星地激光通信链路中大气湍流影响的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于传统的微波通信方式而言,卫星光通信具有通信容量大、保密性好、抗电磁干扰能力强、不需要无线电频率使用许可、设备体积小、重量轻和功耗低等优点,因此该技术受到了国际上的广泛重视。目前对卫星光通信技术的研究已经成为了一个热门研究领域,在该研究领域中处于领先地位的日本、美国和欧洲等国家和地区已经相继进行了空间实验,成功实现了星间和星地的高速激光通信,在空间实验获得成功的基础上,这些国家和地区正积极准备将卫星光通信技术推向实用化。在可预见的未来,以激光作为信息载体的新一代卫星通信网络即将出现。
     在卫星与地面进行激光通信的过程中,作为信息载体的激光光束将通过地球表面的大气层,当光束在大气中传输时,大气湍流引起的折射率起伏将影响光束的传输质量,破坏光场的相干性,从而产生光强起伏、到达角起伏、光束漂移以及光束扩展等一系列光学效应。
     差错性能是衡量系统通信性能的重要指标,差错性能的优劣能够直接反映通信质量的好坏。一般来说,OOK系统的差错性能是用误码率来衡量的,而PPM和DPIM系统的差错性能是用误包率来衡量的。
     对于星地激光链路而言,大气湍流引起的上述光学效应将对链路的通信性能造成影响,从而增加信息传输过程中的差错概率,因此,本文对大气湍流影响下,星地激光链路的通信性能进行了研究。
     本文对国内外卫星光通信技术的研究进展进行了概述,对大气湍流的性质、大气光传输的基本理论以及大气湍流引起的光学效应对星地激光链路的影响进行了必要的阐述,同时对星地激光链路中通信系统的基本组成及工作原理进行了简要的介绍。
     研究了大气湍流引起的光束漂移效应对上行星地激光通信系统的影响,基于高斯光束上行传输的光束漂移和光强闪烁模型,给出了这两种效应共同作用下,接收光强概率密度的表达式;分别对不考虑探测器噪声和考虑探测器噪声情况下的系统误码率进行了分析,并在误码率分析的基础上,对系统的最佳束散角和最佳发射口径进行了研究。
     对采用OOK,PPM和DPIM调制方式的星地激光链路的通信性能进行了研究。给出了DPIM系统最佳判决阈值的计算公式。分别分析了OOK和DPIM系统在阈值检测情况下的系统误包率以及PPM系统在最优检测情况下的系统误包率。与此同时,在考虑湍流效应的情况下,基于上行和下行激光链路模型,对采用上述三种调制方式的星地激光通信系统的误包率进行了比较。
     进行了城市链路11.8km激光大气传输实验,对大气湍流影响下激光链路的光场传输特性进行了长期的实验观测。通过该实验对高斯光束在大气中的远场光强分布、接收光强闪烁指数、接收光强概率密度、光强衰落概率、光强起伏功率谱等湍流大气导致的接收光强统计性质进行了分析,并给出了闪烁指数和折射率结构常数的日变化规律。
     利用两个光学终端在距离为11.16km的城市链路上进行了星地激光通信地面模拟实验。实验对不同调制速率的两条激光链路的误码率以及接收光强闪烁指数进行了长期的测量,研究了接收光强闪烁指数和链路两端温度差的关系,给出了接收光强闪烁方差与系统误码率关系的实验结果,同时分别研究了不同调制速率两条链路的误码率与链路两端温度差的关系,并且利用该实验链路进行了长距离视频传输实验。
     本文的研究工作为星地激光链路的通信性能分析以及调制方式选择提供了理论基础,为星地激光链路的系统设计提供了实验依据。
Comparing to the traditional microwave communication system, satellite laser communication systems have many potential advantages, such as higher data rate, low probability of intercept, no restriction for frequency use, less volume, less mass, less power consumption and so on. Recently, satellite laser communication has been concerned by many countries in the world and it has turned to be a hot topic in the field of satellite communication research. Space experiments have been performed in some countries or area, which have advanced technology on satellite laser communication, such as Japan, American and Europe. Intersatellite and ground-to-satellite laser communications have been realized in these experiments. Based on the achievements of the space experiments, these countries are preparing to promote this technology to real utility. In the near future, a new generation of the satellite communication network, which use laser as the carrier of the information, will appear.
