19降低Rac3蛋白的表达呈剂量依赖性;
     (4)RT-PCR证实在蛋白水平上FBXL19调节Rac3的稳定性,而非mRNA水平。
     2. FBXL19介导Rac3降解位于蛋白酶体系统。
     (1)饥饿状态可以导致Rac3蛋白呈时间依赖性降解,蛋白酶体抑制剂(MG-132)可以减少饥饿状态下Rac3蛋白的降解;
     (2)蛋白酶体抑制剂(MG-132)可以减少FBXL19介导的Rac3蛋白的降解,证实FBXL19介导Rac3降解位于蛋白酶体系统。
     3. Rac3蛋白赖氨酸166位点是FBXL19介导Rac3泛素化的靶位点。
     4. Rac3蛋白与FBXL19相互作用位于FBXL19的羧基端(COOH)。
     5. Rac3蛋白调节转化生长因子β1(TGFβ1)介导的钙黏连蛋白(E-cadherin)下调。
     (3)TGFβ1介导食道癌细胞系(OE19和OE33)中E-cadherin下调;
     (4)构建Rac3失活质粒(Rac3N17-V5)和敲除质粒(shRac3),转染食道癌细胞均可抑制TGFβ1介导的E-cadherin下调;
     (5)食道癌细胞中转染Rac3增加Snail的表达。
     6. FBXL19调节TGFβ1介导的E-cadherin下调。
     (1)FBXL19介导食道癌细胞系(OE19和OE33)内源性Rac3蛋白泛素化和降解;
     (2)FBXL19质粒转染食道癌细胞,阻抑肿瘤细胞TGFβ1介导的E-cadherin下调。
     结论
     1.发现并确认了FBXL19与Rac3蛋白间存在相互作用,FBXL19介导Rac3蛋白泛素化和降解;确定了FBXL19与Rac3的赖氨酸166位点结合,Rac3蛋白与FBXL19的COOH末端结合。
     2. Rac3蛋白是调节TGFβ1介导肿瘤细胞钙黏连蛋白下调的重要蛋白。
     3. FBXL19通过介导食道癌细胞Rac3蛋白的泛素化和降解,进而抑制肿瘤细胞TGFβ1介导的钙黏连蛋白(E-cadherin)下调。
Background
     Rac3is a small GTPase multifunctional protein that regulates cell adhesion, migration,and differentiation. It has been considered as an oncogene in breast cancer; however, its rolein esophageal cancer and the regulation of its stability have not been studied. F-box proteinsare major subunits within the Skp1-Cullin-1-F-box (SCF) E3ubiquitin ligases that recognizeparticular substrates for ubiquitination and proteasomal degradation. Recently, we have shownthat SCFFBXL19targets Rac1and RhoA, thus regulating Rac1and RhoA ubiquitination anddegradation. Here, we demonstrate the role of FBXL19in the regulation of Rac3site-specificubiquitination and stability. Expression of TGFβ1is associated with poor prognosis ofesophageal cancer. TGFβ1reduces tumor suppressor, E-cadherin, expression in variousepithelial-derived cancers. Here we investigate the role of FBXL19-mediated Rac3degradation in TGFβ1-induced E-cadherin down-regulation in esophageal cancer cells.
     Methods
     FBXL19-regulated endogenous and over-expressed Rac3stability were determined byimmunoblotting and co-immunoprecipitation. Esophageal cancer cells (OE19and OE33) wereused to investigate TGFβ1-induced E-cadherin down-regulation by Immunoblotting andImmunostaining.
     Results
     Overexpression of FBXL19decreased endogenous and over-expressed Rac3expressionby interacting and polyubiquitinating Rac3, while down-regulation of FBXL19suppressedRac3degradation. Lysine166within Rac3was identified as an ubiquitination acceptor site.The FBXL19variant with truncation at the N-terminus resulted in an increase in Rac3degradation; however, the FBXL19variant with truncation at the C-terminus lost its ability tointeract with Rac3and ubiquitinate Rac3protein. Further, we found that Rac3plays a criticalrole in TGFβ1-induced E-cadherin down-regulation in esophageal cancer cells. Over- expression of FBXL19attenuated TGFβ1-induced E-cadherin down-regulation andesophageal cancer cells elongation phenotype.
