具有生物活性的功能配位化合物的合成、表征及其相关性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用晶体工程原理构建新型高级有序结构分子聚集体如配位聚合物、超分子等逐渐成为当前化学、材料、生物、医学等领域的研究前沿和热点课题之一。这不仅因为对此类课题的研究能够探寻到新颖的拓扑构型、框架结构以及其组装过程中的机理和影响因素,更重要的是因为对此类课题的研究具有潜在的应用前景,如在光、电、磁、吸附、离子交换以及气体储存、生物活性、超分子化学药物等方面的应用前景。目前,该研究课题的核心任务是如何选择和设计合适的构筑基块并通过一定的晶体工程策略来获得具有预期结构与功能的晶体材料,来实现他们在应用方面的价值。本论文在晶体工程组装原理的指导下,考虑选择结构上分别含有杂环N、羧基(-COOH)、羰基(>C=O)三类典型配位基团且共同具有优良生物性能的有机配体(含N多功能咪唑配体、多元羧酸配体、天然产物中黄酮类化学成分),并与适当的生命体系金属基离子为构筑基元,利用它们的加合作用,将生物活性成分与金属基活性作用的机理相结合,构建具有新颖拓扑网络结构且展现特定多功能性质的配位聚合物,并对其性质进行表征,特别是对其可能的生物活性进行了部分研究,以期发挥生物活性成分和金属离子的双功能。系统探讨了配体的几何构型,金属离子的配位趋向,以及有机多羧酸辅助配体的配位能力、骨架长度、柔性程度和溶剂或客体分子调控等因素在目标配位聚合物的形成过程中所起的作用,研究其对配合物的结构及性能的影响。
     在一定的反应条件下,我们得到了七个具有新颖结构和特定功能的化合物,它们分别是:[Cu2(bcm)2(CH3OH)2]·2CH3OH (1),[Cu2(bcm)2(CH3CH2OH)2]-2CH3CH2OH (2),{[Zn(bbi)3(NO3)]Br·2H2O}n (3),[Zn(oxa)(bbi)]n (4),[Mn(fina)2(bbi)2(H2O)2]n (5),[Cd2(bpdc)2(bbi)2]n (6),{[Co8(cit)4(bbi)6(H2O)10]·7H2O}n (7)。用X-射线单晶衍射等技术对它们的结构进行了表征:1和2是基于π-π堆积作用及氢键弱作用力构筑而成的三维超分子结构;3具有一个三重2D→3D穿插网络结构;4是一个(4,4)拓扑形状的2D结构;5以Mn离子为四连接点,形成3D→3D三重穿插4-节点式的66-dia网络结构;而6是一个由bbi配体连接1D花瓣链状结构形成的3D多孔有机金属框架;7是一个3D多核金属-氧簇化合物,包含以八核金属钴簇为SBUs构筑的2D(4462)网络。其次,以这些在生命体系中具有潜在应用前景的咪唑类功能配合物为研究对象,运用琼脂扩散法、二苯代苦味肼基自由基(DPPH·)法、邻苯三酚自氧化法、α-脱氧核糖法,以及研究与DNA的相互作用,筛选出活性更强、性能更优越,在生命体系中具有潜在应用前景的功能配合物。
     此外,合成了以天然产物提取物槲皮万寿菊素为主配体的CuⅡ/ZnⅡ/FeⅢ二元配合物,它们较配体具有更强的清除DPPH自由基、超氧阴离子自由基和羟基自由基活性;并且配合物可以以插入模式与CT-DNA结合,影响CT-DNA分子的内部构型,抑制DNA分子的进一步遗传与复制,从而抑制癌细胞的恶性生长以达到抗癌效果。其中,与DNA结合作用的大小顺序为:Que-Fe>Que-Cu>Que-Zn> Que。槲皮万寿菊素金属配合物的制得为配位化学增添了新的内容,良好的生物活性为其在医学上的应用提供了依据,这对寻找新型、高效的金属基抗癌、抗氧化超分子化学药物具有重要意义。
The design and construction of metal-organic coordination polymers is of current interest in the fields of supramolecular chemistry and crystal engineering. A major reason for this interest is the promise of being able to generate new materials with intriguing architectures and potential applications in optical, electronic, magnetic, adsorption, gas storage, ion exchange, biology activity and supramolecular chemical drugs. How to obtain materials with prospective structures and function is the prime importance in crystal engineering. It demonstrates that using some specific assembly strategy and choosing suitable building blocks should be the key in constructing target materials. In this paper, with the aim of obtaining novel materials with beautiful architecture and excellent physical, biological properties, we selected multi-functional ligands (N-containing imidazolic ligands, di-or polycarboxylate ligands and flavonoids of natural bioactive ingredients) as building blocks to construct coordination polymers under the intervention of various transition metal ions and auxiliary ligands guided by assembly principle of coordination polymer crystal engineering. The coordination behavior of the ligand completely, the role of solvent and metal ions have been discussed.