     In ground-to-satellite laser communications, laser beam, as the information carrier, will propagates through the aerosphere of the earth. In this process, the refractive index fluctuation caused by atmospheric turbulence will influence the propagation of the laser beam, destroy the coherence of the optical field and result in a series of optical effects on the laser beam, such as intensity fluctuation, angle of arrival fluctuation, beam wander and spread, etc.
     Error performance is a importance parameter to indicate the communication performance of the system. The level of the error performance can be directly used to judge the quality of the communication system. Generally, error performance of a OOK system is indicated by bit error rate and error performances of PPM and DPIM systems are indicated by packet error rates.
     In a ground-to-satellite laser link, atmospheric turbulence introduced optical effects will influence the communication performance and increase the error probability of the information transmission. So with consideration of the turbulence effects, this dissertation is concerned with the researh on the communication performance of the ground-to-satellite laser link.
     First of all, the research status of ground-to-satellite laser communication is summarized. The characteristic of the atmospheric turbulence is described. Basic theory of laser propagation in turbulence and influeces of turbulence effects on the system are represented. The main configuration and principle of the ground-to-satellite laser communication system are introduced.
     Based on weak fluctuation theory and the beam-wander model, considering the combined effect of scintillation and beam wander, the probability density of the received intensity for uplink is derived. Bit error rate for uplink is analyzed, in comparison with the condition in which beam wander is not taken into account. Based on the bit error analysis, optimum divergence angle and transmitter beam radius for a communication system are researched.
     Packet error rates of OOK, DPIM and PPM modulation schemes are researched for ground-to-satellite laser links. Optimum threshold for DPIM system is deduced. Analysis process is based on threshold detection for OOK and DPIM, and optimal detection for PPM. Packet error rates of these three modulation schemes are compared for both uplink and downlink, with consideration of the turbulence effects in the ground-to-satellite laser link, and numerical results are given.
     An 11.8km urban laser link is established to perform the long term examination of the laser beam propagation characteristics through atmospheric turbulence. Far field distribution of Gaussian beam, scintillation index of the received intensity, probability density function, fade statistic, and high-frequency spectrum are researched based on the analysis of the experimental data. Besides, daily variation curve of scintillation index is given, compared with the variation of refractive-index structure parameter.
