半导体激光器辐射效应及影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着航天工业和核工业的发展,光子技术在通信领域的应用越来越受到重视。半导体激光器因为具有体积小、寿命长、功率高、成本低和容易使用等优点广泛应用于光通信系统中,是光通信中的核心器件之一。然而,在具有严重辐射的环境中,半导体激光器的输出光功率会受到辐射干扰,这种干扰对于通信误码率也会产生很大影响。为了降低这种影响可以采取器件加固设计和系统调节的方法。因此,一方面可以通过建立辐射对半导体激光器光功率影响的理论模型,深入分析半导体激光器结构参数以及材料参数对抗辐射性能的影响,为器件加固设计提供参考;另一方面在此基础上建立辐射对通信误码率影响模型,深入了解辐射对通信误码率影响过程及其变化规律,进而寻找调节系统参数的规律降低辐射影响。由于辐射对半导体激光器会产生不同作用机理,因此表现出的效果也不同。总体来说主要会产生两种效应,瞬态电离效应和位移损伤效应,因此光功率模型和误码率模型也都受到这两种效应的影响。基于以上目的本文主要内容包括以下几方面:
     (1) LD瞬态电离效应光学响应模型研究。瞬态电离效应是辐射导致外层电子电离,并在LD中产生光电流,这种电流与电源注入电流是无差别的,因此进一步导致光功率增加。通过在载流子速率方程中引入电离项,并与光子速率方程联立求解,在单模稳定激射状态下获得LD瞬态电离效应光学响应模型。为了证明该模型的正确性,根据文献[100]中的参数进行了计算,并与实验结果进行了比对,结果表明理论计算结果与文献实验结果相符,从而验证了该模型的正确性。在此基础上定义了光学增益因子,该因子表征了该类型LD光功率对电离效应的敏感程度,它是由激光器本身微观结构、材料参数决定。并且进一步分析了输出镜反射率以及有源层厚度对光学增益因子的影响,该结果可为器件加固设计提供参考。
     (2) LD总剂量效应光学响应模型研究。该部分包含两部分内容:首先推导了位移效应光学响应模型,并获得了光功率衰减因子的微观参数表达式;其次建立了半导体激光器辐射效应综合光学响应模型。
     利用O. Gilard的半导体激光器阈值载流子密度辐射损伤模型,从载流子速率方程和光子速率方程入手,获得了LD位移效应光学响应模型,在此基础上给出了光功率衰减因子表达式。与Y. H. Zhao等人的衰减因子不同的是,该衰减因子表达式包含了材料、结构参数,可为器件加固设计提供更为直接的参考。在此基础上,分析了输出镜反射率以及谐振腔长度对该因子的影响。并采用1550nm激光器进行了辐射效应验证实验,实验结果验证了该模型的正确性。
     辐射对半导体激光器光功率的总体影响应该是瞬态电离效应和位移效应综合作用的结果。因此,在综合考虑了瞬态电离效应的光电流增加因素和位移效应的阈值电流密度衰减因素的基础上,获得了LD辐射效应综合光学响应模型。由于该模型考虑了综合作用结果,因此更具有实际应用价值。
     (3)半导体激光器辐射效应对通信误码率的影响及改善方法研究
     分别分析了半导体激光器瞬态电离效应光学响应和位移效应光学响应对通信误码率的影响。
     首先,利用美国大气海洋局发布的空间高轨辐射环境数据,统计得到高轨环境剂量率概率密度函数近似符合高斯模型。该模型为计算空间高轨电离效应影响打下基础。其次,在考虑入射光功率随机变化和接收机高斯噪声的双重影响下,获得了误码率的计算模型。并根据该模型仿真研究了LD瞬态电离效应光学效应对误码率的影响。再次,将辐射对LD光功率衰减因素引入到误码率计算方程中,建立了LD位移效应光学响应对误码率影响计算模型。并选用典型系统的参数进行了仿真分析。在此基础上,为了降低辐射对误码率的影响,讨论了阈值、消光比、探测器增益系数和LD输出光功率调整对降低辐射影响的作用,并给出了阈值变化模型和消光比最佳取值范围。
In recent years, with the development of the aerospace industry and nuclear industry, the application of photonic technology is seriously considered for communication and monitoring fields. Laser diodes (LD) has been extensively used in optical communication systems, because of its, for example small volume, long life-span, high-power and low cost as well as easy to use etc. LD is one of the key devices in free-space optical communications. However, the radiation induce a seriously effect on the output of LD and this effect will lead to the increase of BER. For decreasing this kind of effect we can take the method of device strengthen and system regulation. Therefore in the one hand we can set up the theoretical model of the effect of radiation on LD’s output power and then study the relationship between the LD’s irradiation resistance and its structure and material parameters, which can give reference for the device strengthen. In the other hand we set up the model of the effect of radiation on BER,and then study the process and mechanism of this effect, which can give reference for the system regulation. Because of the different mechanism of radiation on LD the effect can be divided into two different effects that is transient ionizing effect and displacement effect,
     Based on the above describe, the content of this paper mainly includes the following aspects:
     (1) The study on the model that optical response of LD to the transient ionizing effect. The radiation will lead to the ionization of outer election in LD, and generate photocurrent in LD; this kind of current has no difference with the injection current, thus leading to an optical power increases. In this paper, we introduce ionization item to the carrier rate equation, combine the photon rate equation, and derive the optical response model of LD transient ionization effect under the single-mode lasing state. According to the reference [100], the experimental results are calculated. The results show that the experimental results in the reference [100] are in the range of calculated results, which verifies the correctness of the model. Based on this model, the definition of optical gain factor is given. The factor is determined by LD micro-structural parameters, and reflects the sensitive degree of ionization effect on the LD. In order to provide a reference for the reinforce design of the device. The impacts of the output mirror reflectivity and the active layer thickness on optical gain factor are analyzed.