     Conclusions
     Collectively these data unveil that FBXL19functions as an antagonist of Rac3byregulating its stability and regulates the TGFβ1-induced E-cadherin down-regulation. Thisstudy will provide a new potential therapeutic strategy to regulate TGFβ1signaling, thussuppressing esophageal tumorgenesis.
引文
[1] Etienne-Manneville, S. and Hall, A. Rho GTPases in cell biology [J]. Nature,2002,420:629–635.
    [2] Erickson, J.W. and Cerione, R.A. Structural elements, mechanism, and evolutionaryconvergence of Rho protein–guanine nucleotide exchange factor complexes [J].Biochemistry,2004,43:837–842.
    [3] Vega, F.M. and Ridley, A.J. Rho GTPases in cancer cell biology [J]. FEBS Lett,2008,582:2093–2101.
    [4] Lin, R. et al. Specific contributions of the small GTPases Rho, Rac and Cdc42to Dbltransformation [J]. Biol. Chem,1999,274,23633–23641.
    [5] Fort, P. Small GTPases of the Rho family and cell transformation [J]. Prog. Mol. Subcell.Biol,1999,22:159–181.
    [6] Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on theswitch [J]. Genes Dev,2002,16:1587-1609.
    [7] Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L. PAKkinases are directly coupled to the PIX family of nucleotide exchange factors [J]. MolCell,1998,1:183-192.
    [8] Buchsbaum RJ, Connolly BA, Feig LA. Interaction of Rac exchange factors Tiam1andRas-GRF1with a scaffold for the p38mitogen-activated protein kinase cascade [J]. MolCell Biol,2002,22:4073-4085.
    [9] Khosravi-far R., Solski P. A., Clark G. J., Kinch M. S. and Der C. Activation of Rac1,RhoA, and mitogen-activated protein kinases is required for Ras transformation [J]. Mol.Cell. Biol.1995,15:6443–6453.
    [10] Prendergast G. C., Khosravi-Far R., Solski P. A., Kurzawa H., Lebowitz P. F. and Der C.Critical role of Rho in cell transformation by oncogenic Ras [J]. Oncogene,1995,10:2289–2296.
    [11] Qiu R. G., Chen J., Kirn D., McCormick F. and Symons M. An essential role for Rac inRas transformation [J]. Nature,1995,374:457–459.
    [12] Montaner S., Perona R., Saniger L. and Lacal J. C. Multiple signalling pathways lead tothe activation of the nuclear factor kappaB by the Rho family of GTPases [J]. Biol.Chem,1998,273:12779–12785.
    [13]易龙,张乾勇,糜漫天等.Rho家族蛋白在肿瘤侵袭转移中作用[J].中国公共卫生杂志,2007,23(4):492-494.
    [14] Perona R., Montaner S.,Suwa, H. et al. Overexpression of the rhoC gene correlates withprogression of ductal adenocarcinoma of the pancreas [J]. Br. Cancer,1998,77:147–152.
    [15] Fritz, G. et al. Rho GTPases in human breast tumors: expression and mutation analysesand correlation with clinical parameters [J]. Br. Cancer,2002,87:635–644.
    [16] Kamai, T. et al. Overexpression of RhoA, Rac1, and Cdc42GTPases is associated withprogression in testicular cancer [J]. Clin.Cancer Res,2004,10:4799–4805.
    [17] Kleer, C.G. et al. Characterization of RhoC expression in benign and malignant breastdisease: a potential new marker for small breast carcinomas with metastatic ability [J].Am. Pathol,2002,160:579–584.
    [18] Clark, E.A. et al. Genomic analysis of metastasis reveals an essential role for RhoC [J].Nature,2000,406:532–535.
    [19] Burbelo, P. et al. Altered Rho GTPase signaling pathways in breast cancer cells [J].Breast Cancer Res. Treat,2004,84:43–48.
    [20] Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancermetastasis [J]. Cell,2009,137:1032–1046.
    [21] Xue, W. et al. DLC1is a chromosome8p tumor suppressor whose loss promoteshepatocellular carcinoma [J]. Genes Dev,2008,22:1439–1444.
    [22] Lahoz, A. and Hall, A. DLC1: a significant GAP in the cancer genome [J]. Genes Dev,2008,22:1724–1730.
