化学酶法制备两亲功能嵌段共聚物及自组装与载药行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子纳米材料具有诸多特殊的优异性能,是目前高分子领域研究的热点之一。尤其是两亲性功能嵌段共聚物的合成及其自组装方面的研究更是成为目前高分子学科的前沿领域,两亲性功能嵌段共聚物在表面活性剂、分子筛的制备以及药物释放载体等方面已经得到了诸多广泛的应用。在近年来,酶催化开环聚合方法(eROP)和原子转移自由基聚合(ATRP)方法都因其各自独有的反应优势而备受关注, 2002年Andreas Heise等人首次将这两种不同机理的催化聚合方法相结合,提出了一种崭新的化学酶催化合成方法,引起了世界各国高分子学者的广泛关注。将这两种聚合方法结合起来,利用各自反应的优势,可以合成大量的新型功能高分子材料。
     基于上述思想,本论文通过酶促开环聚合和原子转移自由基聚合相结合,制备了双嵌段共聚物、三嵌段共聚物、五嵌段共聚物、H型嵌段共聚物以及星形嵌段共聚物等多种不同结构的功能性嵌段共聚物材料,通过GPC、NMR、IR等手段对其结构进行了研究,并利用TEM、DLS、AFM等多种仪器对各种结构的聚合物在不同环境中的自组装情况进行了研究。考察了两亲性嵌段共聚物PCL-b-PDMAEMA胶束对疏水型药物叶酸以及紫杉醇在不同的pH值以及温度下的体外释药行为。
Over the previous decade, enzyme-mediated polymerization has emerged as a new and important method of preparing polymers. While traditional catalysts often contain toxic and environmentally damaging metal species, enzyme catalysis is often seen as an eco-friendly alternative. Indeed, enzymatic catalysts often exhibit considerable benefits over their chemical analogues; enzymes as catalysts for polymerizations show high activity and chemoselectivity. Lipases alone have been shown to effectively catalyze ring-opening polymerization of lactones, lactides, and cyclic carbonates to the corresponding polyesters and polycarbonates. More importantly, these polymerization catalysts can operate under much milder conditions than metal catalysts and are considered biocompatible alternatives.
     In this work, we have shown that enzymatic ring-opening polymerization eROP ofε-caprolactone (ε-CL) was successfully combined with atom transfer radical polymerization (ATRP) to yield copolymers with well-defined molecular weight and polydispersity. A series of functional multiblock copolymer with different structure were carried out in this strategy, such as penta-, H-shaped, star like and brush block copolymer. Moreover, the self-assembly behavior of copolymers in aqueous media were investigated. In vitro release kinetics of folic acid and paclitaxel from the diblock copolymer PCL-b-PDMAEMA micelles were also studied respectively.
     In Chapter 2, a symmetric linear ABCBA-type pentablock copolymer consisting of polyethyleneglycol (PEG), poly(ε-caprolactone) ( PCL ) , and poly N-isopropylacrylamide (PNIPAM) was synthesized by the combination of eROP and atom transfer radical polymerization (ATRP). Dihydroxy-capped PEG first initiated eROP of CL in the presence of Novozym435. Subsequently, the resulting dihydroxy-terminated copolymer PCL-b-PEG-b-PCL was converted to a bromine- ended triblock macroinitiator by esterification with a-bromopropionyl bromide. The pentablock copolymer PNIPAM-b-PCL-b-PEG-b-PCL-b-PNIPAM was obtained via a subsequent ATRP of nipam. Temperature dependence of hydrodynamic diameter of amphiphilic pentablock copolymer was characterized by DLS. When temperature rises, the hydrodynamic diameter slowly increase, at 35℃the hydrodynamic diameter increases to 125nm, this temperature is also known as the LCST,PNIPAM undergoes a coil-to-globule phase transition in dilute aqueous solution at its LCST. At temperatures below the LCST, PNIPAM chains adopt a random-coil conformation, while at temperatures above the LCST, the structure of the resultant core-shell-corona micelles with temperature increasing. The aggregates of various morphologies, such as normal spherical micelles, rodlike micelles and linear micelles, were observed by self-assemblies of the pentablock copolymer in aqueous media, and crystals morphologies were observed, The resulting crystals of PEG and PCL were characterized by XRD and TEM. The work in this chapter demonstrated that solutions of pentablock copolymer in THF or DMF present an excellent model system for the study of the interplay between aggregation and crystallization.