     (2) The study of optical response model of LD to total dose effect. This part mainly includes two aspects: in the one hand, we deduce the optical response model of displacement effect and get the microscopic parameter expression of optical power decay factor. In the other hand, we set up the integrated optical response model of LD’s radiation effect.
     First, we use the radiation damage model of LD threshold carrier density which is from O. Gilard, and then combine the carrier rate equation and photon rate equation; finally, we derive the model of optical response of LD to displacement effect. Based on this model we get the expression of optical power decay factor. Our decay factor expression includes the structure and material parameters. So it can give direct reference for devices strengthen. On this basis, the impact of the output mirror reflectivity and the cavity length on the factor is analyzed. The radiation experimental verification is carried out using 1550nm LD, and the experimental results verify the correctness of the model.
     The impact of radiation on LD’s output optical power should be the integration results of both transient ionization effects and displacement effects. Therefore, based on the consideration of both photocurrent increase factor due to transient ionization effects and threshold current density decrease factor due to displacement effects, we obtain an integrated LD optical response model of radiation effect. As we consider the integrated factors in this model, it has more practical applications.
     (3) The effect of radiation on BER of the system and the improving method. In this part we analyze the effect of transient effect and accumulative damage effect on BER.
     First, according to the track statistics of the space radiation environment particle data which is from NOAA (National Oceanic and Atmospheric Administration), the probability distribution model of space radiation dose rate is given, it provides a basis for calculating the effect of ionization effect on space optical communication BER. Second, we deduce a model of LD transient ionization effect on BER. The model generally provides a BER calculation method in the role of the random fluctuations in the incident light power and the receive noise. Based on this model we simulated the effect of the optical response of LD to the transient ionization effects. At last, we introduce the output power reducing effect into the equation of BER, and deduce a model for calculating BER. Then we made research on simulation analysis for the effect some typical parameters. Based on the research we discuss how to lower the influence of the output power on BER through changing the threshold, the extinction ratio, the gain factor and the output power. In the end we deduce the model of the change of threshold and the best value range of extinction ratio
引文
1 D. M. Boroson, R. S. Bondurant, J. J. Scozzafava. Overview of High Rate Deep Space Laser Communication Options. Proc. of SPIE. 2004, 5338: 37~49.
    2 A. S. Laxmiprasad, R. Ranjith, P. Raghubabu, J. A. Kamalakar.. Optical Inter Satellite Link (OISL) for Remote Sensing Satellites. Proc. of SPIE. 2006, 6409: 640914-1~640914-6.
    3 A. Biswas, D. Boroson, B. Edwards. Mars Laser Communication Demonstration: What It Would Have Been. Proc. of SPIE. 2006, 6105: 610502-1~610502-12.
    4宋礼庭.从太阳到地球.湖南教育出版社,1994:82~85.
    5 S. Duzellier. Radiation Effects of Electronic Devices in Space. Aerospace and Technology. 2004, 9(11): pp. 93~99.
    6濮祖荫.空间物理前沿进展.气象出版社,1998:22~39.
    7 D. L. Fried. Scintillation of a Ground-to-Space Laser Illuminator. J. Opt. Soc. Am. A.. 1967, 57(8): 980~983.
    8 H. Hemmati. Overview of Laser Communications Research at JPL. Proc. of SPIE. 2001, 4273: 190~193.
    9 D. M. Boroson, A. Biswas, B. L. Edwards. MLCD: Overview of NASA′s Mars Laser Communications Demonstration System. Proc. of SPIE. 2004, 5338: 16~28.
    10 F. I. Khatri, D. M. Boroson, D. V. Mruphy, J. Sharma. Link Aalysis of Mars-Earth Optical Communications System. Proc. of SPIE. 2004, 5338: 143~150.
    11 A. Biswas, K. E. Wilson, S. Piazzolla, J. Wu, W. H. Farr. Deep Space Optical Communications Link Availability and Data Volume. Proc. of SPIE. 2004, 5338: 175~183.
    12 E. G. Butte, W. D. Nations, D. D. Grybos. Transition the Transformational Communication Architecture Using Commercial Satellite Systems. AIAA. 2004~3127.
    13 H. Hemmati, J. R. Lesh. A Combined Laser-Commnunication and Imager for Micro-Spacecraft. Proc. of SPIE. 1998, 3266: 165~170.
    14 B. Keith and Doyle. Design Optimization of a Dual Mode Multi-Axis Passive Isolation Configuration for MLCD. Proc. of SPIE. 2007, 6665: 66650G-1~66650G-12.
    15 B. G. Patrick, P. Gierow, D. Sheikh, W. T. Roberts. Solar Filter for the Mars Laser Communication Demonstration Optical Receiver. Proc. of SPIE. 2004: 336~343.
    16 K. B. Doyle. Structural Line-of-Sight Jitter Analysis for MLCD. Proc. SPIE. 2007, 6665: 66650I-1~66650I-12.
    17 A. Biswas, M. W. Wright, J. Kovalik, S. Piazzolla. Uplink Beacon Laser for Mars Laser Communication Demonstration (MLCD). Proc. of SPIE. 2005, 5712: 93~100.
    18 H. Hemmati, A. Biswas, D. M. Boroson. 30-dB Data Rate Improvement for Interplanetary Laser Communication. Proc. of SPIE. 2008, 6877: 687707-1~687707-8.
    19 G. Oppenhuser, M. Witting, A. Popescu. The European SILEX Project and Other Advanced Concepts for Optical Space Communications. Proc. of SPIE. 1991, 1522: 2~13.