     Under different reaction condition, seven coordination polymers have been synthesized. They are listed as follows:[Cu2(bcm)2(CH3OH)2]·2CH3OH (1),[Cu2(bcm)2(CH3CH2OH)2]·2CH3CH2OH (2),{[Zn(bbi)3(NO3)]Br·2H2O}n (3),[Zn(oxa)(bbi)]n (4),[Mn(fma)2(bbi)2(H2O)2]n (5),[Cd2(bpdc)2(bbi)2]n (6),{[Cog(cit)4(bbi)6(H20)10]·7H20}n (7). These polymers have been characterized by X-ray single crystal diffraction analysis, elemental analysis, thermal analysis and fluorescence spectroscopy to investigate the spectroscopy characters and properties. The results revealed that the conformation of the ligands play an important role in the structure of complexes. The coordination of2is similar to that of1except that ethanol molecules are coordinated instead of methanol molecules. And there-dimensional network structures of1and2are formed through p-p interactions. Compounds3,4and7all exhibit2D layer structures, in which3displays a3-fold interpenetration framework containing2D networks with (6,3) topology and4is a2D structure with (4,4) topology. Compound7contains a2D44grid-like layer with (44.62) topology composed of octanuclear cobalt clusters. Two high-dimensional compounds (3D) with a microporous network containing1D flower-like metal-organic motifs interlinked by bbi ligands for6, and a3-fold interpenetrating network with66-dia topology by considering the manganese ion as a four-connected node for5, are observed. The biological activities of the title compounds have been studied. The results indicate that3-7exhibit certain antimicrobial activities and7exhibits weaker radical-scavenging activities than that of bbi ligand.
     Furthermore, three kinds of Cu(II), Zn(II), Fe(IlI) complexes of Quercetagetin (Que) were synthesized and characterized by IR spectra, UV spectra and elemental analysis etc. The free radical (DPPH·, O2-·,·OH) scavenging activities of the complexes were investigated in this paper. Then, the mechanism of the interaction between the free ligand and complexes with calf thymus DNA(CT-DNA) were investigated by using means of UV spectra. The results showed that free radical'scavenging activities of the complexes on DPPH·, O2-· and·OH were obviously stronger than that of the quercetagetin. In addition results of spectroscopic measurements suggested that the three complexes bound to DNA via an intercalative mode and calculated DNA-binding action decreased in the order Que-Fe>Que-Cu>Que-Zn>Que. The new metallic complexes of quercetagetin add new contents for coordination chemistry. The well bioactivity of the complexes afford an applied foundation on the medicine.
引文
[1]王洪芳.芳香羧酸及衍生物配合物的合成及性质研究[D].安徽大学硕士学位论文,2010:1.
    [2]McCleverty J. A., Meyer T. J., et al. Comprehensive Coordination Chemistry[J]. Angewandte Chemie Interntional Edition,2004,43(10):3875-3876.
    [3]宋银柱,王耕霖.配位化学[M].北京:北京大学出版社,1982:30-31.
    [4]鲁代仁.离子键超分子线性聚合物、星形杂臂共聚物的设计、合成与自组装研究[D].中国科学技术大学博士学位论文,2009:8.
    [5]汪丰云,顾家山,王晓锋,等.配位化学的发展史[J].化学教育,2011,(2):75-77.
    [6]蓝美华.含氮三脚架配体及配合物的合成、结构和近红外发光性质研究[D].中山大学硕士学位论文,2009:1.
    [7]靳梅芳.四溴代对苯二甲酸与过渡金属锌、铜配位聚合物的合成和结构分析[D].山东大学硕士学位论文,2010:8.
    [8]Hoskins B. F., Robson R. Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments[J]. Journal of American Chemical Society, 1989,111(15):5962-5964.
    [9]Wells A. F. Three-Dimenstional Nets and Polyhedra[M]. New York:Wiley,1977.
    [10]Wells A. F., Structural Inorganic Chemistry[M]. Oxiford:Oxiford University Press, 1975.
    [11]Hoskins B. F., Robson R. Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments[J]. Journal of American Chemical Society, 1989,111:5962-5964.
    [12]Abrahams B. F., Hoskins B. F., Robson R., et al. A New Type of Infinite 3D Polymeric Network Containing 4-connected, Peripherally-linked Metalloporphyrin Building Blocks[J]. Journal of American Chemical Society,1991,113(9):3606-3607.
    [13]Gatteschi D. Molecular Magnetism. A Basis for New Materials[J]. Advanced Materials, 1994,6:635-645.
    [14]Kinoshita M. Ferromagnetism of Organic Radical Crystals[J]. Japanese Journal of Applied Physics,1994,33:5718-5733.
    [15]Xiao D. R., Li Y. G., Wang E. B., et al. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid,9-Fold Meso Helices, and 17-Fold Interwoven Helices[J]. Inorganic Chemistry,2007,46(10):4158-4166.
    [16]Sang R. L., Xu L. A Series of Single, Double, and Triple Me2biim-Bridged Dinuclear, Trinuclear, and Polymeric Complexes:Syntheses, Crystal Structures, and Luminescent Properties[J]. Inorganic Chemistry,2005,44:3731-3737.
    [17]Ma L. F., Wang Y. Y., Wang L. Y., et al. Two Novel Flexible Multidentate Li gands for Crystal Engineering:Syntheses, Structures, and Properties of CuII, MnII Complexes with N-[(3-Carboxyphenyl)-sulfonyl]glycine and N,N-(1,3-Phenylenedisu-lfonyl)bis(glycine) [J]. European Journal of Inorganic Chemistry,2008:693-703.
    [18]Pickering A. L., Seeber G., Long D. L., et al. Polymeric silver(I) coordination tubes[J]. Chemical Communications,2004,2:136-137.