     In chapter 3,We describe the first account of the synthesis and intriguing micellization properties of nonlinear block copolymers of the B2AB2 and C2BABC2 type. Atom transfer radical polymerization (ATRP) macroinitiators with four initiating sites at ends of polyethyleneglycol (PEG) and BAB typed copolymer PCL-b-PEG-b-PCL were synthesized via by esterification with excess 2,2-dichloro acetyl chloride (DCAC) respectively. Well-defined H-shaped block copolymer (PVP)2-b-PEG-b-(PVP)2 and (PVP)2-b-PCL-b-PEG-b-PCL-b-(PVP)2 were then prepared by polymerizing 4-vinylpyridine(4VP) via ATRP in which CuCl/HMTETA was used as the catalyst system using the prepared macroinitiators. The pH responsive micellization behavior of (PVP)2-b-PEG-b-(PVP)2 and (PVP)2-b-PCL-b-PEG-b-PCL-b-(PVP)2 was then investigated by a combination of dynamic laser light scattering(DLS), atomic force microscopy (AFM) and transmission electron microscope(TEM). Due to P4VP is a pH-sensitive polymer,pH dependence of the hydrodynamic diameter of H-shaped triblock copolymer (PVP)2-b-PEG-b-(PVP)2 and copolymer (PVP)2-b-PCL-b-PEG-b-PCL-b-(PVP)2 were characterized by DLS, the hydrodynamic diameter of the triblock copolymer micelle was sharp decrease when the PH decrease,however,pentaiblock copolymer micelle were cross-linked.
     An amphiphilic star block copolymer comprised of a hydrophobic PCL block and a hydrophilic hexaarm poly(glycidyl methacrylate) (PGMA) block was synthesized by copolymerization of GMA, CuCl/bpy as a catalyst system. The star copolymer undergoes self-assembly to the micellar nanoparticles with a well-defined core–shell structure. The sizes of the nanoparticles with different chain ratio were charactered by DLS, AFM and TEM. The PCL/PGMA ratio in the star block copolymers had a significant effect on the micellization properties; the aggregation of micelles appeared with the increasing length of the PGMA block. In the second section of chapter 4, grafting of hydrophilic poly(glycidyl methacrylate) (PGMA) block brushes was carried out from the polystyrene(PSt) synthesized with star macroinitiators, TMP-(PCL-b-PSt2-Br)3, which was performed through a bromination reaction between pendant allylic groups of the PSt and N-bromosuccinimide (NBS). This method is a novel route to synthesize star-combtype polymer. Amphiphilic star block copolymer could self-assemble sphere type micelle and the diameter of star-combtype polymer was decrease contrast to star block copolymer.
     In chapter 5, a novel biodegradable amphiphilic copolymer with hydrophobic poly(e-caprolactone) and a hydrophilic poly(N,N-dimethylamino-2-ethyl methacrylate) chain was synthesized by combined eROP and ATRP. The copolymer was characterized by FTIR, 1H NMR, gel permeation chromatography (GPC). The amphiphilic copolymer could self-assemble into micelles in an aqueous solution. The critical micelle concentration (CMC) of the amphiphilic copolymer with different chain ratio was determined by fluorescence spectroscopy. The CMC value was increased with the PDMAEMA increase. The characteristic in response to the change in environmental temperature and pH were investigated by the dynamic light scattering (DLS). The results showed that the Dh of the micelles were decreased as the temperature increase and increased as the pH decrease. Nanoparticle drug delivery system with a regularly spherical shape was prepared with high encapsulation efficiency. The in vitro drug release from the drug loaded polymeric nanoparticles was investigated with a series PH and temperature and the drug release rate was affected by the thermo-trigger at pH 7.4, as well as the pH-trigger at 37 ?C
引文
[1] DONG H, GUI CS, LI ZQ, HAN SP, YOU DL, SHEN JC. J. Polym. Sci. Part A: Polym Chem, 1999, 37, 1265.
    [2] (a) KUMAR A, KALRA B, DEKHTERMAN A, GROSS RA. Macromolecules 2000, 33, 6303. (b) KUMAR A, KALRA B, DEKHTERMAN A, GROSS RA. Polym Preprint, 2000, 41, 1832.
    [3] KUMAR A, GROSS RA, Biomacromolecules, 2000, 1, 133.