    20 J. L. Vanhove, C. Nldeke. In-Orbit Demonstration of Optical IOL/ISL—the Silex Project. Intern. J. Satellite Communications. 1988, 6: 119~126.
    21 M. Arnaud, A. Barumchercyk, E. Sein. An Experimental Optical Link Between an Earth Remote Sensing Satellite Spot 4, and a European Data Relay Satellite. Intern. J. Satellite Communications. 1988, 6: 127~140.
    22 G. Oppenhuser, M. Witting. The European SILEX Project: Concept, Performance Status and Planning. Proc. of SPIE. 1990, 1218: 27~37.
    23 B. Laurent, O. Duchmann. The SILEX Project: The First European Optical Intersatellite Link Experiment. Proc. of SPIE. 1991, 1417: 2~12.
    24 B. Laurent, G. Planche. Silex Overview after Flight Terminals Campaign. Proc. of SPIE. 1997, 2990: 10~22.
    25 T. T. Nielsen, G. Oppenhuser. In Orbit Test Result of an Operational Intersatellite Link Between ARTEMIS and SPOT4, SILEX. Proc. of SPIE. 2002, 4635: 1~15.
    26 A. Alonso, M. Reyes, Z. Sodnik. Performance of Satellite-to-Ground Communications Link Between ARTEMIS and the Optical Ground Station. Proc. of SPIE. 2004, 5572: 372~383.
    27 J. V. Sandusky, J. R. Lesh. Planning for a Long-Term Optical Demonstration from the International Space Station. Proc. of SPIE 1998, 3266: 128~134.
    28 K. Pribil. Laser Communication Terminals a Key Building Block for the New Broadband Satellite Networks. Proc. of SPIE. 1998, 3408: 172~177.
    29 G. Baister, T. Dreischer, E. Fischer. OPTEL Family of Optical Terminals for Space Based and Airborne Platform Communications Links. Proc. of SPIE. 2005, 5986: 59860Z-1~59860Z-10.
    30 K. Pribil, U. A. Johann, H. Sontag. SOLACOS: A Diode-Pumped Nd:YAG Laser Breadboard for Coherent Space Communication System Verification. Proc. of SPIE. 1991, 1522: 36~47.
    31 K. Pribil, A. Fleming. SOLACOS: System Implementation. Proc. of SPIE. 1995, 2381: 143~152.
    32 J. Mittermayer, V. Alberga, S. Buckreub. TerraSAR-X: Predicted Performance. Proc. of SPIE. 2003, 4881: 244~255.
    33 R. Werninghaus. Terra SAR-X Mission. Proc. of SPIE. 2004, 5236: 9~16.
    34 R. Lange, B. Smutny. Optical Inter-Satellite Links Based on Homodyne BPSK Modulation Heritage Status and Outlook. Proc. of SPIE. 2005, 5712: 1~12.
    35 G. Dummer, R. Lenz, B. Lutz, M. Kuhl, K. D. Muller-Glaser, W. Wiesbeck. Design and Realization of an Active SAR Calibrator for TerraSAR-X. Proc. of SPIE. 2005, 5980: 598004-1~598004-13.
    36 R. Lange, B. Smutny, B. Wandernoth. 142Km, 5.625Gbps Free-Space Optical Link Based on Homodyne BPSK Modulation. Proc. of SPIE. 2006, 6105: 6105A-1~6105A-9.
    37 P. Schaadt. The German Earth Observation Programme: Building on the Success of TerraSAR-X and RapidEye. Proc. of SPIE. 2007, 6744: 674407-1~674407-11.
    38 H. Breit, U. Balss, R. Bamler, T. Fritz, M. Eineder. Processing of TerraSAR-X Payload Data First Results. Proc. of SPIE. 2007, 6746: 674603-1~674603-12.
    39 G. C. Baister, D. C. Haupt, S. Matthews, T. Dreischer, R. Pender, A. Herren. The ISLFE Terminal Development Project-Results from the Engineering Breadboard Phase. AIAA. 2002~2034.
    40徐峰.欧空局光学地面站(OGS)十年回顾.科学研究动态监测快报. 2008, 5: 16~19.
    41侯丽,杨帆.法国国防采购局开展实时LOLA示范验证.科学研究动态监测快报. 2008, 5: 27~28.
    42杨帆.现代通信领域新热点:天基激光通信系统及技术发展.科学研究动态监测快报. 2008, 5: 3~11.
    43 T. Aruga, K. Araki, T. Igarashi, F. Imai, Y. Yamamoto, H. Sakagami. Earth-to-Space Laser Beam Transmission for Spacecraft Attitude Measurement. Appl. Opt.. 1984, 23: 143~147.
    44 Y. Furuhama. Present Status of Optical ISL Studies in Japan. Proc. of SPIE. 1987, 810: 141~149.
    45 A. T. Nakamori. Present and Future of Optical Intersatellite Communication Research at the National Space Development Agency of Japan (NASDA). Proc. of SPIE. 1994, 2123: 2~13.
    46 M. Shikatani, S. Yoshikado, Y. Arimoto, Y. Suzuki, Y. Takahashi, T. Aruga. Optical Intersatellite Link Experiment Between the Earth Station and ETS-VI. Proc. of SPIE. 1990, 1218: 2~12.
    47 M. Toyoshima, M. Toyoda, H. Takami, K. Araki, M. Isogai, Y. Suzuki. Ground System Development for the ETS-VI LCE Laser Communications Experiment. Proc. of SPIE. 1993, 1866: 21~29.
    48 A. Yamamoto, T. Hori. Japanese First Optical Inter-Orbit Communications Engineering Test Satellite (OICETS). Proc. of SPIE. 1994, 2210: 30~37.