    [19]Luan X. J., Wang Y. Y, Li D. S., et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions[J]. Angewandte Chemie Interntional Edition,2005,44(25):3864-3867.
    [20]Luan X. J., Cai X. H., Wang Y. Y., et al. An Investigation of the Self-Assembly of Neutral, Interlaced, Triple-Stranded Molecular Braids[J]. Chemistry-A European Journal,2006,12(24):6281-6289.
    [21]刘建强.穿插和缠绕金属-有机骨架化合物的构筑和性能研究[D].西北大学博士学位论文,2010:100-119.
    [22]Xiao D. R., Li Y. G., Wang E. B., et al. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid, 9-Fold Meso Helices, and 17-Fold Interwoven Helices[J]. Inorganic Chemistry,2007,46(10):4158-4166.
    [23]Fletcher A. J., Cussen E. J., Bradshaw D., et al. Adsorption of Gases and Vapors on Nanoporous Ni2(4,4'-Bipyridine)3(NO3)4 Metal-Organic Framework Materials Templated with Methanol and Ethanol:Structural Effects in Adsorption Kinetics[J]. Journal of the American Chemical Society,2004,126(31):9750-9759.
    [24]Han L., Zhou Y., Zhao W. N., et al. Assembly of Metal-Organic Frameworks with Helical Layer: From 2D Parallel Interpenetrated Layer to 3D Self-Penetrating Network[J]. Crystal Growth & Design,2009,9(2):660-662.
    [25]Chen J., Liu S. Y., Li C. P. Cadmium(II) and zinc(II) coordination polymers with mixed building blocks of benzenedicarboxyl and 2,5-bipyridyl-1,3,4-oxadiazole:Syntheses, crystal structures, and properties[J]. Inorganica Chimica Acta,2011.378(1):206-212.
    [26]Liu J. Q., Wang Y. Y.,Ma L. F., et al. Generation of a 4-Crossing [2]-Catenane Motif by the 2D → 2D Parallel Interpenetration of Pairs of (4,4) Sheets[J]. CrystEngComm, 2008,10(9):1123-1125.
    [27]Subramanian S., Zaworotko M. J. Porous Solids by Design:[Zn(4,4'-bpy)2(SiF6)] n·xDMF, a Single Framework Octahedral Coordination Polymer with Large Squar-e Channels [J]. Angewandte Chemie International Edition in English,1995,34(1 9):2127-2129.
    [28]Zhong D. C., Meng M., Deng J. H., et al. Synthesis, crystal structure, and luminescent property of a three-dimensional (3day) microporous Cd(II) metal-organic framework (MOF) based on mixed ligands[J]. Inorganic Chemistry Communications,2011,14 (12): 1952-1956.
    [29]Wen G. L., Wang Y. Y., Shi Q. Z., et al. Self-assembled coordination polymers of V-shaped bis(pyridyl)thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands[J]. CrystEngComm,2010,12(4):1238-1251.
    [30]Carlucci L., Ciani G., Rizzato S., et al. Three Novel Interpenetrating Diamondoid Networks from Self-Assembly of 1,12-Dodecanedinitrile with Silver(I) Salts[J]. Chemical European of Journal,2002,8(7):1520-1526.
    [31]金俊成.基于1,3-金刚烷二甲酸配位聚合物的构筑及其性能研究[D].西北大学博士学位论文,2010:104.
    [32]Wang X. L., Qin C., Wang E. B., et al. Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting[J]. Angewandte Chemie International Edition,2005,44(36):5824-5827.
    [33]Jang J. J., Li L., Yang T., et al., Self-assembly of 2D Borromean networks through hydrogen-bonding recognition[J]. Chemical Communications,2009,17:2387-2389.
    [34]Miiller A., Beckmann E., Bogge H., et al. Inorganic Chemistry Goes Protein Size:A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking [J]. Angewandte Chemie International Edition,2002.41(7):1162-1167.
    [35]Chen J. W., Zhang J., Yang G. Y., et al. Lanthanide-Transition-Metal Sandwich Framework Comprising {Cu3} Cluster Pillars and Layered Networks of {Er36} Wheels [J]. Angewandte Chemie International Edition,2006,45 (1): 73-77.
    [36]Zhao J. W., Jia H. P., Zhang J., et al. A Combination of Lacunary Polyoxometalates and High-Nuclear Transition-Metal Clusters under Hydrothermal Conditions. Part Ⅱ:From Double Cluster, Dimer, and Tetramer to Three-Dimensional Frameworks [J]. Chemistry- A European Journal, 2007,13(36):10030-10045.
    [37]Wu Q., Li Y. G., Wang Y. H., et al. Mixed-Valent {Mn14} Aggregate Encapsulated by the Inorganic Polyoxometalate Shell:[MnⅢ13MnⅡO12(PO4)4(PW9O34)4]31-[J]. Inorganic Chemistry,2009,48(4):1606-1612.
    [38]Hoskins B. F., Robson R. Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments[J]. Journal of American Chemical Society, 1989,111:5962-5964.
    [39]Yoshizawa M., Ono K., Kumazawa K., et al. Metal-Metal d-d Interaction through the Discrete Stacking of Mononuclear M(Ⅱ) Complexes (M=Pt, Pd, and Cu) within an Organic-Pillared Coordination Cage[J]. Journal of American Chemical Society,2005, 127:10800-10801.