    [23] Courjal F, Chuchana P, Theillet C, Fort P. Structure and chromosomal assignment to22q12and17qter of the rasrelated Rac2and Rac3human genes [J]. Genomics,1997,44(2):242-246.
    [24] Haataja L, Groffen J, Heisterkamp N. Characterization of RAC3, a novel member of theRho family [J]. Biol Chem,1997,272(33):20384-20388.
    [25] Morris CM, Haataja L, McDonald M, Gough S, Markie D, Groffen J, Heisterkamp N.The small GTPase RAC3gene is located within chromosome band17q25.3outside andtelomeric of a region commonly deleted in breast and ovarian tumours [J]. CytogenetCell Genet,2000,89(1-2):18-23.
    [26] Bolis A, Corbetta S, Cioce A, de Curtis I. Differential distribution of Rac1and Rac3GTPases in the developing mouse brain: implications for a role of Rac3in Purkinje celldifferentiation [J]. Eur J Neurosci,2003,18(9):2417-2424.
    [27] Haeusler LC, Blumenstein L, Stege P, Dvorsky R, Ahmadian MR. Comparativefunctional analysis of the Rac GTPases [J]. FEBS Let,2003,555(3):556-560.
    [28] Mira, J.P. et al. Endogenous, hyperactive Rac3controls proliferation of breast cancer cellsby a p21-activated kinasedependent pathway [J]. Proc. Natl. Acad. Sci. U.S.A.,2000,97,185–189.
    [29]潘阳林,毕锋,刘娜等.Rac亚家族在胃肠道肿瘤细胞系中的表达及活性[J].中华肿瘤杂志,2003,25(5):441-444.
    [30] Leung K, Nagy A, Gonzalez-Gomez I, Groffen J, Heisterkamp N, Kaartinen V. Targetedexpression of activated Rac3inmammary epithelium leads to defective postlactationalinvolution and benign mammary gland lesions [J]. Cells Tissues Organs,2003,175(2):72-83.
    [31] Pan Y, Bi F, Liu N, Xue Y, Yao X, Zheng Y, Fan D. Expression of seven main Rho familymembers in gastric carcinoma [J]. Biochem Biophys Res Commun,2004,315(3):686-691.
    [32] Baugher PJ, Krishnamoorthy L, Price JE, Dharmawardhane SF. Rac1and Rac3isoformactivation is involved in the invasive and metastatic phenotype of human breast cancercells [J]. Breast Cancer Res,2005,7(6): R965-974.
    [33] Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR, Symons M.Roles of the Rac1and Rac3GTPases in human tumor cell invasion [J]. Oncogene,2005,24(53):7821-7829.
    [34] Basso V, Corbetta S, Gualdoni S, Tonoli D, Poliani PL, Sanvito F, Doglioni C, MondinoA, de Curtis I. Absence of Rac1and Rac3GTPases in the nervous system hindersthymic, splenic and immune-competence development [J]. Eur Immunol,2011,41(5):1410-1419.
    [35] Chatterjee M, Sequeira L, Jenkins-Kabaila M, Dubyk CW, Pathak S, van Golen KL.Individual rac GTPases mediate aspects of prostate cancer cell and bone marrowendothelial cell interactions [J]. Signal Transduct,2011,2011:541851.
    [36] Pennucci R, Tavano S, Tonoli D, Gualdoni S, de Curtis I. Rac1and Rac3GTPasesregulate the development of hilar mossy cells by affecting the migration of theirprecursors to the hilus [J]. PLoS One,2011,6(9):e24819.
    [37] Wang X, Li J, Zheng H, Su H, Powell SR. Proteasome functional insufficiency in cardiacpathogenesis [J]. Am Physiol Heart Circ Physiol,2011,301: H2207-H2219.
    [38] Li J, Horak KM, Su H, Sanbe A, Robbins J, Wang X. Enhancement of proteasomalfunction protects against cardiac proteinopathy and ischemia/reperfusion injury in mice[J]. Clin Invest,2011,121:3689–3700.
    [39] Scruggs SB, Zong NC, Wang D, Stefani E, Ping P. Post-translational modification ofcardiac proteasomes: functional delineation enabled by proteomics [J]. Am PhysiolHeart Circ Physiol,2012,303:H9–18.