    49 K. Nakagawa, A. Yamamoto, Y. Suzuki. OICETS Optical Link Communications Experiment in Space. Proc. of SPIE. 1996, 2886: 172~180.
    50 K. E. Wilson, J. R. Lesh. Overview of the Ground-to-Orbit Lasercom Demonstration. Proc. of SPIE. 1997, 2990: 23~30.
    51 T. Jono, Y. Takayama, K. Ohinata, N. Kura, Y. Koyama, K. Aria, K. Shiratama, Z. Sodnik, A. Bird, B. Demelenne. Demonstrations of ARTEMIS-OICETS Inter-Satellite Laser Communications. AIAA. 2006-5461.
    52 S. Usuki, N. Nagao, T. Takami, H. Miyamoto. The Preparations for OICETS TT&C Operation and Results of Initial Phase. AIAA. 2006-5524.
    53 Y. Takayama, T. Jono, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, J. Abe, M. Mokuno, K. Aria. Initial In-Orbit Verification of OICETS Optical Terminal’s Functions. AIAA. 2006-5694.
    54 T. Jono, Y. Takayama, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, Z. Sodnik, B. Demelenne, A. Bird, K. Aria. OICETS On-Orbit Laser Communication Experiments. Proc. of SPIE. 2006, 6105: 610503-1~610503-11.
    55 M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. kunimori, T. Jono, Y. takayama, N. Kura. Ground-to-OICETS Laser CommunicationExperiments. Proc. of SPIE. 2006, 6304: 63040B-1~63040B-8.
    56 Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, B. Demelend. Optical Inter-Orbit Communication Engineering Test Satellite (OICETS). Acta Astronautica. 2007, 61(6): 163~175.
    57 T. Jono, Y. Takayama, Y. Koyama, K. Aria. In-Orbit Test Results of the Inter Satellite Laser Link by OICETS. AIAA. 2007-3116.
    58 T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, K. Arai. Overview of the Inter-Orbit and the Orbit-to-Ground Laser Communication Demonstration by OICETS. Proc. of SPIE. 2007, 6457: 645702-1~645702-10.
    59 N. Perlot, M. Knapek, D. Giggenbach, J. Horwath, M. Brechtelsbauer, Y. Takayama, T. Jono. Results of the Optical Downlink Experiment KIODO from OICETS Satellite to Optical Ground Station Oberpfaffenhofen (OGS-OP). Proc. of SPIE. 2007, 6457: 645704-1~645704-8.
    60 M. Toyoshima, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, K. Arai. Laser Beam Propagation in Ground-to-OICETS Laser Communication Experiments. Proc. of SPIE. 2007, 6551: 65510A-1~65510A-12.
    61 R. Suzuki, S. Motoyoshi. A Study of Constellation for LEO Satellite Network. AIAA. 2004-3236.
    62 Y. Koyama, E. Morikawa, K. Shiratama, R. Suzuki, Y. Yasuda. Optical Terminal for NeLS In-Orbit Demonstration. Proc. of SPIE. 2004, 5338: 29~36.
    63 Y. Koyama, E. Morikawa, H. Kunimori, K. Shiratama, Y. Yasuda. Components Development for NeLS Optical Terminal. Proc. of SPIE. 2005, 5712: 217~224.
    64 T. Kasuda, Y. Wakahara, J. Mizusawa. Optimization of Satellite Rearrangement Against Satellite Failure in LEO System. AIAA. 2007-3297.
    65王佳,俞信.自由空间光通信技术的研究现状和发展方向综述.光学技术. 2005, 31(2): 259~261.
    66 M. Toyoshima, S. Yamakawa, T. Yamawaki, el at.. Ground-to-Satellite Optical Link between Japanese Laser Communications Terminal and European Geostationary Satellite ARTEMIS. Proc. SPIE. 2004, 5338: 1~15
    67 M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. Reyes, A. Alonso, Z.Sodnik, B. Demelenne. Long-Term Statistics of Laser Beam Propagation in an Optical Ground-to-Geostationary Satellite Communication Link. IEEE Transactions on Antennas and Propagation. 2005, 53(2): 842~850
    68 M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K., Arai, K. Shiratama. Ground-to-OICETS Laser Communication Experiment. Proc. SPIE. 2006, 6304: 1~8
    69马晶,韩琦琦,谭立英.卫星光通信技术发展及其影响因素分析.光通信技术. 2004, 10: 45~47.
    70马晶,韩琦琦,于思源等.卫星平台振动对星间激光链路的影响和解决方案.激光技术. 2005, 29(3): 228?232.
    71周磊,刘鹏,于晓惠.基于DSP的空间光通信的精跟踪数字伺服系统的设计.长春理工大学学报. 2007, 30(4): 19~22.
    72张磊,郑建平,刘智颖.空间光通信中Cassegrain系统支撑结构设计.仪器仪表学报. 2006, 27(6): 691~693.
    73王建民.卫星激光通信均匀信标光的研究.光学学报. 2006, 26(1): 7~10.
    74李晓峰,胡渝.空-地激光通信链路总体设计思路及重要概念研究.应用光学. 2005, 25(6): 57?62.
    75马惠军,朱小磊.自由空间激光通信最新进展.激光与光电子学进展. 2005, 42(3): 7~10.
    76刘立人.卫星光通信I:链路与终端技术.中国激光. 2007, 34(1): 1~18.
    77郭建中,谭莹,艾勇.卫星光通信中的调制技术研究.光通信技术. 2006,(4): 45~46.
    78曹阳,艾勇,黎明,谭莹.空间光通信精跟踪系统地面模拟实验.光电子·激光. 2009, 20(1): 40~43.
    79王朝晖,赵长政,陈文新,焦斌亮.振动对星间相干激光通信的影响.应用光学. 2007,28(3): 336~339.