    [40]Rowsell J. L. C., Yaghi O. M. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks[J]. Journal of American Chemical Society, 2006,128:1304-1315.
    [41]Nouar F., Eubank J. F., Bousquet T., et al. Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks[J]. Journal of American Chemical Society,2008,130:1833-1835.
    [42]Fletchera A. J., Thomasa K. M., Rosseinsky M. J. Flexibility in Metal-Organic Framework Materials:Impact on Sorption Properties[J]. Journal of Solid State Chemistry,2005,178:2491-2510.
    [43]Chen X. Y., Zhao B., Shi W., et al. Microporous Metal-Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node[J]. Chemistry of Materials,2005,17: 2866-2874.
    [44]Wang Y., Cheng P., Chen J., et al. A Heterometallic Porous Material for Hydrogen Adsorption[J]. Inorganic Chemistry,2007,46:4530-4534.
    [45]Sun D., Ma S., Ke Y., et al. An Interweaving MOF with High Hydrogen Uptake[J]. Journal of American Chemical Society,2006,128:3896-3897.
    [46]Sun Y. J., Zhang L. Z., Cheng P., et al. Kinetic Study of the Effects of Inhibitors on the Catalyzed Dehydration of HCO3- by Copper(II) Complexes [TpPh]CuX (X = OH-, N3-, NCS-)[J]. Inorganic Chemistry,2003,42:508-515.
    [47]Wang X. L., Qin C, Wang E. B., et al. Self-Assembly of Nanometer-Scale [Cu24I10L12]14+ Cages and Ball-Shaped Keggin Clusters into a (4,12)-Connected 3D Framework with Photoluminescent and Electrochemical Properties[J]. Angewandte Chemie Interntional Edition,2006,45:7411-7414.
    [48]Duan L. M., Xie F. T., Chen X. Y., et al. Syntheses, Structures, and Magnetic Properties of Three Novel Metal-Malate-Bipyridine Coordination Polymers with Layered and Pillared Topology[J]. Crystal Growth & Design,2006,6(5):1101-1106,
    [49]Shi J. M., Sun Y. M., Zhang X., et al. Magnetic Study on a Two-Dimensional Coordination Polymer with Mixed Bridging Ligands[J]. Journal of Physical Chemistry A,2006,110:7677-7681.
    [50]Li Y. G., Hao N., Wang E. B., et al. A Novel Three-Dimensional Metal-Organic Framework Constructed from Two-Dimensional Interpenetrating Layers Based on Trinuclear Cobalt Clusters:[Co3(btec)(C2O4)(H2O)2]n[J]. European Journal of Inorganic Chemistry,2003:2567-2571.
    [51]Liu C. M., Gao S., Zhang D. Q., et al. A Unique 3D Alternating Ferro-and Antiferromagnetic Manganese Azide System with Threefold Interpenetrating (10,3) Nets[J]. Angewandte Chemie Interntional Edition,2004,43:990-990.
    [52]Xu H. B., Wang B. W., Pan F., et al. Stringing Oxo-Centered Trinuclear [MnIII3O] Units into Single-Chain Magnets with Formate or Azide Linkers[J]. Angewandte Chemie Interntional Edition,2007,46:1-6.
    [53]Yi T., Ho-Chol C., Gao S., et al. Tuning of the Spin States in Trinuclear Cobalt Compounds of Pyridazine bythe Second Simple Bridging Ligand[J]. European Journal of Inorganic Chemistry,2006:1381-1387.
    [54]Zhang X. M., Zhao Y. F., Zhang W. X., et al. A Tetrazolate-and Cyano-Bridged Homometallic Mixed-Valence Copper(I,II) Molecular Ferrimagnet[J]. Advanced Materials,2007,19:2843-2846.
    [55]Wang H. S., Zhao B., Zhai, B., et al. Syntheses, Structures, and Photoluminescence of One-Dimensional Lanthanide Coordination Polymers with 2,4,6-Pyridinetricarboxylic Acid[J]. Crystal Growth & Design,2007,7(9):1851-1857.
    [56]Wang Y., Yi L., Yang X., et al. Synthesis, Crystal Structure, and Characterization of New Tetranuclear Ag(I) Complexes with Triazole Bridges[J]. Inorganic Chemistry, 2006,45:5822-5829.
    [57]Zhao B., Chen X. Y., Cheng P., et al. Coordination Polymers Containing ID Channels as Selective Luminescent Probes[J]. Journal of American Chemical Society,2004,126: 15394-15395.
    [58]Wang X. L., Qin C., Wang E. B., et al. Metal Nuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes[J]. Chemistry- A European Journal,2006,12:2680-2691.
    [59]Hu T. L., Zou R. Q., Li J. R., et al. d10 Metal Complexes Assembled from Isomeric Benzenedicarboxylates and 3-(2-pyridyl)pyrazole Showing ID Chain Structures: Syntheses, Structures and Luminescent Properties [J]. Dalton Transactions,2008: 1302-1311.
    [60]Ciurtin D. M.. Pschirer N. G., Smith M. D., et al. Two Luminescent Coordination Polymers with a Triple-Helix Structure:HgX2(C3iH24N2)·CH2Cl2 (X=C1 and Br)[J]. Chemistry of Materials,2001,13(9):2743-2745.