     An 11.16km bi-directional urban laser link is established by two satellite laser communication terminal, to perform the simulated experiment of the ground-to-satellite laser communication. Relations between scintillation index and the differences of temperature and humidity at two ends of the link are researched. Bit error rates are measured for two channels with different modulation rates and the results are given, with consideration of scintillation index. Relations between bit error rate and the differences of temperature and humidity at two ends of the link are also researched. In addition, long distance video transmission is performed and pictures of the transmitted video are presented.
     This dissertation can benefit the error perpormance analysis and modulation scheme choice for the ground-to-satellite laser communication system, and provide experimental foundation for the system design.
引文
1 M. Toyoshima, W. R. Leeb, H. Kunimori, et al.. Comparison of Microwave and Light Wave Communication Systems in Space Application. Proc. SPIE. 2005, 5296: 1~12
    2 R. G. Marshalek, G. S. Mecherle, P. R. Jordan. System-Level Comparison of Optical and RF Technologies for Space-to-Space and Space-to-Ground Communication Links. Proc. SPIE. 1996, 2699: 134~145
    3 J. C. Ricklin, S. Bucaille, F. M. Davidson. Performance Loss Factors for Optical Communication through Clear Air Turbulence. Proc. SPIE. 2004, 5160: 1-11
    4 F. David. Scitillation Loss in Free-Space Optic IM/DD Systems. Proc. SPIE. 2004, 5338: 65?75
    5 A. N. Jong. Refraction Effects of Atmospheric Inhomogeneities along the Path. Proc. SPIE. 2004, 5237: 105~116
    6 R. D. Halbing, C. R. Hershberger, J. A. Stalder, et al.. Fading Effects Due to Scintillation Caused by Atmospheric Turbulence in a Wireless Optical Communication Link. Proc. SPIE. 2004, 5160: 33~36
    7 Karin R. W. Wrana, F. Fom. Influence of Atmospheric Turbulence on Imaging Quality of Electro-optical Sensors in Different Climates. Proc. SPIE. 2004, 5237: 2-4
    8 R. Rao. Optical Properties of Atmospheric Turbulence and Their Effects on Light Propagation. Proc. SPIE. 2005, 5832: 1~11
    9 M. Fujise. Free-Space Simulator for Laser Transmission. Proc. SPIE. 1992, 4(1): 1-27
    10 T. Aruga, T. Araki, F. Hayashi, F. Imai, F. Yamamoto, H. Sakagami. Earth-to-Space Laser Beam Transmission Spacecraft Attitude Measurement. Appl. Opt. 1984, 23(1): 143~147
    11 T. Aruga, T. Araki, R. Hayashi, T. Iwabuchi, M. Takahashi, S. Nakamura. Earth-to-Geosynchronous Satellite Laser Beam Transmission. Appl. Opt. 1985, 24(1): 53~56
    12 K. Araki, Y. Arimoto, M. Shikatani, M.Toyoda, T. Aruga. ETS-VI Laser Communications Experiment System. AIAA 14th International Communications Satellite Systems Coference. AIAA-92-1833~CP, 1992
    13 K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga. Laser Beam Acquisition and Tracking System for ETS-VI Laser Communication Equipment. Proc. SPIE. 1990, 1218: 96~107
    14 K. Araki, M. Shikatani, M. Toyoda, Y. Arimoto, T. Aruga, Y. Suzuki. Devolpment of Laser Communication Equipment of the ETS-VI for Basic Experiments on Optical Intersatellite Communications. CRL Review. 1994, 40(2): 153~179
    15 K. Araki, Y. Arimoto, M. Shikatani, et al.. Performance Evaluation of Laser Communication Equipment onboard the ETS-VI Satellite. Proc. SPIE. 1996, 2699: 52~59
    16 M. Toyoda, M. Toyoshima, T. Tarhashi, et al.. Ground to ETS-VI Narrow Laser Beam Transmission. Proc. SPIE. 1996, 2699: 71~80
    17 K. Wilson, J. Lesh, K. Araki, Y. Arimoto. Premilitary Results of the Ground/Orbit Laser-Communications Demonstration Experiment between Table Mountain and the ETS-VI Satellite. Proc. SPIE. 1996, 2699: 121~132