    [40] Reinstein E, Ciechanover A. Narrative review: Protein degradation and humandiseases—The ubiquitin connection [J]. Ann Intern Med,2006,145:676-684.
    [41] Hershko A: The ubiquitin system for protein degradation and some of its roles in thecontrol of the cell division cycle [J]. Cell Death Differ,2005,12:1191-1197.
    [42] Dammer EB, Na CH, Xu P, et al: Polyubiquitin linkage profiles in three models ofproteolytic stress suggest the etiology of Alzheimer disease [J]. Biol Chem,2011,286:10457-10465.
    [43] Ikeda F, Dikic I: Atypical ubiquitin chains: New molecular signals [J]. EMBO Rep,2008,9:536-542.
    [44] Koegl M, Hoppe T, Schlenker S, et al: A novel ubiquitination factor, E4, is involved inmultiubiquitin chain assembly [J]. Cell,1999,96:635-644.
    [45] Haas AL, Warms JV, Hershko A, et al: Ubiquitin-activating enzyme: Mechanism and rolein protein-ubiquitin conjugation [J]. Biol Chem,1982,257:2543-2548.
    [46]吴慧娟,张志刚.泛素-蛋白酶体途径及意义[J].国际病理科学与临床杂志,2006,26(1):7-10.
    [47] Glickman MH, Ciechanover A: The ubiquitinproteasome proteolytic pathway:Destruction for the sake of construction [J]. Physiol Rev,2002,82:373-428.
    [48] Ardley HC, Robinson PA: E3ubiquitin ligases [J]. Essays Biochem,2005,41:15-30.
    [49] Soucy TA, Smith PG, Rolfe M: Targeting NEDD8-activated cullin-RING ligases for thetreatment of cancer [J]. Clin Cancer Res,2009,15:3912-3916.
    [50] Hershko A, Heller H, Eytan E, et al: The protein substrate binding site of theubiquitin-protein ligase system [J]. Biol Chem,1986,261:11992-11999.
    [51] Hershko A: Ubiquitin-mediated protein degradation [J]. Biol Chem,1988,263:15237-15240.
    [52] Grossman SR, Deato ME, Brignone C, et al: Polyubiquitination of p53by a ubiquitinligase activity of p300[J]. Science,2003,300:342-344.
    [53] Lai Z, Ferry KV, Diamond MA, et al: Human mdm2mediates multiplemono-ubiquitination of p53by a mechanism requiring enzyme isomerization [J]. BiolChem,2001,276:31357-31367.
    [54] Bader, M., Arama, E., and Steller, H. A novel F-box protein is required for caspaseactivation during cellular remodeling in Drosophila [J]. Development,2010,137(10),1679-1688.
    [55] Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. SKP1connects cell cycle regulators to the ubiquitin proteolysis machinery through a novelmotif, the F-box [J]. Cell,1996,86(2),263-274.
    [56] Cardozo, T., and Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine[J]. Nature Reviews Molecular Cell Biology,2004,5(9),739-751.
    [57] Chen, B.B., Glasser, J.R., Coon, T.A., Zou, C., Miller, H.L., Fenton, M., Mc Dyer, J.F.,Boyiadzis, M., and Mallampalli, R.K. F-box protein FBXL2targets cyclin D2forubiquitination and degradation to inhibit leukemic cell proliferation [J]. Blood,2012,119(13),3132-3141.
    [58] Coon, T.A., Glasser, J.R., Mallampalli, R.K., and Chen, B.B. Novel E3ligase componentFBXL7ubiquitinates and degrades Aurora A, causing mitotic arrest [J]. Cell Cycle,2012,11(4),721-729.
    [59] Dui, W., Lu, W., Ma, J., and Jiao, R. A Systematic Phenotypic Screen of F-box GenesThrough a Tissuespecific RNAi-based Approach in Drosophila [J]. Genetics andGenomics,2012,39(8),397-413.
    [60] Ho, M.S., Tsai, P.I., and Chien, C.T. F-box proteins: the key to protein degradation [J].Biomedical Science,2006,213(2),181-191.
    [61] Izumi, N., Helker, C., Ehling, M., Behrens, A., Herzog, W., and Adams, R.H. Fbxw7controls angiogenesis by regulating endothelial notch activity [J]. PLoS One,2012,7(7),e41116.