    [4] DENG F, GROSS RA. Int. J. Biomol, 1999, 25, 153.
    [5] KAUZMANN W. Ady.Protein Chem, 1959, 14, 1.
    [6] VOLKIN DB, STAUBLI A, LANGER R, KLIBANOVAM. Biotechnol Bioeng. 1991, 37, 843.
    [7] LIU WR, LANGEN RL, KLIBANOV AM. Biotechnol, Bioeng, 1991, 37, 177.
    [8] GUTMAN AL, ZUOBI K, BRAVDO TJ. Org. Chem, 1990, 55, 3546.
    [9] ZAKS A, KLIBANOV AM. J. Biol. Chem. 1988, 263, 17, 8017.
    [10] MEI Y, KUMAR A, GROSS RA. Submitted for publication to J. Am. Chem.Soc
    [11] MATSUMUTO M, ODACHI D, KONDO K. BIOCHEM BIOENG. J. 1999, 4, 73.
    [12] KWON DY, HONG YJ, YOON SH.J.Food Chem.2000.48,524.
    [13]朱洁,刘洪湖,胡英,许建和,曹淑桂,分子催化,1998,12(5),323.
    [14] MURALIDHAR RV, CHIRUMAMILLA RR, RAMACHANDRAN VN, MARCHANT R, NIGAM P. Bioorg. Med. Chem.2OO2,10,1471.
    [15] [日]土肥廣? [德] A.斯泰因比歇尔,《生物高分子》第3a卷聚酯Ⅰ-生物系统和生物工程法生产,化学工业出版社, 2004年。
    [16]KATO M, SAWAMOTO M. Macromolecules, 1995, 28, 1721.
    [17]WANG, J. S., MATYJASZEWSKI, K. J Am Che. Soc, 1995, 117, 5614.
    [18]VIRGIL PERCEC, BOGDAN BARBOIU MACROMOLECULES, 1995, 28, 7970–7972
    [19]齐耿耿,孙建中,周其云等,功能高分子学报,2002,15,347。
    [20] D MECERREYES, B ATTHOFF, KA BODUCH, M TROLLSA’S, JL HEDRICK. Macromolecules, 1998, 32, 5175.
    [21] YU K, EISENBERG A. Macromolecules 1996, 29, 6359.
    [22] YU K, EISENBERG A. Macromolecules 1998, 31, 3509.
    [23] YU K, ZHANG L, EISENBERG A. Langmuir 1996, 12, 5980.
    [24] YU K, BARTELS C, EISENBERG A. Langmuir 1999, 15, 7157.
    [25] ZHANG L, EISENBERG A. J. Am. Chem. Soc. 1996, 118, 3168.
    [26] YU Y, ZHANG L, EISENBERG A. MACROMOLECULES 1998, 31, 1144.
    [27] BURKE SE, EISENBERG A. LANGMUIR 2001, 17, 6705.
    [28] LARUE I, ADAM M, PITSIKALIS M, HADJICHRISTIDIS N, RUBINSTEIN M, SHEIKO SS. Macromolecules 2006, 39, 309.
    [29] Raez J, Manners I, Winnik MA, J Am Chem Soc. 2002, 124, 10381.
    [30] KORCZAGIN I, HEMPENIUS MA, FOKKINK RG, COHEN STUART MA. Macromolecules 2006, 39, 2306.
    [31] RAEZ J, BARJOVANU R, MASSEY JA, WINNIK MA, MANNERS I. Angew Chem. Int. Ed. 2000, 39, 3862.
    [32] RAEZ J, MANNERS I, WINNIK MA. Langmuir 2002, 18, 7229.
    [33] MASSEY JA, NICOLE POWERK, WINNIK MA, MANNERS I. Adv. Mater. 1998, 10, 1559
    [34] MASSEY, J. A.; TEMPLE, K.; CAO, L.; RHARBI, Y.; RAEZ, J.; WINNIK, M. A.; MANNERS, I. J. Am. Chem. Soc. 2000, 122, 11577.
    [35] RAEZ J, TOMBA JP, MANNERS I. WINNIK MA. J. Am. Chem. Soc. 2003, 125, 9546.
    [36] MASSEY JA, NICOLE PK, MANNERS I, WINNIK MA. J. Am. Chem. Soc. 1998, 120, 9533.