    18 K. Araki, M. Toyoshima, T. Takahashi, et al.. Experimental Operations of Laser Communication Equipment Onboard ETS-VI Satellite. Proc. SPIE. 1997, 2990: 264~275
    19 K. E. Wilson. An Overview of the GOLD Experiment between the ETS-VI Satellite and the Table Mountain Facility. TDA Progress Report. 1994, 42(128): 8~19
    20 M. Toyoshima, S. Yamakawa, T. Yamawaki, et al.. Ground-to-Satellite Optical Link between Japanese Laser Communications Terminal and European Geostationary Satellite ARTEMIS. Proc. SPIE. 2004, 5338: 1~15
    21 M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. Reyes, A. Alonso, Z. Sodnik, B. Demelenne. Long-Term Statistics of Laser Beam Propagation in an Optical Ground-to-Geostationary Satellite Communication Link. IEEE Transactions on Antennas and Propagation. 2005, 53(2): 842~850
    22 T. Jono, M. Toyoda, K. Nakagawa, et al.. Acquisition, Tracking and Pointing System of OICETS for Free Space Laser Communications. Proc. SPIE. 1999, 3692: 41~50
    23 T. Jono, Y. Takayama, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, Z. Sodnik, B. Demelenne, A. Brid, K. Arai. OICETS On-orbit Laser Communication Experiments. Proc. SPIE. 2006, 6105: 1~11
    24 M. Toyoshima, K. Takizawa, T. Kuri, et al.. Ground-to-OICETS Laser Communication Experiments. Proc. SPIE. 2006, 6304: 1~8
    25 Y. Koyama, E. Morikawa, K. Shiratama, et al.. Optical Terminal for NeLS In-orbit Demonstration. Proc. SPIE. 2004, 5338: 29~36
    26 Y. Koyama, E. Morikawa, H. Kunimori, et al.. Components Development for NeLS Optical Terminal. Proc. SPIE. 2005, 5712: 217~224
    27 D. L. Fried. Scintillation of a Ground-to-Space Laser Illuminator. J. Opt. Soc. Am. 1967, 57(8): 980~983
    28 P. O. Minott. Scintillation in an Earth-to-Space Propagation Path. J. Opt. Soc. Am. 1972, 62(7): 885~888
    29 M. Lerner. The VUV as a Wavelength Region for Optical Intersatellite Communications. AIAA-74-499, 1974
    30 J. L. Bufton. Scintillation Statistics Measured in an Earth-Space-Earth Retro-Reflected Link. Appl. Opt. 1977, 16: 2654~2660
    31 J. L. Bufton, R. S. Tyler, L. S. Taylor. Scintillation Statistics Caused by Atmospheric Turbulence and Speckle in Satellite Laser Ranging. Appl. Opt. 1977, 16: 2408~2413
    32 K. E. Wilson, J. R. Lesh, T.-Y. Yan. GOPEX: A Laser Uplink to the Galileo Spacecraft on Its Way to Jupiter. Proc. SPIE. 1993, 1866: 138~146
    33 K. Kiesaleh, T. Y. Yan. A Statistical Model for Evaluating GOPEX Uplink Performance. TDA Progress Report. 1992, 42(111): 325~332
    34 M. Toyoshima, K. Araki, Y. Arimoto, et al.. Reduction of ETS-VI Laser Communication Equipment Optical-Downlink Telemetry Collected During GOLD. TDA Progress Report. 1997, 42(128): 1?9
    35 K. E. Wilson. An Overview of the GOLD Experiment between the ETS-VI Satellite and the Table Mountain Facility. TDA Progress Report. 1996, 42(124): 1-19
    36 M. Jeganathan, K. E. Wilson, J. R. Lesh. Preliminary Analysis of Fluctutions in the Received Uplink-Beacon-Power Data Obtained from the GOLD Experiments. TDA Progress Report. 1996, 42(124): 1?32
    37 I. I. Kim, H. Hakakha, B. Riley, N. M. Wong, M. Mitchell, R. Howe, C. Moursund, W. Brown, P. Adhikari, A. Lath, E. J. Korevaa. Preliminary Results of the STRV-2 Satellite-to-Ground Lasercom Experiment. Proc. SPIE. 2000, 3932: 21~34