    [62] Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W.Systematic analysis and nomenclature of mammalian F-box proteins [J]. GenesDevelopment,2004,18(21),2573-2580.
    [63] Mao, J.H., Kim, I.J., Wu, D., Climent, J., Kang, H.C., Delrosario, R., and Balmain, A.FBXW7targets mTOR for degradation and cooperates with PTEN in tumoursuppression [J]. Science,2008,321(5895),1499-1502.
    [64] Moreno-Moreno, O., Medina-Giro, S., Torras-Llort, M., and Azorin, F. The F box proteinpartner of paired regulates stability of Drosophila centromeric histone H3, CenH3(CID)[J]. Current Biology,2011,21(17),1488-1493.
    [65] Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W., and Crosby, W.L.The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an Fbox proteinrequired for normal patterning and growth in the floral meristem [J].. The Plant Journal,1999,20(4),433-445.
    [66] Sato, K., Kusama, Y., Tategu, M., and Yoshida, K. FBXL16is a novel E2F1-regulatedgene commonly upregulated in p16INK4A-and p14ARF-silenced HeLa cells [J].International Journal of Oncology,2010,36(2),479-490.
    [67] Siepka, S.M., Yoo, S.H., Park, J., Song, W., Kumar, V., Hu, Y., Lee, C., and Takahashi,J.S. Circadian mutant Overtime reveals F-box protein FBXL3regulation ofcryptochrome and period gene expression [J]. Cell,2007,129(5),1011-1023.
    [68] Van Rechem, C., Black, J.C., Abbas, T., Allen, A., Rinehart, C.A., Yuan, G.C., Dutta, A.,and Whetstine, J.R. The SKP1-Cul1-F-box and leucine-rich repeat protein4(SCF-FbxL4) ubiquitin ligase regulates lysine demethylase4A (KDM4A)/Jumonjidomain-containing2A (JMJD2A) protein [J]. Biological Chemistry,2011,286(35),30462-30470.
    [69] Vinas-Castells, R., Beltran, M., Valls, G., Gomez, I., Garcia, J.M., Montserrat-Sentis, B.,Baulida, J., Bonilla, F., De Herreros, A.G., and Diaz, V.M. The hypoxia-controlledFBXL14ubiquitin ligase targets SNAIL1for proteasome degradation [J]. Journal ofBiological Chemistry,2009,285(6),3794-3805.
    [70] Welcker, M., Orian, A., Jin, J., Grim, J.E., Harper, J.W., Eisenman, R.N., and Clurman,B.E. The Fbw7tumor suppressor regulates glycogen synthase kinase3phosphorylation-dependent c-Myc protein degradation [J]. Proceedings of the NationalAcademy of Sciences,2004,101(24),9085-9090.
    [71] Willems, A.R., Goh, T., Taylor, L., Chernushevich, I., Shevchenko, A., and Tyers, M. SCFubiquitin protein ligases and phosphorylation-dependent proteolysis [J]. PhilosophicalTransactions of the Royal Society B: Biological Sciences,1999,354(1389),1533-1550.
    [72] Wodarz, A., and Nusse, R. Mechanisms of Wnt signaling in development [J]. AnnualReview of Cell and Developmental Biology,1998,14,59-88.
    [73] Zhao J, Wei J, Mialki RK, Mallampalli DF, Chen BB, Coon T, Zou C, Mallampalli RK,Zhao Y: F-box protein FBXL19-mediated ubiquitination and degradation of the receptorfor IL-33limits pulmonary inflammation [J]. Nat Immunol2012,13:651-658.
    [74] Zhao J, Mialki RK, Wei J, Coon TA, Zou C, Chen BB, Mallampalli RK, Zhao Y: SCF E3ligase F-box protein complex SCFFBXL19regulates cell migration by mediating Rac1ubiquitination and degradation [J]. FASEB2013,27:2611-2619.
    [75] Wei J, Mialki RK, Dong S, Khoo A, Mallampalli RK, Zhao Y, Zhao J: A newmechanism of RhoA ubiquitination and degradation: Roles of SCF E3ligase and Erk2[J]. Biochim Biophys Acta2013.
    [76] T. Yagi, M. Takeichi, Cadherin superfamily genes: functions, genomic organization, andneurologic diversity [J]. Genes Dev,2000.14,1169–1180.