    [61]Tadokoro M., Yasuzuka S., Nakamura M., et al. A High-Conductivity Crystal Containing a Copper(I) Coordination Polymer Bridged by the Organic Acceptor TANC[J]. Angewandte Chemie Interntional Edition,2006,45:5144-5147.
    [62]Kawakami D., Yamashita M., Matsunaga S., et al. Halogen-Bridged PtII/PtIV Mixed-Valence Ladder Compounds[J]. Angewandte Chemie Interntional Edition,2006,45: 7214-7217.
    [63]Wang Y. T., Fan H. H., Wang H. Z., et al. A Solvothermally in situ Generated Mixed-ligand Approach for NLO-Active Metal—Organic Framework Materials[J]. Inorganic Chemistry,2005,44:4148-4150.
    [64]Hou H., Wei Y., Song Y., et al. Metal Ions Play Different Roles in the Third-Order Nonlinear Optical Properties of d10 Metal-Organic Clusters[J]. Angewandte Chemie Interntional Edition,2005,44(37):6067-6074.
    [65]兰云军,许晓红,周建飞,等.锆盐的鞣性分析及其发展前景[J].皮革科学与工程,2009,19(4):21-23,27.
    [66]赵剑锋,徐利敏,雷玉平,等.金属有机配合物DVDR光存储染料的研究应用[J].染料与染色,2007,44(2):5-7,17.
    [67]Gao X. C, Cao H., Huang C. H., et al. Electroluminescence From Both a Light-emitting Layer and Hole Transport Layer: Spectral Evidence for Charge Carrier Tunneling Injection [J]. Chemical Physics Letters,1998,297(5,6):530-536.
    [68]Evans OR, Lin W. Towards rational synthesis of polar solids. Synthesis and X-ray structures of cadmium (II) meta-pyridinecarboxylate coordination polymers[J]. Journal of the Chemical Society, Dalton Transactions,2000,21:3949-3954.
    [69]Balzani V., Ceroni P., Gestermann S., et al. Effect of protons and metal ions on the fluorescence properties of a polylysin dendrimer containing twenty four dansyl units[J]. Journal of the Chemical Society, Dalton Transactions,2000,21:3765-3771.
    [70]李世杰.三种羧酸系列金属配合物的合成及活性研究[D].广东海洋大学硕士学位论文,2011:1.
    [71]Tranchemontagne D. J., Mendoza-Cortes J. L., O'Keeffe M., et al. Secondary Building Units, Nets and Bonding in the Chemistry of Metal-Organic Frameworks[J]. Chemical Society Reviews,2009,38 (5):1257-1283.
    [72]Long J. R., Yaghi O. M. The Pervasive Chemistry of Metal-Organic Frameworks [J]. Chemical Society Reviews,2009,38 (5):1213-1214.
    [73]Uribe-Romo F. J., Hunt J. R., Furukawa H., et al. A Crystalline Imine-Lined 3-D Porous Covalent Organic Framework[J]. Journal of American Chemical Society,2009,131 (13):4570-4571.
    [74]Hiroyasu R. B., Furukawa H., Britt D., et al. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Framework and Their Carbon Dioxide Selective Capture Properties[J]. Journal of American Chemical Society,2009,131(11): 3875-3877.
    [75]Moris W., Doonan C., Furukawa H., et al. Crystals as Molecules:Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks[J]. Journal of American Chemical Society,2008,130(38):12626-12627.
    [76]Yaghi O. M., Hunt J., Doonan C., et al. Reticular Synthesis of Covalent Organic Borosilicate[J]. Journal of American Chemical Society,2008,130(36):11872-11873.
    [77]Furukawa H., Kim J., Ockwig N.W., et al. Control of Vertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of Crystalline Metal-organic Frameworks and Polyhedra[J]. Journal of American Chemical Society,2008,130(35):11650-11661.
    [78]Tranchemontagne D. J. Ni Z., O'keeffe, Yaghi O. M. Reticular Chemistry of Metal-Organic Polyhedra[J]. Angewandte Chemie International Edition,2008,47(28): 5136-5147.
    [79]Banerjee R., Phan A., Wang B., et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture [J]. Science,2008,319(5865): 939-943.
    [80]Rowsell J. L. C., Yaghi O. M. Strategies for Hydrogen Storage in Metal-Organic Frameworks[J]. Angewandte Chemie (International ed. in English),2005,44(30): 4670-4679.
    [81]朱龙观.高等配位化学[M].上海:华东理工大学出版社,2009:98-99.
    [82]许瑞波.含氮杂环配体及其配合物的合成、表征与生物活性研究[D].南京理工大学博士学位论文,2010:11.
    [83]Shi Zhan., Feng Shou-Hua., Sun Yan., et al. Novel Coordination Polymers with Mixed Ligands and Orientated Enantiomers[J]. Inorganic Chemistry,2001,40(21): 5312-5313.
    [84]Goodgame D. M. L., Menzer S., Ross A. T., et al. Use of Heterometal Combinations to Construct Very Large Ring Frameworks; Synthesis and Structural Characterisation of the 36-Membered Ring Compound [{NiNd(4-picolylpyrrolidin-2-one)4(NCS)2(NO3)3}n] [J]. Chemical Communications,1994,22:2605-2606.