    38 A. Biswas, G. Williams, K. E. Wilson, H. Hakakha, R. Steiger, E. Korevaar, A. Biswas, G. Williams, K. E. Wilson. Results of the STRV-2 Lasercom Terminal Evaluation Tests. Proc. SPIE. 2000, 3932: 21~34
    39 E. Korevaar, J. Schuster, H. Hakakha, et al.. Design of Ground Terminal forSTRV-2 Satellite-to-Ground Laser Experiment. Proc. SPIE. 1998, 3266: 153~164
    40 E. Korevaar, J. Schuster, P. Adhikari, et al.. The Lasercom Test and Evaluation Station for Flight Terminal Evaluation. Proc. SPIE. 1997, 2990: 152~158
    41 I. I. Kim, B. Riey, N. M. Wong, et al.. Lessons Learned from the STRV-2 Satelitte-to-Ground Lasercom Experiment. Proc. SPIE. 2001, 4272: 1~15
    42 Gerardo G. Oritiz, Muthu Jeganathan, John V. Sandusky et al.. Design of a 2.5 Gbps Optical Transmitter for the International Space Station. Proc. SPIE. 1999, 3615:1?6
    43 J. V. Sandusky, J. R. Lesh. Planning for a Long-Term Optical Demonstration from the International Space Station. Proc. SPIE. 1998, 3266: 128?134
    44 A. Biswas, M. W. Wright. Mountain-Top-to-Mountain-Top Optical Link Demonstration: Part I. IPN Progress Report. 2002, 42(149): 1?27
    45 A. Biswas, M. W. Wright. Mountain-Top-to-Mountain-Top Optical Link Demonstration: Part II. IPN Progress Report. 2002, 42(151): 1?16
    46 A. Biswas, S. Lee. Ground-to-Ground Optical Communications Demonstration. TMO Progress Report. 2000, 42(141): 1?31
    47于思源,马晶,谭立英.自由空间激光通信技术发展趋势分析.无线光通信. 2004, 12: 47~50
    48 J. R. Lesh, R. Depaula. Overview of NASA R&D in Optical Communications. Proc. SPIE. 1995, 2381: 4~11
    49 D. M. Boroson, A. Biswas, B. L. Edwards. MLCD: Overview of NASA’s Mars Laser Communications Demonstration System. Proc. SPIE. 2004, 5338: 16~28
    50 G. Oppenhauser, M. Wittig, A. Popesce. The European SILEX Project and other Advanced Concepts for Optical Space Communications. Proc. SPIE. 1991, 1522: 2?13
    51 G. D Fletcher, T. R. Hicks, B. Laurent. The SILEX Optical Interorbit Link Experiment. Electronics & Communication Engineering Journal. 1991, 3(6): 273-279
    52 A. Comeron, J. A. Rubio, A. Belmonte, et al.. Propagation Experiments in the Near-infrared along a 150-km Path and From Stars in the Canarian Archipelago. Proc. SPIE. 2002, 4678: 78~90
    53 T. T. Nie1sen, G. Oppenhaeuser. In Orbit Test Result of an Operational Optical Intersatellite Link between ARTEMIS and SPOT4, SILEX. Proc. SPIE. 2002, 4635: 1~15
    54 M. Reyes, S. Chueca, A. Alonso, et al.. Analysis of the Preliminary OpticalLinks between ARTEMIS and the Optical Ground Station. Proc. SPIE. 2002, 4821: 33-43
    55 J. Romba, Z. Sodnik, M. Reyes, et al.. ESA’s Bidirectional Space-to-Ground Laser Communication Experiment. Proc. SPIE. 2004, 5550: 287-298
    56 M. Reyes, Z. Sodnik, P. Lopez, et al.. Preliminary Results of the In-Orbit Test of ARTEMIS with the Optical Ground Station. Proc. SPIE. 2002, 4635: 38-49
    57 K. Pribil1, Ch. Serbe1, B. Wandernoth, C. Rapp. SOLACOS YKS-an Optical High-data-rate Communication System for Intersatellite Link Applications. Proc. SPIE. 1995, 2381: 83~88
    58 K. Pribil, J. Flemmig. SOLACOS System Implementation. Proc. SPIE. 1995, 2381: 143~150
    59 R. Lange, B. Smutny, B. Wandernoth. 142km, 5.625 Gbps Free-Space Optical Link Based on Homodyne BPSK Modulation. Proc. SPIE. 2006, 6105: 61050A
    60 R. Lange, B. Smutny. Homodyne BPSK-based Optical Inter-satellite Communication Links. Proc. SPIE. 2007, 6457: 645703