    [77] H. Aberle, H. Schwartz, R. Kemler, Cadherin–catenin complex: protein interactions andtheir implications for cadherin function [J]. Cell. Biochem.1996,61,514–523.
    [78]李裕明,韩克强,郑璐等.上皮间质转化标志物E-cadherin和Vimentin在原发性肝癌中的表达及其临床意义[J].中华肝脏病志,2013,21(4):279-284.
    [79]高萍,张俊杰.肿瘤转移机制的研究进展[J].国际外科学杂志2011,38(1),40-43.
    [80] M. Watabe, A. Nagafuchi, S. Tsukita, M. Takeichi, Induction of polarized cell–cellassociation and retardation of growth by activation of the E-cadherin–catenin adhesionsystem in a dispersed carcinoma line [J]. Cell Biol,1994,127,247–256.
    [81] F. Palacios, L. Price, J. Schweitzer, J.G. Collard, C. D’Souza-Schorey, An essential rolefor ARF6-regulated membrane traffic in adherens junction turnover and epithelial cellmigration [J]. EMBO,2001,20,4973–4986.
    [82] W. Zhu, B. Leber, D.W. Andrews, Cytoplasmic O-glycosylation prevents cell surfacetransport of E-cadherin during apoptosis [J]. EMBO,2001,20,5999–6007.
    [83] A.S. Wong, B.M. Gumbiner, Adhesion-independent mechanism for suppression of tumorcell invasion by E-cadherin [J]. Cell Biol,2003,161:1191–1203.
    [84] M. Yanagisawa, P.Z. Anastasiadis, p120catenin is essential for mesenchymalcadherin-mediated regulation of cell motility and invasiveness [J]. Cell Biol,2006,174:1087–1096.
    [85] B.P. Wijnhoven, W.N. Dinjens, M. Pignatelli, E-cadherin–catenin cell–cell adhesioncomplex and human cancer [J]. Br. Surg,2000,87:992–1005.
    [86] E. Soto, M. Yanagisawa, L.A. Marlow, J.A. Copland, E.A. Perez, P.Z. Anastasiadis, p120catenin induces opposing effects on tumor cell growth depending on Ecadherinexpression [J]. Cell Biol,2008,183:737–749.
    [87] N.G. Kim, E. Koh, X. Chen, B.M. Gumbiner, E-cadherin mediates contact inhibition ofproliferation through Hippo signaling-pathway components [J]. Proc. Natl. Acad. Sci. U.S. A.,2011,108:11930–11935.
    [88] G. Berx, F. Van Roy, The E-cadherin/catenin complex: an important gatekeeper in breastcancer tumorigenesis and malignant progression [J]. Breast Cancer Res,2001,3:289–293.
    [89] B. Zhai, H.X. Yan, S.Q. Liu, L. Chen, M.C. Wu, H.Y. Wang, Reduced expression ofEcadherin/catenin complex in hepatocellular carcinomas [J]. World. Gastroenterol,2008,14:5665–5673.
    [90] J.K. Field, Oncogenes and tumour-suppressor genes in squamous cell carcinoma of thehead and neck [J]. Eur. Cancer B Oral Oncol,1992,28B:67–76.
    [91] I. Molina-Ortiz, R.A. Bartolome, P. Hernandez-Varas, G.P. Colo, J. Teixido,Overexpressionnof E-cadherin on melanoma cells inhibits chemokine-promotedinvasion involving p190RhoGAP/p120ctn-dependent inactivation of RhoA [J].Biol.Chem,2009,284:15147–15157.
    [92] Akhurst R. TGF-b signaling in epithelial-mesenchymal transition and invasion andmetastasis. In: Derynck R, Miyazono K, eds. The TGF-beta family [J]. Cold SpringHarbor Laboratory Press: New York,2007:939-964.
    [93] Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions [J]. Nat Rev MolCell Biol,2001,2:285-293.
    [94] Assemat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D. Polaritycomplex proteins [J]. Biochim Biophys Acta2008,1778:614-630.
    [95] Martin-Belmonte F, Mostov K. Regulation of cell polarity during epithelialmorphogenesis [J]. Curr Opin Cell Biol,2008,20:227-234.