    [37] HU Y, ZHANG L, CAO Y, GE H, JIANG X, YANG C. Biomacromolecules 2004, 5, 1756.
    [38] NIE T, ZHAO Y, XIE Z, WU C. Macromolecules 2003, 36, 8825.
    [39] YU LI , GLEN SK. Pharmaceutical Research.2000, 17,607.
    [40] A LAVASANIFAR, J SAMUEL, GS KWON. Adv. Drug Deliv Rev, 2002 54,169.
    [41] S TSUNODA, H KAMADA, Y YAMAMOTO. J. Control. Release 2000, 68, 335.
    [42] M. D’SOUZA, RL SCHOWEN, EM TOPP. J. Control. Release 2004, 94, 91.
    [43] Y KANEDA, Y TSUTSUMI, Y YOSHIOKA, H KAMADA. Biomaterials 2004, 25, 3259.
    [44] Y NISHIYAMA, Y KATO, Y SUGIYAMA. Pharm. Res. 2001, 18 1035
    [45] N NISHIYAMA, S OKAZAKI, H CABRAL. Cancer Res. 2003, 63, 8977–8983.
    [46] L ZHANG, A EISENBERG. Science, 1995, 268 1728–1731.
    [47] GUIYING LI, LINQI SHI, YINGLI AN, WANGQING ZHANG, RUJIANG MA. Polymer, 2006, 47, 4581
    [48] ANIL KHANAL, YUKO INOUE, MITSUNORI. J AM CHEM. SOC. 2007, 129, 1534-1535
    [49] OE Philippova, D Hourdet, R Audebert. Macromolecules, 1997, 30 8278–8285.
    [50] M TORRES-LUGO, NA PEPPAS. Macromolecules, 1999, 32, 6646–6651
    [51] MARTIN TJ, PROCHAZKA K, MUNK P. Macromolecules.1996,29:6071-6073.
    [52] BAO ZHANG , YAPENG LI , JINGHUI SUN , SHUWEI WANG, YILI ZHAO, ZHANYU WU. Polymer International, 2009, 58, 752
    [53] BAO ZHANG, YAPENG LI, PENG AI. Journal of Polymer Science: Part A: Polymer Chemistry, 2009, 47, 5509
    [54] J RAEZ, I MANNERS, MA WINNIK. Langmuir 2002, 18, 7229.
    [55] J RAEZ, JP TOMBA, I MANNERS, MA WINNIK. J. Am. Chem. Soc.2003, 125, 9546.
    [56] X WANG, H WANG, DJ FRANKOWSKI, PG LAM, PM. WELCH, MA WINNIK, J HARTMANN, I MANNERS, RJ SPONTAK. Adv.Mater.2007, 19, 2279.
    [57] ADRIANA M, MIHUT, MARKUS DRECHSLER, MICHAEL MOLLER. Macromol Rapid Commun. 2009, 30, 1000
    [58] KE SHA, DONGSHUANG LI, YAPENG LI. Macromolecules 2008, 41, 361
    [59] RIESSG. Prog.Polym.Sci.2003, 28, 1107-1170.
    [61] JENEKHE SA, CHEN XL. Science, 1999, 283, 3721
    [62] ZHAO D, YANG P, MELOSH N. Adv Mater, 1998, 10, 1308
    [63] HURTER PN, HATTON TA. Langmuir, 1992, 8, 1291
    [64] KATAOKA K, KWON GS, YOKOYAMA M. J Control Rel, 1993, 24: 1191
    [65] VP TORCHILIN, VS TRUBETSKOY. Adv.Drug Deliv. Rev. 1995, 16,141-155
    [66] Q CAI, YL ZHAO, JZ BEI, F XI, SG WANG. Biomacromolecules 2003 4:828-834.
    [67] K SADLER, JP TAM. Rev. Mol. Biotech. 2002, 90(34):195-229.
    [68]MW GRINSTAFF. Tissue Engineering Chemistry 8:2839-2846 (2002).
    [69] CHANDRASEKHAR, S SADASHIVA,BK SURESH,KA Pramana. 1977, 9, 471
    [70] RM CROOKS, MQ ZHAO,L SUN,V CHECHIK,LK YEUNG. Accounts of Chemical Research 2001,34,181.
    [71] ROBERT WJ, ABHAYA KD, RIEHARD MC. J. Am.Chem.Soc.2003,125,3708.