    80蒋炜,陈文新.大气闪烁对空间PPM光通信系统性能影响的研究.空间电子技术. 2008, 5(3): 1~4.
    81马晶,韩琦琦,于思源,谭立英,关文成.卫星平台振动对星间激光链路的影响和解决方案.激光技术. 2005, 29(3): 228?232.
    82于思源,谭立英,马晶,王俊.激光星间链路中振动补偿技术研究.光电子.激光. 2004, 15(4): 472?476.
    83 L.Y. Tan, J.J. Yu, J. Ma, Y.Q. Yang, M. Li, Y.J. Jiang and J.F. Liu. Approach to Improve Beam Quality of Inter-Satellite Optical Communication System Basedon Diffractive Optical Elements. Optics Express. 2009, 17(8): 6311~6319.
    84 J.J. Yu, L.Y. Tan, J. Ma, Q.Q. Han, Y.Q. Yang and M. Li. Novel Method to Improve the Emission Efficiency of Satellite Optical Communication Terminal. 2009, 36(3): 581~586.
    85孙立宁,孙绍云,曲东升,蔡鹤皋.基于PZT的微驱动定位系统及控制方法的研究.光学精密工程. 2004, 12(1): 55?59.
    86邵兵,孙立宁,曲东升,王建国,秦昌.自由空间光通信ATP系统中精瞄偏转镜的设计.光学精密工程. 2006, 14(1): 43?47.
    87陈云亮,于思源,马晶,谭立英,王骐.一种新型的卫星光通信高速跟瞄探测装置.光电子.激光. 2005, 16(5): 598?600.
    88 F. Pan, Q.Q. Han, J. Ma and L.Y. Tan. Measurement of Scintillation and Link Margin for Laser Beam Propagation on 3.5-km Urbanised Path. Chinese Optics Letter. 2007, 5(1): 1?3.
    89 J. Ma, F. Pan, L.Y. Tan and S.Y. Yu. Measurement of Statistical Properties of Laser Irradiance Scintillation and Link Margin Evaluation over Densely Urbanised Terrain. High Power Laser and Particle Beams. 2007, 19(8): 1257~1260.
    90马晶,潘锋,谭立英.星地激光链路中光束发散角与跟瞄误差的最佳比值.强激光与粒子束. 2006, 18(8): 1233~1238.
    91潘锋,马晶,谭立英,于思源.星地下行孔径接收闪烁频谱的理论研究.强激光与粒子束. 2006, 18(8): 1253~1256.
    92潘锋,马晶,谭立英,于思源.孔径接收下大气闪烁频谱的理论和实验研究.强激光与粒子束. 2006, 18(9): 1457~1459.
    93潘锋,马晶,谭立英.下行传输孔径接收光强起伏的统计特性.中国激光. 2006, 33(10): 1371~1374.
    94潘锋,马晶,谭立英,于思源.星地下行传输孔径接收闪烁频谱的理论和实验研究.光学学报. 2006, 26(12): 1792-1796.
    95 F. Pan, J. Ma, L.Y. Tan, S.Y. Yu and C. Gao. Scintillation Characterization of Multiple Transmitters for Ground-to-Satellite Laser Communication. Proc. SPIE. 2005, 5640: 448~454.
    96高宠,马晶,谭立英,于思源,潘锋.自由空间光通信的最大后验概率检测.光电工程. 2007, 34(3): 54-56.
    97 J. Ma, C. Gao, L. Y. Tan. Angle-of-Arrival Fluctuations in Moderate to Strong Turbulence. Chinese Physics. 2007, 16(5): 1327~1333.
    98 J. Ma, C. Gao, L. Y. Tan. Angle-of-Arrival Fluctuation at Large Zenith Angles. Acta Photonica Sinica. 2007, 36(1): 164~168.
    99 E. A. Burke, P. Shapiro and S. R. Messenger. Damage Correlations in Semiconductors Exposed to Gamma, Electron and Proton Radiations. IEEE Transactions on Nuclear Science. 1993, 40 (6): 1372~1379.
    100 J. Baggio, C. Brisset, J.L. Sommer, C.D. hose, P. Lalande, J.L. Leray, O. Musseau. Electrical and Optical Response of a Laser Diode to Transient Ionizing Radiation. IEEE Transactions on Nuclear Science. 1996, 43 (3): 1038~1043
    101 M. Boutillier, O. Gauthier-Lafaye, S. Bonnefont, F. Lozes-Dupuy, L. Lombez, D. Lagarde, X. Marie,F.-J. Vermersch, M. Calligaro, M. Lecomte, O. Parillaud, M. Krakowski, and O. Gilard. Electron Irradiation Effects on Al-Free Laser Diodes Emitting at 852 nm. IEEE Transactions on Nuclear Science. 2007, 54 (4): 1110~1114
    102 B. L. Oksengendler and N. N. Turaeva. Theory of Radiation Disordering and Annealing Semiconductors .Radiation Effects and Defects in Solids.2007,162(2): 69~75.
    103 H. Ohyamaa, T. Hiraob, E. Simoenc, C. Claeysc,d, S. Onodae,Y. Takamif, H. Itohb. Induced Lattice Defects in InGaAsP Laser Diodes by High-temperature Gamma Ray Irradiation. Physica B. 2001,308–310 :1185~1188.