    [85]Bu Xian-He., Chen Wei., Lu Shou-Liang., et al. Flexible meso-Bis(sulfinyl) Ligands as Building Blocks for Copper(II) Coordination Polymers:Cavity Control by Varying the Chain Length of Ligands [J]. Angewandte Chemie Interntional Edition,2001,40(17): 3201-3203.
    [86]Hirsch K. A., Wilson S. R., Moore J. S. Coordination Networks of 3,3'-Dicyanodiphenylacetylene and Silver(I) Salts:Structural Diversity through Changes in Ligand Conformation and Counterion [J]. Inorganic Chemistry,1997, 36(14):2960-2968.
    [87]Tong Ming-Liang., Ye Bao-Hui., Cai Ji-Wen., et al. Clathration of Two-Dimensional Coordination Polymers:Synthesis and Structures of [M(4,4'-bpy)2(H2O)2] (ClO4)2-(4,4'-bpy)2H2O and [Cu(4,4'-bpy)2(H2O)2](ClO4)4·(4,4'-H2Bpy)(M = CdII, ZnII and bpy = Bipyridine) [J]. Inorganic Chemistry,1998,37(21):2645-2650.
    [88]Masood M. A., Enemark Eric J., Stack T. D. P. Ligand Self-Recognition in the Self-Assembly of a [{Cu(L)}2]2+ Complex:The Role of Chirality [J]. Angewandte Chemie Interntional Edition,1998,37(7):928-932.
    [89]Kondo M., Okubo T., Asami A., et al. Rational Synthesis of Stable Channel-Like Cavities with Methane Gas Adsorption Properties:[{Cu2(pzdc)2(L)}n] (pzdc.pyrazine-2,3-icarboxylate; L. Pillar Ligand) [J]. Angewandte Chemie Interntional Edition,1999,38:140-143.
    [90]Chen Bang-Lin., Ma Sheng-Qian., Zapata F., et al. Rationally Designed Micropores within a Metal-Organic Framework for Selective Sorption of Gas Molecules [J]. Inorganic Chemistry,2007,46(4):1233-1236.
    [91]Ren Yan-Ping., Kong Xiang-Jian., Hu Xiang-Yang., et al. Influence of Steric Hindrance of Organic Ligand on the Structure of Keggin-Based Coordination Polymer [J]. Inorganic Chemistry,2006,45(10):4016-4023.
    [92]张国庆.多羧酸金属-有机框架物的合成与结构[D].山东大学硕士学位论文,2011:12-13.
    [93]Wen L. L., Lu Z. D., Ren X. M., et al. Metal-Organic Coordination Polymers Containing Pyridine-2,3-dicarboxylic Acid N-Oxide (2,3-PDCO) [J]. Crystal Growth & Design,2009,9(1):227-238.
    [94]Zhu H. F., Zhang Z. H., Sun W. Y, et al. Syntheses, structures, and properties of two-dimensional alkaline earth metal complexes with flexible tripodal tricarboxylate ligands[J]. Crystal Growth & Design,2005,5(1):177-182.
    [95]Lu W. G., Jiang L., Feng X. L., et al. Three-Dimensional Lanthanide Anionic Metal-Organic Frameworks with Tunable Luminescent Properties Induced by Cation Exchange[J]. Inorganic Chemistry,2009,48:6997-6999.
    [96]Wang X. L., Qin C., Wang E. B., et al. An Unusual 3D Interdigitated Architecture Self-Assembled from Sidearm-Containing 2D Bilayer Motifs with a Cuboidal Framework[J]. European Journal of Inorganic Chemistry,2005,17:3418-3421.
    [97]Fang Q. R., Zhu G. S., Xue M., et al. Structure, luminescence, and adsorption properties of two chiral microporous metal-organic frameworks[J]. Inorganic Chemistry,2005, 45(9):3582-3587.
    [98]Wang R. H., Han L., Jiang, F. L., et al. Three novel cadmium (II) complexes from different conformational 1, 1'-biphenyl-3,3'-dicarboxylate[J]. Crystal Growth & Design, 2005,5(1):129-135.
    [99]Sun C. Y, Gao S., Jin L. P., et al. Hydrothermal Syntheses, Architectures and Magnetic Properties of Six Novel MnII Coordination Polymers with Mixed Ligands[J]. European Journal of Inorganic Chemistry,2006:2411-2421.
    [100]Yue Q., Sun Q., Cheng A. L., et al. Metal-Organic Framework Based on [Zn4O(COO)6] Clusters:Rare 3D Kagome Topology and Luminescence[J]. Crystal Growth & Design, 2010,10(1):44-47.
    [101]Oka K. M., O'Hare D. Synthesis, structure, and characterization of a new thorium-organic framework material, Th3F5[(C10H14)(CH2CO2)2]3(NO3)[J]. Dalton Transactions,2008(41):5560-5562.
    [102]Fang Q. R., Zhu G. S., Jin Z., et al. Mesoporous Metal-organic Framework with Rare Etb Topology for Hydrogen Storage and Dye Assembly[J]. Angewandte Chemie Interntional Edition,2007,119(35):6758-6762.
    [103]Fang Q. R., Zhu G. S., Jin S. Z., et al. A Novel Metal-Organic Framework with the Diamondoid Topology Constructed from Pentanuclear Zinc-Carboxylate Clusters[J]. Crystal Growth & Design,2007,7(6):1035-1037.