    [72] JA HE, R VALLUZZ, K YANG, T DOLUKHANYAN,C SUNG,KUMARJ SK. Chem Mater. 1999, 11, 3268
    [73] MQ ZHAO, L SUN RM. J.Am.Chem.Soc.1998, 120, 4877.
    [74] K ESUMI, ISONO R,YOSHIMURA T. Langmuir, 2004,20,237
    [75] M ZHAO, RM CROOKS,Chem Mater, 1999,11,3379.
    [76] L BALOGH, DA TOMALIA. J. Am.Chem.Soc.1998,120,7355.
    [77] M ZHAO,RM CROOKS. Adv. Mater.1999, 11, 217.
    [78] R WIWATTANAPATAPEE, L LOMLIM, K SARAMUNEE. J. Control. Release 88(1):1-9 (2003).
    [79] TF VANDAMME, L BROBECK. J. Control. Release 102(1):23-38 (2005).
    [80]AD EMANUELE, R JEVPRASESPHANT, J PENNY, D ATTWOOD. J. Control.Release 95(3):447-453 (2004).
    [81] S CHAUHAN, S SRIDEVI, KB CHALASANI, AK JAIN, SK JAIN, NK JAIN, PV DIWAN. J. Control. Release 2003, 90(3):335-343.
    [82] ZX WANG, Y ITOH, Y HOSAKA, I KOBAYASHI, Y NAKANO, I. MAEDA, F. J. BIOSCI. BIOENG 2003, 95(5):541-543.
    [83] MJ CLONINGER. Chem. Biol. 2002, 6: 742-748.
    [84] H MAEDA, J WU, T SAWA, Y MATSUMURA, K HORI. J. Control. Release 2000, 65:271-284.
    [85] J LIAW, SF, CHANG FC. Gene Ther. 2001, 8:999-1004.
    [86] VT TORCHILIN, AN LUKYANOV, Z GAO. PROC. Natl. Acad. Sci. USA 2003, 100:6039-6044.
    [87] TN PALMER, VJ CARIDE, MA CALDECOURT, J TWICKLER, V ABDULLAH. Biochim Biophys Acta 1984, 797:363-368.
    [88] AA GABIZON. Adv Drug Deliv Rev 199516:285-294.
    [89] A LUKYANOV, Z GAO, L MAZZOLA, VP TORCHILIN. Pharm. Res 2002, 19: 1424-1429.
    [90] VP TORCHILIN. Cell. Mol. Life Sci. 61:2549-2559 (2004).
    [91] S VINOGRADOV, E BATRAKOVA, S LI, A KABANOV. Bioconjug Chem. 1999, 10:851-860.
    [92] E JULE, Y NAGASAKI, K KATAOKA. Bioconjug Chem. 2003, 14:177-186.
    [93] M OGRIS, S BRUNNER, S SCHULLER, R KIRCHEIS, E WAGNER. Gene Ther 1999, 6:595-605.
    [94] PR DASH, ML READ, KD FISHER, KA HOWARD, M WOLFERT, D OUPICKY. J. Biol. Chem. 275:3793-3802 (2000).
    [95] CP LEAMON, D WEIGL, RW HENDREN. Bioconjug Chem.1999 10:947-957.
    [96] O DAVID, RC TOMAS. Macromolecules 2003, 36, 6863
    [97] LEE ES, NA K, BAE YH. Journal of Controlled Release, 2003, 91:103 - 113.
    [98] Leroux J, Roux E, Garrec DL. Journal of Controlled Release 2001, 72:71 - 84.
    [99] Zhang JX, Qiu LY, Jin Y. Colloids and Surfaces B: Biointerfaces ,2005 ,43 :123 - 130.
    [100] G Helmlinger, F Yuan, M Dellian, RK Jain. Nat. Med. 1997, 3:177-182 .
    [101] IF Tannock, D Rotin. Cancer Res. 1989, 49: 4373-4384.
    [102] Lee ES, Shin HJ, Na K. J Controlled Release, 2003, 90 (3): 363 - 374.
    [103] Chung J E , Yokoyama M , Okano T. J Controlled Release, 2000, 65: 93 - 103.
    [1]KAWA Y, YAMASHITA K, HIRAISHI T, KANESATO, DOI Y.Biomacromolecules, 2004, 6, 2084.
    [2] YAMASHITA K, KIKKAWA Y, KURKAWA K, DOI Y. Biomacromolecules, 2005, 6, 850.