    [96] Niessen CM, Gottardi CJ. Molecular components of the adherens junction [J]. BiochimBiophys Acta,2008,1778:562-571.
    [97] Wheelock MJ, Johnson KR. Cadherins as modulators of cellular phenotype [J]. Annu RevCell Dev Biol,2003,19:207-235.
    [98] Llorens A, Rodrigo I, Lopez-Barcons L, et al. Down-regulation of E-cadherin in mouseskin carcinoma cells enhances a migratory and invasive phenotype linked to matrixmetalloproteinase-gelatinase expression [J]. Lab Invest1998,78:1131-1142.
    [99] Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelialmesenchymal transition: newinsights in signaling, development, and disease [J]. Cell Biol2006,172:973-981.
    [100] Nakajima Y, Yamagishi T, Hokari S, Nakamura H. Mechanisms involved invalvuloseptal endocardial cushion formation in early cardiogenesis: roles oftransforming growth factor (TGF)-b and bone morphogenetic protein (BMP)[J]. AnatRec2000,258:119-127.
    [101] Lao-Sirieix P, Fitzgerald RC: Role of the micro-environment in Barrett's carcinogenesis[J]. Biochemical Society Transactions2010,38:327-330.
    [102] Walker MP, Zhang M, Le TP, Wu P, Laine M, Greene GL: RAC3is a pro-migratoryco-activator of ERalpha [J]. Oncogene,2011,30:1984-1994.
    [103] Engers R, Ziegler S, Mueller M, Walter A, Willers R, Gabbert HE: Prognostic relevanceof increased Rac GTPase expression in prostate carcinomas [J]. Endocr Relat Cancer2007,14:245-256.
    [104] Chatterjee M, Sequeira L, Jenkins-Kabaila M, Dubyk CW, Pathak S, van Golen KL:Individual rac GTPases mediate aspects of prostate cancer cell and bone marrowendothelial cell interactions [J]. Signal Transduct2011,2011:541851.
    [105] Gest C, Joimel U, Huang LM, Pritchard LL, Petit A, Dulong C, Buquet C, Hu CQ,Mirshahi P, Laurent M, et al: Rac3induces a molecular pathway triggering breast cancercell aggressiveness: differences in MDA-MB-231and MCF-7breast cancer cell lines [J].Bmc Cancer2013,13.
    [106] Bhoj VG, Chen ZJ: Ubiquitylation in innate and adaptive immunity [J]. Nature2009,458:430-437.
    [107] Brooks CL, Gu W: Ubiquitination, phosphorylation and acetylation: the molecular basisfor p53regulation [J]. Curr Opin Cell Biol,2003,15:164-171.
    [108] Gronroos E, Hellman U, Heldin CH, Ericsson J: Control of Smad7stability bycompetition between acetylation and ubiquitination [J]. Mol Cell2002,10:483-493.
    [109] Li M, Luo J, Brooks CL, Gu W: Acetylation of p53inhibits its ubiquitination by Mdm2[J]. J Biol Chem,2002,277:50607-50611.
    [110] Pickart CM: DNA repair: right on target with ubiquitin [J]. Nature2002,419:120-121.
    [111] Jadhav T, Wooten MW: Defining an Embedded Code for Protein Ubiquitination [J].Proteomics Bioinform,2009,2:316.
    [112] Nandi D, Tahiliani P, Kumar A, Chandu D: The ubiquitin-proteasome system [J]. Biosci2006,31:137-155.
    [113] Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM,Elledge SJ, Pagano M, et al: Structure of the Cul1-Rbx1-Skp1-F boxSkp2SCF ubiquitinligase complex [J]. Nature2002,416:703-709.
    [114] Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW: F-box proteins are receptorsthat recruit phosphorylated substrates to the SCF ubiquitin-ligase complex [J]. Cell1997,91:209-219.
    [115] Katoh M, Katoh M: Identification and characterization of FBXL19gene in silico [J]. IntJ Mol Med2004,14:1109-1114.
    [116] Takeichi M: Cadherin cell adhesion receptors as a morphogenetic regulator [J]. Science1991,251:1451-1455.
    [117] Gumbiner BM: Cell adhesion: the molecular basis of tissue architecture andmorphogenesis [J]. Cell1996,84:345-357.