    [104]Hao X. R., Wang X. L., Qin C., et al. A 3D Chiral Nanoporous Coordination Framework Consisting of Homochiral Nanotubes Assembled From Octuple Helices[J]. Chemical Communications,2007,44:4620-4622.
    [105]Chui S. S. Y., Lo S. M. F., Charmant J. P. H., et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science,1999,283(5405):1148-1150.
    [106]黄小英.基于柔性二咪唑类配体构筑的配合物的合成、结构及性质研究[D].西北大学硕士学位论文,2010:8.
    [107]郭春燕.基于含N多功能配体的配合物分子的构筑、表征、性能及生物抑菌活性研究[D].西北大学博士学位论文,2009:132-138.
    [108]Huang X. Y., Yue K. F., Jin J. C., et al. Three-dimensional fivefold interpenetrating microporous metal-organic framework based on mixed flexible ligands[J]. Inorganic Chemistry Communications,2010,13(3):338-341.
    [109]Liu G. X., Xu Y. Y, Wang Y, et al. Three zinc(II) complexes constructed from aromatic dicarboxylate and 1,4-bis((2-(pyridin-2-y1)-1H-imidazol-1-y1) methyl)benzene:Syntheses, crystal structures and luminescent properties[J]. Inorganica Chimica Acta,2010,363(14):3932-3938.
    [110]Yang J., Ma J. F., Liu Y. Y., et al., Four-, and six-connected entangled frameworks based on flexible bis(imidazole) ligands and long dicarboxylate anions[J]. CrystEngComm,2009,11(1):151-159.
    [111]谭明雄,陈振锋,罗旭健,等.天然药物有效成分的金属配合物研究进展[J].林产化学与工业,2008,28(6):93-99.
    [112]谭君,王伯初,祝连彩.槲皮素铜(Ⅱ)配合物清除自由基活性的研究[J].时珍国医国药,2007,18(4):800-801.
    [113]谭君.槲皮素金属配合物抗肿瘤作用及其与DNA相互作用的机理研究[D].重庆大学博士学位论文,2007.
    [114]焦小利,刘凤芝,刘海涛.二氢杨梅素—锌配合物的合成及其体外抗肿瘤作用[J].亚太传统医药,2009,5(11):27-29.
    [115]严赞开,陈冬丹.二氢杨梅素铜配合物的合成及其与牛血清白蛋白的相互作用[J].江西师范大学学报,2009,33(2):175-179.
    [116]王秋亚,张尊听.双甲基化大豆苷元磺酸锂的合成及晶体结构[J].化学研究,2000,20(2):41--43,61.
    [117]张尊听,郭亚宁,刘谦光,等.四核钙配位化合物[{Ca(C15H8O7S)(H2O)(DMSO)}3 {Ca(C15H8O7S)(DMSO)2}]·4DMSO的合成和晶体结构及光致发光性能[J].中国科学:B辑化学,2004,34(3):225-234.
    [118]陈振锋,彭艳,谭明雄,等.基于中药活性成分的金属基抗肿瘤药物前期研究[J].化学进展,2009,21(5):929-933.
    [119]Chen Z. F., Liu Y. C., Liu L. M., et al. Potential new inorganic antitumour agents from combining the anticancer traditional Chinese medicine (TCM) liriodenine with metal ions, and DNA binding studies[J]. Dalton Transactions,2009,2:262-272.
    [120]刘华钢,秦三海,刘丽敏,等.鹅掌楸碱银配合物体外诱导肺癌SPC-A-1细胞凋亡及其机制的研究[J].中国药理学通报,2008,24(11):1449-1452.
    [121]毛俐,刘丽敏,刘延成,等.苦参碱Fe(Ⅲ)化合物的合成和抗肿瘤活性[J].广西师范大学学报,2008,26(2):60-63.
    [122]钟地长,张淑凤,陈振锋,等.由苯甲酸根桥联的双核Cu(Ⅱ)-咖啡因配合物的合成、晶体结构[C].中国化学会2005年中西部十五省(区)、市无机化学化工学术交流会论文集,2005.
    [123]谭明雄.中药白花丹活性成分白花丹素金属配合物的合成、抗肿瘤活性及与DNA作用研究[D].中南大学博士学位论文,2008.
    [124]张蓉仙,朱禹,郭文洁,等.线粒体靶向的积雪草酸稀土配合物的合成及抗肿瘤活性[J].化学试剂,2009,31(12):961-963.
    [125]冯小强,李小芳,杨声,等.壳聚糖Fe(Ⅲ)配合物的合成、表征及抑菌性能[J].天然产物研究与开发,2009,21:922-925,938.
    [126]徐甲坤,毕彩丰,范玉华,等.羧甲基壳聚糖金属配合物的制备及抗O2-·活性研究[J].中国海洋大学学报,2009,39(6):1257-1260.
    [127]许军鹏,刘景旺,达文燕,等.稀土-姜黄素-菲啰啉配合物荧光和抑菌活性研究[J].中国稀土学报,2009,27(1):68-75.
    [128]黄凌.若干具有生物活性配体的金属配合物的合成、晶体结构、生物活性及磁学性质研[D].广西师范大学硕士学位论文,2004:6.
    [129]Tian A., Ying J., Peng J., et al. Tuning the Dimensionality of the Coordination Polymer Based on Polyoxometalate by Changing the Spacer Length of Ligands[J]. Crystal Growth & Design,2008,8(10):3717-3724.