    [3] ONIQUE JB, HARRIET TB, ROEL K, ELISABETH P.Biomaterials, 2000, 21, 595.
    [4] HE F, LI S, VERT M, ZHUO R. Polymer, 2003, 44, 5145.
    [5] CHAOLIANG HE, JINGRU SUN, CHAO DENG, TING ZHAO, MINGXIAO DENG, XUESI CHEN, IABIN JING. Biomacromolecules, 2004, 5, 2042.
    [6]Y. TAKAHASHI, I. SUMITA, H. TADOKORO. Polym. Sci., Part B: Polym Phys, 1973, 11, 2113
    [7] LooYL, Register RA, Ryan A. J. Phys. Rev. Lett, 2000, 84, 4120.
    [8] Floudas G. Tsitsilianis C. Macromolecules, 1997, 30, 4381
    [9] ZHU L, CHENG SZ, CALHOUN BH, GE Q, QUIRK RP, THOMAS EL, HSIAO BS, YEH F, LOTZ B. Polymer 2001, 42, 5829.
    [10] LOO YL, REGISTER R A, RYAN AJ. Macromolecules, 2002, 35, 2365.
    [11] D RICHTER, D SCHNEIDERS, M MONKENBUSCH, L WILLNER, L J.FETTERS, JS HUANG, M LIN, K MORTENSEN, B FARAGO. Macromolecules, 1997, 30, 1053.
    [12] T VILGIS, A HALPERIN. Macromolecules, 1991, 24, 2090.
    [13] M DROESCHER, TL SMITH. Macromolecules, 1982, 15, 442.
    [14] E. K. LIN, A. P. GAST. Macromolecules,1996, 29, 4432
    [15] T KAWAI, S SHIOZAKI, S SONODA, H NAKAGAWA, T MATSUMOTO, H MAEDA. Makromol. Chem, 1969, 128, 252.
    [16] AP GAST, PK VINSON, KA COGANFARINAS. Macromolecules,1993, 26, 1774.
    [17] KA COGAN, AP GAST. Macromolecules,1990, 23, 745.
    [18] JT XU, W JIN, GD LIANG, ZQ FAN. Polymer, 2005, 46, 1709.
    [19] L SHEN, H WANG, G GUERIN, C WU, I MANNERS, M WINNIK. Macromolecules, 2008, 41, 4380.
    [20] J RAEZ, I MANNERS, MA WINNIK. Langmuir 2002, 18, 7229.
    [21] J RAEZ, JP TOMBA, I MANNERS, MA WINNIK. J Am Chem Soc.2003, 125, 9546.
    [22] X WANG, H WANG, DJ FRANKOWSKI, PG LAM, PM WELCH, MA WINNIK, J HARTMANN, I MANNERS, RJ SPONTAK. Adv. Mater. 2007, 19, 2279.
    [23] Jerome Babin, Martin Lepage, Yue Zhao, Macromolecules 2008, 41, 1246-1253
    [24] Bek turov E A , F ro lova V A , Bimendina L A. M acro2mo l. Chem. Phys, 1999, 200, 431.
    [25] JANNE VIRTANEN, SUSANNA HOLAPPA, HELGE LEMMETYINEN, HEIKKI TENHU. Macromolecules,2002, 35, 4763.
    [26] FS BATES, GH FREDRIKSON. Physics Today, 1999, 2, 32.
    [27] ISHIZU K, FUKUTOMI T. J. Polym. Sci:Part C Polym.Lett. 1988, 26,281
    [28] EISENBERG A. Can.J.Chem, 1999, 77, 1311.
    [29] VILGIS T, HALPERIN A. Macromolecules,1991, 24, 2090.
    [30] ZHANG, J.; WANG, L.-Q.; WANG, H.; TU, K. Biomacromolecules 2006, 7, 249.
    [1] YANLING XU, LINQI SHI A, RUJIANG MA, WANGQING ZHANG, YINGLI AN, XX ZHU.Polymer 48 (2007) 1711-1717
    [2] LIU S, ARMES SP. Angew Chem Int Ed 2002, 41:1413.
    [3]王迪;张宝;李亚鹏;高等学校化学学报;2008 29 (7): 1479-1482.
    [4] BIRSHTEIN, T. M.; POLOTSKY, A. A.; ABETZ, V. Macromol. Theory Simul.2004, 13, 512–519.