    61马晶,潘锋,谭立英.星地上行激光链路中最佳光束参数的研究.强激光与粒子束. 2006, 18(8): 1233~1237
    62韩琦琦,于思源,马晶等.卫星光通信中耦合运动对光信号跟踪影响分析.宇航学报. 2006, 27(4): 405~409
    63于思源,马晶,谭立英.提高卫星光通信扫描捕获概率的方法研究.光电子.激光. 2004, 15(4): 472~476
    64马晶,高宠,谭立英.星地光通信中PAT链路的衰落冗余.光学精密工程. 2007, 15(3): 308~314
    65李晓峰,胡渝.空-地激光通信链路总体设计思路及重要概念研究.应用光学. 2005, 25(6): 57-62
    66张诚,胡薇薇,徐安士.星地光通信发展状况与趋势.中兴通信技术. 2006, 12(2): 52-56
    67马晶,韩琦琦,于思源等.卫星平台振动对星间激光链路的影响和解决方案.激光技术. 2005, 29(3): 228-232
    68于思源,谭立英,马晶等.激光星间链路中振动补偿技术研究.光电子.激光. 2004, 15(4): 472-476
    69孙立宁,孙绍云,曲东升等.基于PZT的微驱动定位系统及控制方法的研究.光学精密工程. 2004, 12(1): 55-59
    70邵兵,孙立宁,曲东升等.自由空间光通信ATP系统中精瞄偏转镜的设计.光学精密工程. 2006, 14(1): 43-47
    71陈云亮,于思源,马晶等.一种新型的卫星光通信高速跟瞄探测装置.光电子.激光. 2005, 16(5): 598-600
    72于思源,马晶,谭立英等.激光星间链路中天线扫描捕获技术实验室模拟研究.中国激光. 2005, 16(5): 498-502
    73罗彤,胡渝,李贤.星间光链路中捕获系统分析与仿真.应用光学. 2002, 23(1): 5-8
    74刘淑华,卢亚雄,罗彤.空间光通信中快速倾斜镜的数字控制研究.激光与红外. 2002, 32(3): 165-167
    75 F. Xiao, W. W. Hu, A. S. Xu. Optical Phased-Array Beam Steering Controlled by Wavelength. Appl. Opt. 2005, 44(10): 5429-5433
    76王建民,汤俊雄,孙东喜,朱彦,谷亚权.卫星激光通信均匀信标光的研究.光学学报. 2006, 26(1): 7~10
    77陈纯毅,杨华民,佟首峰,蒋振刚.空间光通信卫星平台振动实时模拟.系统仿真学报. 2007, 19(16): 3834~3837
    78张景旭.卫星捕获与大气补偿技术.光机电信息. 1999, 16(10): 3-6
    79曹阳,艾勇,黎明,谭莹.空间光通信精跟踪系统地面模拟实验.光电子·激光. 2009, 20(1): 40-43
    80谭莹,艾勇.卫星光通信中的调制技术研究.光通信技术. 2005, 5: 15-16
    81郭建中,谭莹,艾勇.卫星光通信中的调制技术研究.光通信技术. 2006, 4: 45-46
    82 A. N. Kolmogrov. The Local Structure of Turbulence in an Incompressible Viscous Fluid for Very Large Reynolds Numbers. C. R. Acad. Sci. U. S. S. R. 1941, 30: 301~305
    83饶瑞中.光在湍流大气中的传播.安徽科学技术出版社. 2005
    84张逸新.随机介质中光的传播与成像.国防工业出版社. 2002
    85 R. J. Hill. Models of the Scalar Spectrum for Turbulent Advection. J. Fluid Mech. 1978(88): 541~562
    86 R. J. Hill, S. F. Clifford. Modified Spectrum of Atmosphere Temperature Fluctuation and its Application to Optical Propagation. J. Opt. Soc. Am. 1978(68): 892~899
    87 J. H. Churnside. A Spectrum of Refractive Turbulence in the Turbulent Atmosphere. J. Mod. Opt. 1990(37): 13~16
    88 R. Frehlich. Laser Scintillation Measurements of the Temperature Spectrum in the Atmospheric Surface Layer. J. Atmos. Sci. 1992(49): 1494~1509
    89 L. C. Andrews, R. L. Phillips, C. Y. Hopen, M. A. Al-Habash. Theory of Optical Scintillation. J. Opt. Soc. Am. 1999, A16(6): 1417-1429
    90 R. E. Good, R. R. Belend, E. A. Murphy, et al.. Atmospheric Models of OpticalTurbulence. Proc. SPIE. 1988, 928: 165-186
    91 G. C. Valley. Isoplanatic Degradation of Tilt Correction and Short-term Imaging Systems. Appl. Opt. 1980, 19: 574-577
    92 V. I. Tatarskii. Wave Propagation in a Turbulent Medium. McGraw-Hill, New York, 1961
    93 L. C. Andrews, R. L. Phillips. Laser Beam Propagation through Random Media. Bellingham: SPIE Optical Engineering Press, 1998
    94 F. Dios, J. A. Rubio, A. Rodriguez, A. Comeronn. Scintillation and Beam-wander Analysis in an Optical Ground station-satellite Uplink. Appl. Opt. 2004, 43(19): 3866~3873
    95 J. J. Kiriazes, R. L. Phillops, L. C. Andrews. Analysis of Fading for a Free-space Optical Communication Link Subject to Atmosphereic Scintillation. Proc. SPIE. 2004, 5160: 253-264
    96吴振森,驼志敏,郭立新等.湍流大气中光波闪烁的斜程问题研究.电波科学学报. 2002,17(3): 254-257
    97易修雄,郭立新,吴振森.高斯波束在湍流大气斜程传输中的闪烁问题研究.光学学报. 2005,25(4): 433-438