    104 J. W. Mares, J. Harben, A. V. Thompson, D. W. Schoenfeld, and W. V. Schoenfeld.Gamma Radiation Induced Degradation of Operating Quantum Dot Lasers. IEEE Transactions on Nuclear Science. 2008, 55(2): 763~768
    105 Shinobu Onoda, Takeshi Ohshima, Toshio Hirao, Kenta Mishima, Shigeomi Hishiki, Naoya Iwamoto,Kazuhisa Kojima, and Katsuyasu Kawano. Decrease of Charge Collection Due to Displacement Damage by Gamma Rays in a 6H-SiC Diode. IEEE Transactions on Nuclear Science. 2007, 54(6): 1953~1960
    106 A. Jolly, J. Vicrey. Modelling Threshold Shift of Power Laser Diodes Under Neutronic and Photonic Irradiation. IEEE Transactions on Nuclear Science. 1994, 41(3): 503~509.
    107 O. Gilard. Theoretical Study of Radiation Effects on GaAs-AlGaAs and InGaAsP-InP Quantum-well Lasers. Journal of Applied Physics.2003, 93(4): 1884~1888.
    108 Y. F. Zhao, A. R. Patwary, R. D. Schrimpf, M. A. Neifeld and K. F. Galloway.
    200 MeV Proton Damage Effects on Multi-Quantum Well Laser Diodes. IEEE Transactions on Nuclear Science. 1997, 44(6): 1898~1904
    109 Y. F. Zhao, R. D. Schrimpf, A. R. Patwary, M. A. Neifeld, A. W. AI-Johani,R. A. Weller, and K. F. Galloway. Annealing Effects on Multi-Quantum Well Laser Diodes after Proton Irradiation. IEEE Transactions on Nuclear Science. 1998, 45(6): 2826~2832
    110 S. M. Khanna, D. Estan, H. C. Liu, M. Gao, M. Buchanan, and A. J. SpringThorpe. 1–15 MeV Proton and Alpha Particle Radiation Effects on GaAs Quantum Well Light Emitting Diodes. IEEE Transactions on Nuclear Science. 2000, 47(6): 2508~2514
    111 Robert A. Reed, Paul W. Marshall, Cheryl J. Marshall, Ray L. Ladbury, Hak S. Kim, Loc Xuan Nguyen, Janet L. Barth, Senior, and Kenneth A. LaBel. Energy Dependence of Proton Damage in AlGaAs Light-Emitting Diodes. IEEE Transactions on Nuclear Science. 2000, 47(6): 2292~2499
    112 C. Ribbat, R. Sellin, M. Grundmann, D. Bimberg,N.A. Sobolev and M.C. Carmo. Enhanced Radiation Hardness of Quantum Dot Lasers to High Energy Proton Irradiation. Electronic Letters. 2001 , 37(3): 174~175
    113 Allan H. Johnston, Senior Member, IEEE.Proton Displacement Damage in Light-Emitting and Laser Diodes. IEEE Transactions on Nuclear Science. 2001, 48(5): 1713 ~1720
    114 Scott R. Messenger, Robert J. Walters, Edward A. Burke, Geoffrey P. Summers, and Michael A. Xapsos.NIEL and Damage Correlations for High-Energy Protons in Gallium Arsenide Devices.IEEE Transactions on Nuclear Science. 2001, 48(6): 2121 ~2126
    115 A. H. Johnston, Senior Member, IEEE, T. F. Miyahira, and B. G. Rax. Proton Damage in Advanced Laser Diodes. IEEE Transactions on Nuclear Science.2001, 48(6): 1764 ~1772
    116 A. H. Johnston, Fellow, IEEE, and T. F. Miyahira, Member, IEEE. Energy Dependence of Proton Damage in Optical Emitters. IEEE Transactions on Nuclear Science. 2002, 49(3): 1426 ~1431
    117 Insoo Jun, Michael A. Xapsos, Scott R. Messenger, Edward A. Burke, Robert J. Walters, Geoff P. Summers, and Thomas Jordan. Proton Nonionizing Energy Loss (NIEL)for Device Applications. IEEE Transactions on Nuclear Science. 2003, 40(6): 1924 ~1928
    118 Aditya Kalavagunta, Bo Choi, Mark A. Neifeld, and Ron Schrimpf. Effects of 2 MeV Proton Irradiation on Operating Wavelength and Leakage Current of Vertical Cavity Surface Emitting Lasers. IEEE Transactions on Nuclear Science. 2003, 50(6): 1982 ~1990
    119 A. H. Johnston, and T. F. Miyahira. Radiation Degradation Mechanisms in Laser Diodes. IEEE Transactions on Nuclear Science. 2004, 51(6): 3564 ~3571.
    120 D. M. J. Compton and R. A. Cesena. Mechanisms of radiation effects on lasers. IEEE Transactions on Nuclear Science. 1967, 14(6): 55-61.
    121 C. E. Barnes, Effects of C060 Gamma Irradiation on Epitaxial GaAs Laser Diodes. Physical Review B 1970, 1(12): 4735-4747.
    122 C. E. Barnes. Neutron damage in GaAs Laser Diodes: at and above Laser Threshold. IEEE Transactions on Nuclear Science. 1972, 19(12): 382-385.
    123 H. T. Mìnden. Effects of Proton bombardment on the properties of GaAs laser diodes. Journal of Applied Physics. 1976, 47(3): 1090-1094.
    124 E. W. Taylor, A. H. Paxton, H. Schone, el at.. In Vacuo Responses of an AlGaAs Vertical Cavity Surface Emitting Laser Irradiated by 4.5 MeV Protons. IEEE Transactions on Nuclear Science. 1998, 45(3): 1514-1517
    125 M. V. Uffelen, J. Mols, A. Goussarov, C. Neumeyr, M. Ortsiefer, F. Berghmans,. Comparison of Gamma and Proton-Induced Radiation Damage in Long-Wavelength VCSELs. Proceedings of the 9th European Conference on Radiation and its Effects on Components and Systems, Deauville, France, 10-14 September 2007, New York, NY, United States, IEEE, 2007.