    [5]HADJICHRISTIDIS N, IATROU H, PITSIKALIS M, PISPAS. Prog. Polym. Sci. 2005, 30, 725–782.
    [6] HADJICHRISTIDIS N, PITSIKALIS M, PISPAS S, IATROU H. Chem. ReV.2001, 101, 3747–3792.
    [7] HAWKER CJ, WOOLEY KL. Science 2005, 309, 1200–1205.
    [8] HUCKSTADT H, GOPFERT A, ABETZ V. Macromol. Chem. Phys. 2000,201, 296–307.
    [9] IATROU H, HADJICHRISTIDIS N. Macromolecules 1992, 25, 4649–4651.
    [10] LOHSE DJ, HADJICHRISTIDIS, N CURR. Colloid Interface Sci.1997, 2, 171–176.
    [11] DISCHER DE, EISENBERG A. Science 2002, 297, 967–973.
    [12] MALDOVAN M, URBAS AM, YUFA N, CARTER WC, THOMAS EL.Phys. ReV. B: Condens. Matter Mater. Phys, 2002, 65, 165123.
    [13] PARK M, HARRISON C, CHAIKIN P. M, REGISTER RA, ADAMSON H. Science 1997, 276, 1401–1404.
    [14] ABRAHAM S, HA CS, KIM I. J. Polym. Sci., Part A: Polym. Chem 2006, 44, 2774–2783.
    [15]BABIN J, TATON D, BRINKMANN M, LECOMMANDOUX S. Macromolecules 2008, 41, 1384–1392.
    [16]HADJICHRISTIDIS N, PITSIKALIS M, IATROU H. AdV. Polym. Sci. 2005,189, 1-124.
    [17]Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. Chem. ReV.2001, 101, 3747-3792.
    [18] Knauss DM, Huang TZ. Macromolecules 2002, 35, 2055-2062.
    [19] Knauss DM, Huang TZ. Macromolecules 2003, 36, 6036-6042
    [20] Hawker CJ, Bosman AW, Harth E. Chem. ReV. 2001, 101, 3661-3688.
    [21] Chong YK, LeT P, Moad G, Rizzardo E, Thang SH. Macromolecules 1999, 32, 2071-2074
    [22] MATYJASZEWSKI K, XIA JH. Chem. ReV. 2001, 101, 2921-2990.
    [23] LI YG, SHI PJ, PAN CY. Macromolecules 2004, 37, 5190-5195.
    [24] HAN DH, PAN CY. J. Polym. Sci., Part A: Polym. Chem. 2006,44, 2794-2801.
    [25] YU XF, SHI TF, ZHANG G, AN L. J. Polymer 2006, 47, 1538-1546.
    [26] WHITTAKER MR, URBANI CN, MONTEIRO MJ. J. Am. Chem. Soc.2006, 128, 11360-11361.
    [27] K Kalyanasundaram, JK Thomas.J. Am. Chem. Soc., 1977, 99 (7), 2039-2044.
    [1] HAWKER CJ, BOSMAN AW, HARTH E. Chem. Rev. 2001,101, 3661.
    [2] KAMIGAITO M, ANDO T, SAWAMOTO M. Chem. Rev. 2001, 101,3689.
    [3] ISHIZU K. Prog. Polym. Sci. 1998, 23, 1383.
    [4] INOUE K. Prog. Polym. Sci. 2000, 25, 453.
    [5] UEDA J, KAMIGAITO M, SAWAMOTO M. Macromolecules 1998,31, 6762
    [6] UEDA J, MATSUYAMA M, KAMIGAITO M, SAWAMOTO M. Macromolecules 1998, 31, 557.
    [7] ANGOT S, MURTHY KS, TATON D, GNANOU Y. Macromolecules 1998, 31, 7218.
    [8] MATYJASZEWSKI K, MILLER PJ,PYUN J, KICKELBICK G, DIAMANTI S. Macromolecules 1999, 32, 6526.
    [9] HEISE A, HEDRICK JL, FRANK CW, MILLER RD. J. Am.Chem. Soc. 1999, 121, 8647.
    [10] KANAOKA S, SAWAMOTO M, HIGASHIMURA T. Macromolecules 1991, 24, 2309.
    [11] XIA J, ZHANG X, MATYJASZEWSKI K. Macromolecules 1999,32, 4482.