    98 M. A. Al-Habash, L. C. Andrews. Mathematical Model for the Irradiance Probability Density Function of a Laser Beam Propagating through Turbulent Media. Opt. Eng. 2001, 40(8): 1554-1562
    99 L. C. Andrews,R. L. Phillips. Pointing Errors and Fade Statistics Associated with a Laser Satellite-Communication System. Proc. SPIE. 1997, 2956: 166~178
    100 V. V. Nikulin, R. Khandekar. Performance of Laser Communication Uplinks and Downlinks in the Presence of Pointing Errors and Atmospheric Distortions. Proc. SPIE. 2005: 37-45
    101 Y. E. Yenice, B. G. Evans. Adaptive Beam-Size Control for Ground to Satellite Laser Communications. Proc. SPIE. 1998, 3266: 221-230
    102 Y. E. Yenice, B. G. Evans. Optimum Beam Size for Laser Beam Propagating through Atmospheric Turbulence. Electronics Letters. 1999, 35(21): 1875-1876
    103 W. E. Webb, J. T. Marino. Threshold Detection in an On-off Binary Communications Channel with Atmospheric Scintillation. Appl. Opt. 1975, 14(6): 1413~1417
    104 N. Namazi, R. Burris, G. C. Gilbreath. Analytical Approach to the Calculation of Probability of Bit Error and Optimum Thresholds in Free-Space OpticalCommunication. Opt. Eng. 2007, 46(2): 025007
    105 C. C. Davis, I. I. Smolyaninov. The Effect of Atmospheric Turbulence on Bit-Error-Rate in an On-Off-Keyed Optical Wireless System. Proc. SPIE. 2002, 4489: 126~137
    106 J. J. Kiriazes, R. L. Phillips, L. C. Andrews. Effects on Pulse-Position Modulation for Laser Communication in the Presence of Atmospheric Scintillation. Proc. SPIE. 2002, 4821: 332~343
    107 K. Kiasaleh. Performance of APD-Based, PPM Free-Space Optical Communication Systems in Atmospheric Turbulence. IEEE Transactions on Communications. 2005, 53: 1455~1461
    108 G. A. Mahdiraji, E. Zahedi. Comparison of Selected Digital Modulation Schemes (OOK, PPM and DPIM) for Wireless Optical Communications. IEEE. 2006: 5~10
    109胡宗敏,汤俊雄.大气无线光通信系统中数字脉冲间隔调制研究.通信学报. 2005, 26(3): 75~79
    110潘峰.大气湍流对星地激光链路通信性能影响研究.哈尔滨工业大学博士论文. 2007
    111 M. Gueleman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, S. Arnon. Acquisition and Pointing Control for Inter-Satellite Laser Communications. IEEE Transactions on Aerospace and Electronic Systems. 2004. 40(4): 1239~1248
    112 M. Toyoda. Acquisition and Tracking Control of Satellite-borne Laser Communication Systems and Simulation of Downlink Fluctuations. Opt. Eng. 2006. 45(3): 1~9
    113 Tzung Hsien, S. D. Milner, Christipher C. Davis. Fully Optical Real-time Pointing, Acquisition and Tracking System for Free Space Optical Link. Proc. SPIE. 2005, 5712: 81-92
    114胡庆功,王克家.大气激光通信ATP系统设计及精跟踪子系统仿真.应用科技. 2005, 32(12): 7-9
    115张磊,郑建平,刘智颖.空间光通信中Cassegrain系统支撑结构设计.仪器仪表学报. 2006, 27(6): 691~693
    116 M. Cole, K. Kiasaleh. Signal Estemators for PIN and APD-based Free-Space Optical Communication Systems. IEEE Communications Society Globecom. 2004, 1221-1224
    117 A. Rodriguez-Gomez, F. Dios, J. A. Rubio, A. Comeron. Temporal Statistics of the Beam-wander Contribution to Scintillation in Ground-to-satellite OpticalLinks: an Analytical Approach. Appl. Opt. 2005, 44(21): 4574~4581
    118 L. C. Andrews, R. L. Phillips, P. T. Yu. Optical Scintillations and Fade statistics for a Satellite-communication System. Appl. Opt. 1995, 34(33): 7742~7751