    126 D. Sporea, A. Sporea, I. Vata. Comparative study of Gamma-ray and Neutron Irradiated Laser Diodes. Proc. of SPIE. Vol. 6796,2007: 67962R-1- 67962R-11.
    127 Mathieu Boutillier, Olivier Gauthier-Lafaye, Sophie Bonnefont, Fran?ois Lelarge, B. Dagens, D. Make, Odile Le Gouezigou, B. Rousseau, A. Accard, F. Poingt, F. Pommereau, and Fran?ois Lozes-Dupuy. First Evaluation of Proton Irradiation Effects on InAs/InP Quantum Dash Laser Diodes Emitting at 1.55μm. IEEE Transactions on Nuclear Science. 2008, 55(4): 2243-2247.
    128 Mathieu Boutillier, Olivier Gauthier-Lafaye, Sophie Bonnefont, Fran?oise Lozes-Dupuy, Delphine Lagarde, Laurent Lombez, Xavier Marie, Vincent Ligeret, Olivier Parillaud, Michel Krakowski, and Olivier Gilard. Measurement of Irradiation Impact on Carrier Lifetime in a Quantum Well Laser Diode. IEEE Transactions on Nuclear Science. 2009, 56(4): 2155-2159.
    129 B. D. Evans, H. E. Hager, B. W. Hughlock. 5.5-MeV Proton Irradiation of a Strained Quantum-Well Laser Diode and a Multiple Quantum-Well Broad-Band LED. IEEE Transactions on Nuclear Science. 1993,40(6): 1645-1653.
    130林理彬,廖志君,祖小涛,王浙辉. 1.3μm InGaAsP半导体激光器的电子辐照效应.中国激光. 2001, 28(6): 497-500.
    131杨生胜,秦晓刚.光纤通信系统中光源器件的总剂量效应研究.第八届全国抗辐射电子学与电磁脉冲学术交流会,贵阳, 2005:73-78.
    132黄绍艳,刘敏波,唐本奇,陈伟,肖志刚,王祖军,张勇.多量子阱激光二极管质子辐射效应及其退火特性.强激光与粒子束. 2009, 21(9): 1405-1410.
    133 F. B. McLean, T. R. Oldham. Basic Mechaisms of Radiation Effects in Electronic Materrias and Devices. 1987: 92-100.
    134 C. Claeys and E. Simoen.先进半导体材料及器件的辐射效应.刘忠立.国防工业出版社, 2008: 21-24.
    135 T. R. Oldham, F. B. McLean, Boesch Jr HE, McGarrity JM. An Overview of Radiation-induced Interface Traps in MOS Structures. Semicond Sci Techonl. 1989, 4:986-999.
    136 J. L. Wirth, S. C. Rogers. The Transient Response of Transistors and Diodes to Ionizing Radiation. IEEE Transactions on Nuclear Science. 1964, 11(6): 24-38.
    137郭红霞,张义门,陈雨生,周辉,陈世斌,龚仁喜,关颖,韩福斌,龚建成.微电路pn结瞬态电离辐射响应二维数值模拟.强激光与粒子束. 2002, 14(1): 16-19.
    138 J. S. Blakemore. Semiconductor statistics. Pergamon Press, 1962.
    139栖原敏明.半导体激光器基础.科学出版社, 2002: 129-140 123-126
    140陈维友,杨树人,刘式墉.光电子器件模拟与OEIC模拟.国防工业出版社,2001: 100-102.
    141赖祖武,包宗明,宋钦歧.抗辐射电子学——辐射效应及加固原理.国防工业出版社. 1998: 93-94.
    142 H. C. Casey and M. B. Panish, Heterostructure lasers, New York: Academic Press, 1978: 20-26.
    143 P. S. Zory, Quantum Well Lasers, New York: Academic Press. 1993:56-62.
    144 S. D. Brotherton, P. Bradley. Defect Production and Lifetime Control in Electron andγ-Irradiated Silicon. J Appl Phys. 1982, 53: 5720-5732.
    145 C. Dale, P Marshall. Displacement Damage in Si Imagers for Space Spplications. Proc. of SPIE Charged-Coupled Devices and Solid State Optical Sensors II. 1991, 1447:70-86.
    146 V. Privitera, S. Coffa, F. Priolo, E. Rimini. Migration and Interaction of Point Defects at Room Temperature in Crystalline Silicon. Rivista Del Nuovo Cimento. 1998, 21(8):1-52.
    147 C. J. Dale, P. W. Marshall. Displacement Damage in Si Imagers for Space Applications. Proc of SPIE. 1991, 1447: 70~86.
    148 J. R. Srour. Review of Displacement Damage Effects in Silicon Devices. IEEE Transactions on Nuclear Science. 2003, 50(3): 653-670.
    149 G. P. Hopkinson Proton Effects in Charge-Coupled Device. IEEE Transactions on Nuclear Science. 1996, 43(2): 614~627.
    150张庆祥,韩建伟,师立勤,张振龙,黄治.位移损伤剂量模型及其应用.空间科学学报. 2005, 25(2): 132-137.
    151 Insoo Jun et al. Displacement damage in silicon due to secondary neutrons, pions, deuterons, and alphas from proton interaction with materials. IEEE Transactions on Nuclear Science. 2001, 48(6): 2034-2037
    152 S. Woods et al. Simulation of radiation damage in silicon. IEEE Transactions on Nuclear Science. 1981, 28(6): 4107-4112
    153 J. R. Srour, J. M. McGarrity, Radiation Effects on Microelectronics. Proc IEEE 76, 1998:1443~1469.
    154 C.J. Dale, L. Chen, P.J. McNulty, P.W. Marshall, and E.A. Burke. A Comparison of Moate Carlo and Analytic Teratwents of Fisplacement Damage in Si Microvolume. IEEE Transactions on Nuclear Science. 1993, 41(6): 1974~1983.