    [118] Field JK: Oncogenes and tumour-suppressor genes in squamous cell carcinoma of thehead and neck [J]. Eur Cancer B Oral Oncol,1992,28B:67-76.
    [119] Ruggeri B, Caamano J, Slaga TJ, Conti CJ, Nelson WJ, Klein-Szanto AJ: Alterations inthe expression of uvomorulin and Na+,K(+)-adenosine triphosphatase during mouseskin tumor progression [J]. Am Pathol,1992,140:1179-1185.
    [120] Ling ZQ, Li P, Ge MH, Zhao X, Hu FJ, Fang XH, Dong ZM, Mao WM:Hypermethylation-modulated down-regulation of CDH1expression contributes to theprogression of esophageal cancer [J]. Int J Mol Med,2011,27:625-635.
    [121] Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ: E-cadherin's dark side: possible role intumor progression [J]. Biochim Biophys Acta,2012,1826:23-31.
    [122] Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA: Loss of E-cadherinpromotes metastasis via multiple downstream transcriptional pathways [J]. Cancer Res,2008,68:3645-3654.
    [123] Guilford P: E-cadherin downregulation in cancer: fuel on the fire [J]? Mol Med Today,1999,5:172-177.
    [124] Mareel MM, Behrens J, Birchmeier W, De Bruyne GK, Vleminckx K, Hoogewijs A,Fiers WC, Van Roy FM: Down-regulation of E-cadherin expression in Madin Darbycanine kidney (MDCK) cells inside tumors of nude mice [J]. Int Cancer,1991,47:922-928.
    [125] Derynck R, Akhurst RJ, Balmain A: TGF-beta signaling in tumor suppression andcancer progression [J]. Nat Genet,2001,29:117-129.
    [126] Roberts AB, Wakefield LM: The two faces of transforming growth factor beta incarcinogenesis [J]. Proc Natl Acad Sci U S A2003,100:8621-8623.
    [127] Kim CH, Park SY, Yoo J: Expression of Transforming Growth Factor beta1andE-Cadherin Proteins in Pulmonary Adenocarcinoma: Its Significance in TumorProgression [J]. Cancer Res Treat,2013,45:118-125.
    [128] Akhurst RJ, Balmain A: Genetic events and the role of TGF beta in epithelial tumourprogression [J]. Pathol1999,187:82-90.
    [129] von Rahden BH, Stein HJ, Feith M, Puhringer F, Theisen J, Siewert JR, Sarbia M:Overexpression of TGF-beta1in esophageal (Barrett's) adenocarcinoma is associatedwith advanced stage of disease and poor prognosis [J]. Mol Carcinog,2006,45:786-794.
    [130] Kim CH, Park SY, Yoo J: Expression of Transforming Growth Factor beta1andE-Cadherin Proteins in Pulmonary Adenocarcinoma: Its Significance in TumorProgression [J]. Cancer Research and Treatment,2013,45:118-125.
    [131] Ridley AJ: Rho GTPases and actin dynamics in membrane protrusions and vesicletrafficking [J]. Trends Cell Biol2006,16:522-529.
    [132] Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ: E-cadherin's dark side: Possible role intumor progression [J]. Biochimica Et Biophysica Acta-Reviews on Cancer,2012,1826:23-31.
    [133] Harigopal M, Berger AJ, Camp RL, Rimm DL, Kluger HM: Automated quantitativeanalysis of E-cadherin expression in lymph node metastases is predictive of survival ininvasive ductal breast cancer [J]. Clin Cancer Res,2005,11:4083-4089.
    [134] Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF:Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1,and twist in gastric cancer [J]. Am Pathol,2002,161:1881-1891.
    [135] Gamboa-Dominguez A, Dominguez-Fonseca C, Chavarri-Guerra Y, Vargas R,Reyes-Gutierrez E, Green D, Quintanilla-Martinez L, Luber B, Busch R, Becker KF, etal: E-cadherin expression in sporadic gastric cancer from Mexico: exon8and9deletions are infrequent events associated with poor survival [J]. Hum Pathol,2005,36:29-35.
    [136] Hajdo-Milasinovic A, van der Kammen RA, Moneva Z, Collard JG: Rac3inhibitsadhesion and differentiation of neuronal cells by modifying GIT1downstream signaling[J]. Cell Sci,2009,122:2127-2136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700