    119 M. Toyoshima, T. Jono, K. Nakagawa, A. Yamamoto. Optimum Divergence Angle of a Gaussian Beam Wave in the Presence of Random Jitter in Free-Space Laser Communication Systems. J. Opt. Soc. Am. A. 2002, 19(3): 567~571
    120 R. M. Gagliardi, S. Karp. Optical Telecommunications. Beijing: Publishing House of Electronics Industry, 1998
    121 H. R. Burris, A. E. Reed, N. M. Namazi, et al.. Adaptive Thresholding for Free-space Optical Communication Receivers with Multiplicative Noise. Aerospace Conference Proceedings. IEEE. 2002, 3: 1473~1480
    122 J. Wang, Z. Xu, W. Hu. Improved DPPM Modulation for Optical Wireless Communications. Proc. SPIE. 2004, 5281: 483~490
    123 H. Wang, G. Chen, X. Sun, T. Zhang. Performance Analysis of Dicode Pulse Position Modulation for Optical Wireless Communications. Wicom conference of IEEE. 2007, 3027~3030
    124王红星,朱银,张铁英,孙晓明.无线光DH-PIM与DPIM调制方式的性能研究.激光技术. 2007, 31(1): 92~97
    125 Bernard Sklar.数字通信-基础与应用.徐平平,宋铁成,叶芝慧,等译.第二版.电子工业出版社,2004
    126 M. Srinivasan, V. Vilnrotter. Symbol-Error Probabilities for Pulse-Position Modulation Signaling With an Avalanche Photodiode Receiver and Gaussian Thermal Noise. TMO Progress Report. 1998, 42(134): 1~11
    127 Z. Hu, J. Tang. Performance of Digital Pulse Interval Modulation of Atmospheric Optical Wireless Communication System. Proc. SPIE. 2005, 5625: 202~208
    128程刚,王红星,吴龙刚,许志超,孙晓明.大气无线光通信调制方式性能分析.中国电子科学研究院学报. 2007, 2(5): 485~489
    129 H. T. Yura, W. G. McKinley. Aperture Averaging of Scintillation for Space-to-ground Optical Communication Applications. Appl. Opt. 1983, 22(11): 1608~1609
    130 C. Peng, T. Yang, X. Bao, et al.. Experimental Free-Space Distribution of Entangled Photon Pairs Over 13 km: Towards Satellite-Based Global Quantum Communication. Physical Review Letters. 2005, 94(15): 150501
    131 F. Pan, Q. han, J. Ma, L. Tan. Measurement of Scintillation and Link Margin for Laser Beam Propagation on 3.5-km Urbanised Path. Chinese Optics Letters. 2007, 5(1): 1~3
    132 C. Gao, J. Ma, L. Tan. Effects of Exposure Time on the Image in Atmospheric Turbulence. Proc. SPIE. 2007, 6279: 62792O
    133 Tunick. A. Statistical Analysis of Optical Turbulence Intensity over a 2.33 km Propagation Path. Opt. Express. 2007, 15(7): 3619~3628
    134 Tunick. A. Statistical Analysis of Measured Free-space Laser Signal Intensity over a 2.33 km Propagation Path. Opt. Express. 2007, 15(21): 14115~14122
    135 F. Santiago, C. Wilcox, M. Chang, et al.. Low Altitude Horizontal Scintillation Measurements. Proc. SPIE. 2005, 6014: 601413
    136 M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. Sarkisov II, G. R. Edlin, R. A. Snow, J. F. Rushing. Statistical Analysis of Cloud-cover Mitigation of Optical Turbulence in the Boundary Layer. Opt. Express. 2006, 14: 8929~8946
    137 R. Mahon, C. I. Moore, H. R. Burris, et al.. Analysis of Long-term Measurements of Laser Propagation over the Chesapeake Bay. Appl. Opt. 2009, 48(12): 2388~2400
    138 W. Brown, B. Wallin, D. Lesniewski, D. Gooding, and J. Martin. The Experimental Determination of On-off Keying Laser Communications Probability Models and a Comparison with Theory. Proc. SPIE. 2006, 6105: 61050U
    139 M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, W. Freeman. Free-space Optical Communication Link across 16 Kilometers over the Chesapeake Bay to a Modulated Retroreflector Array. Opt. Eng. 2008, 47: 045001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700