    155 J. R. Srour .D. H. Lo. Universal Damage Factor for Radiationinduced Dark Current in Silicon Devices. IEEE Transactions on Nuclear Science. 2000, 47(6): 2451~2458.
    156曹建中,半导体材料的辐射效应,科学出版社,1993:152~170.
    157 Vanhellemont, J. , Simoen, E. , Claeys, C.,Kaniava, A. , Gaubas, E., Bosman, G. , Johlander, B. , Adams, L. , Clauws, P. On the impact of low fluence irradiation with MeV particles on silicon diose characteristics and related material properties. IEEE Transactions on Nuclear Science. 1994,41(6): 1924-1931
    158 S. J. Watts, J. Matheson, I. H. Hopkins-Bond, et al. A new model for generation-recombination in silicon depletion regions after neutron irradiation. IEEE Transactions on Nuclear Science. 1996, 43(6): 2587-2594
    159 G. P. Agrawal and N. K. Dutta. Longwavelength Semiconductor Lasers Van Nostrand Reinhold, New York. 1986:89~102.
    160 J. C. Bourgoin and M. Zazoui. Charger of DX Ground State in Ga1-xAlxAs. Phys.Rev. 1993, B47:123~131.
    161 S. C. Lee, Y. F. Zhao, R. D. Schrimpf, M. A. Neifeld, and K. F. Galloway. Threshold Current Damage Factors for Muti-quantun-well GaAs/GaAlAs Laser Diodes Irradiated at Different Proton Energies. IEEE Trans. Nucl. Sci.. 1999, 46(6): 1797~1800.
    162 Andrew Holmes-Siedle,Handbook of Radiation Effects, Oxford University Press, Usa.2002:102~105.
    163 A. H. Johnston. Radiation effects in Light-Emitting and Laser Diodes. IEEE Trans. Nucl. Sci.. 2003, 50(3): 2~5.
    164黄常春. EDFA在空间辐射环境中性能分析.电子科技大学硕士论文. 2005:30~35.
    165魏强,何世禹,刘海,杨德庄.石英玻璃低能质子辐照损伤动力学研究.光学学报. 2005, 25(1):83~87.
    166闻传花,李玉权,洪蜀宁,贲腾.激光星间通信中不同光学终端的研究.电讯技术. 2007, 47(4): 20~21.
    167葛林,邱昆,唐明光.激光空间通信中的天线研究.电子科技大学学报. 1998, 27(4): 367~370
    168 M. Toyoshima, T. Jono, K. Nakagawa, A. Yamamoto. Optimum Divergence Angle of a Gaussian Beam Wave in the Presence of Random Jitter in Free-space Laser Communication Systems. J. Opt. Soc. Am. A. 2002, 19(3): 567?571.
    169 Motty Gabi, Shlomi Arnon. Quantum key Distribution by a Free-Space Mimo System. Proc. of SPIE,2005, 5893: 302~309.
    170 M. Achour, B. Ryu, Z. S. Zhang. Network-Centric Free Space Optical Communication Systems and Modulating Retro Reflectors. SPIE, 2005, 58920B:l~12.
    171 L. M. Wasiezko, C. C. Davis. Aperture Averaging of Optical Sscintillations in The Atmosphere Experimental Results. Proc. of SPIE. 2005, 5793: 197~208.
    172 Chang-yu Shen, Fei Chen, Xiang-dong Yu. Optical Design of an Optical System for Free Space Optical Communication. and International Symposium on Advanced Optical Manufacturing and Testing Technologies. 2006, 6149:151~156.
    173 Xiuhua Yuan, Jin Wang, Dexiu Huang. The Affection Analysis and Compensation for Atmospheric Overfall in Free Space Optical Communication System. Proc. of SPIE. 2004, 5639:103~114.
    174 C. O. Dominic, E. F. Graharne. Advanced Receivers for Free-Space Optical Communications. Proc. of SPIE. 2004, 5614:129~138.
    175 Shyh-Lin Tsao, Chi-Wei Chang. Free-space Optical Communication with a Squamosal Ball Mirror. Proc. of SPIE. 2004, 5550:383~390.
    176 W. R. Bennett. Electrical Noise, McGraw-Hill, New York, 1960: 56~62.
    177 D. K. C. Mac Donald. Noise and Fluctuations:An Introduction, Wiley, New York, 1962: 156~160.
    178 F. N. H. Robinson. Noise and Fluctuations in Electronic Devices and Circuits,Oxford University Press,Oxford,1974: 96~102.
    179 A. Biswas, M. W. Wright. Mountain-Top-to-Mountain-Top Optical Link Demonstration. Part I. IPN Progress Report. 2002, 42(149): 1~2.
    180 P. P. Webb, R. J. McIntyre, J. Conradi. Properties of Avalanche Photodiodes. RCA Review. 1974, 35: 234~278.
    181 P. Govind. Agrawal. Fiber-Optic Communication Systems. Third Edition. A John Wiley & Sons. Inc.. 2002: 133~176.
    182 M. Abramowitz and I. A. Stegun, Eds. Handbook of Mathematical Functions, Dover, New York, 1970: 86~100.
    183 H. R. Burrisl, A. E. Reed, N. M. Namazi et al.. Adaptive Thresholding for Free-Space Optical Communication Receivers with Multiplicative Noise. Aerospace Conference Proceedings. 2002. IEEE, 2002: 1473~1480.
    184王加强,岳新全,李勇.光纤通信工程.北京邮电大学出版社, 2003:21~23.
    185江剑平.半导体激光器.电子工业出版社,2000:109~115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700