    [12] ZHANG X, XIA JH, MATYJASZEWSKI K. Macromolecules2000, 33, 2340.
    [13] ROBELLO DR, ANDRE A, MCCOVICK TA, KRAUS A, MOUREY TH. Macromolecules 2002, 35, 9334.
    [14] PERCEC V, BARBOIU B, GRIGORAS C, BERA TK. J. Am. Chem. Soc. 2003, 125, 6503.
    [15]AMIRA CHOUCAIR, CHRISTINE LAVIGUEUR, ADI EISENBERG. Langmuir 2004, 20, 3894-3900.
    [16] YISONG YU , ADI EISENBERG. J. Am. Chem. Soc. 1997, 119, 8383-8384
    [17] KE SHA, DONGSHUANG LI, YAPENG LI, BAO ZHANG, JINGYUAN WANG. Macromolecules 2008, 41, 361-371.
    [18] KE SHA, DONGSHUANG LI, YAPENG LI, XIAOTIAN LIU, SHUWEIWANG, JINGQI GUAN, JINGYUAN WANG. Journal of Polymer Science: Part A: Polymer Chemistry 2007 45: 5037–5049.
    
    [1] G Riess. Prog. Polym. Sci. 2003 ,28 ,1107.
    [2] JF Gohy. Adv. Polym. Sci. 2005, 190,65.
    [3] GS Kwon, T Okano. Adv. Drug Deliv. Rev. 1996,21,107.
    [4] MC Jones, JC Leroux. Eur. J. Pharm. Biopharm. 1999 48 ,101.
    [5] P Alexandridis, B Lindman. Elsevier, Amsterdam, 2000.
    [6] K Kataoka, A Harada, Y Nagasaki. Adv. Drug Deliv. Rev. 2001,47,113.
    [7] VP Torchilin, Pharm. Res. 2007,24,1.
    [8] C Jerome, P Lecomte, Adv. Drug Deliv. Rev. 2008,60,1056.
    [9] Rapport N. Prog Polym Sci 2007, 32:962–90.
    [10] Chen C, Yu CH, Cheng YC, Yu PHF, Cheung MK. Biomaterials 2006;27:4804–14.
    [11] Kakizawa Y, Kataoka K. Adv Drug Deliv Rev 2002, 54:203–22.
    [12] Kumar N, Ravikumar MNV, Domb AJ. Adv Drug Deliv Rev 2001, 53:23–44
    [13] Yu H, Gan LH, Hu X, Venkatraman SS, Tam KC, Gan YY.Macromolecules 2005, 8:9889–93.
    [14] Zheng G, Stover HDH. Macromolecules 2003, 36:7439–45.
    [15] Du J, Tang Y, Lewis AL, Armes SP. J Am Chem Soc 2005, 27:17982–3.
    [16] N Nishyama, Y Bae, K Miyata, S Fukushima, K Kataoka. Drug Discovery Today 2005 2, 21.
    [17] Yunhai Liu, Xiaohong Cao, Mingbiao Luo, Zhanggao Le, Wenyuan Xu. Journal of Colloid and Interface Science, 2009,329 244–252
    [18] Colfen, H. Macromol. Rapid Commun, 2001, 22, 219-252.
    [19] Rodr?′guez-Herna′ndez, J.; Lecommandoux, S. J. Am. Chem. Soc. 2005, 127, 2026-2027.
    [20] Arotcüare′na, M.; Heise, B.; Ishaya, S.; Laschewsky, A. J. Am. Chem. Soc. 2002, 124, 3787-3793.
    [21] Virtanen, J.; Arotcüare′na, M.; Heise, B.; Ishaya, S.; Laschewsky, A.; Tenhu, H.Langmuir 2002, 18, 5360-5365.
    [22] Andre′X, Zhang MF, Mu¨ller AHE. Macromol. Rapid Commun. 2005, 26, 558-563.
    [23] Alarcon C, Pennadam S, Alexander C. Chem. Soc. ReV. 2005, 34, 276-285
    [24] Verónica San Miguel a, AJ Limer b, DM Haddleton b, Fernando Catalina a, Carmen Peinado. European Polymer Journal2008, 44, 3853–3863
    [25] Li, G. Y.; Shi, L. Q.; Ma, R. J.; An, Y. L.; Huang, N. Angew. Chem.2006, 118, 5081-5084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700