    [130]Zheng B., Dong H., Bai J., et al. Temperature Controlled Reversible Change of the Coordination Modes of the Highly Symmetrical Multitopic Ligand To Construct Coordination Assemblies:Experimental and Theoretical Studies[J]. Journal of American Chemical Society,2008,130:7778-7779.
    [131]Burrows A. D., Cassar K., Duren T., et al. Syntheses, Structures and Properties of Cadmium Benzenedicarboxylate Metal-Organic Frameworks [J]. Dalton Transactions, 2008,2465-2474.
    [132]Sha J., Peng J., Lan Y., et al. pH-Dependent Assembly of Hybrids Based on Wells-Dawson POM/Ag Chemistry[J]. Inorganic Chemistry,2008,47(12): 5145-5153.
    [133]Xu N., Shi W., Liao D. Z., et al. Template Synthesis of Lanthanide (Pr, Nd, Gd) Coordination Polymers with 2-Hydroxynicotinic Acid Exhibiting Ferro-AAnti ferromagnetic Interaction[J]. Inorganic Chemistry,2008,47(19):8748-8756.
    [134]Ockwig N. W., Delgado-Friedrichs O., O'Keeffe M., et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks [J]. Accounts of Chemical Research,2005,38:176-182.
    [135]Li S. L., Lan Y. Q., Ma J. F., et al. Syntheses and Structures of Organic-Inorganic Hybrid Compounds Based on Metal-Fluconazole Coordination Polymers and the β-Mo8O26 Anion[J]. Inorganic Chemistry,2007,46(20):8283-8290.
    [136]Zhou Y. F., Jiang F. L., Yuan D. Q., et al. Copper Complex Cation Templated Gadolinium(III)-Isophthalate Frameworks[J]. Angewandte Chemie Interntional Edition,2004,43:5665-5668.
    [137]Fang R. Q., Zhang X. M. Diversity of Coordination Architecture of Metal 4,5-Dicarboxyimidazole[J]. Inorganic Chemistry,2006,45:4801-4810.
    [138]Moulton B., Zaworotko M. J. From Molecules to Crystal Engineering:Supram olecular Isomerism and Polymorphism in Network Solids[J]. Chemical Reviews, 2001,101:1629-1658.
    [139]Forster P. M., Burbanki A. R., Livage, C., et al. The role of temperature in the synthesis of hybrid inorganic-organic materials:the example of cobalt succinates[J]. Chemical Communications,2004,4:368-369.
    [140]Stock N., Bein T. High-throughput investigation of metal carboxyarylphosphonate hybrid compounds[J]. Journal of Materials Chemistry,2005,15:1384-1391.
    [141]Tong M. L., Kitagawa S., Chang H. C., et al. Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co3(OH)2 ferrimagnetic chains[J]. Chemical Communications, 2004,4:418-419.
    [142]Forster P. M., Stock N., Cheetham, A. K. A High-Throughput Investigation of the Role of pH, Temperature, Concentration, and Time on the Synthesis of Hybrid Inorganic-Organic Materials[J]. Angewandte Chemie Interntional Edition,2005,44: 7608-7611.
    [143]Holmes K. E., Kelly P. F., Elsegood M. R. J. Honeycombs, herringbones and brick-walls; three-fold guest-dependent variation in copper trimesate complexes bearing sulfimide ligands[J]. Dalton Transactions,2004:3488-3494.
    [144]Gurunatha K. L., Uemura K., Maji T. K. Temperature- and Stoichiometry-Controlled Dimensionality in a Magnesium 4,5-Imidazoledicarboxylate System with Strong Hydrophilic Pore Surfaces[J]. Inorganic Chemistry,2008,47:6578-6580.
    [145]Shi Q., Sun Y. T., Sheng L. Z., et al. Anion-Dependent Crystallization of Four Supramolecular Cadmium Complexes:Structures and Property Studies[J]. Crystal Growth & Design,2008,8:3401-3407.
    [146]Xiao D. R., Wang E. B., An H. Y., et al. Syntheses and Structures of Three Unprecedented Metal-Ciprofloxacin Complexes with Helical Character[J]. Crystal Growth & Design,2007,7:506-512.
    [147]Wang X. J., Zhan C. H., Feng Y. L., et al. Two unusual (4,6)- and 8-connected metal-organic frameworks constructed from flexible 1,4-benzenebis(thioacetic acid) and pyridine-based ligands [J]. CrystEngComm,2011,13:684-689.
    [148]Wang X. L., Qin C., Wang E. B., et al. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting [J]. Angewandte Chemie International Edition,2005,44:5824-5827.
    [149]Wang S. N., Bai J. F., Li Y. Z., et al. Synthesis, structures and properties of nickel(II) and cobalt(II) metal-organic frameworks based on a flexible tricarboxylate ligand H3TTG and different pyridyl-containing ligands[J]. CrystEngComm,2007,11(9): 1084-1095.
    [150]Wang S. N., Sun R., Wang X. S., et al. Versatile lanthanide coordination assemblies due to the synergistic effect of lanthanide contraction and flexibility of a flexible tricarboxylate ligand[J]. CrystEngComm,2007,11(9):1051-1061.
    [151]Wang S. N., Bai J. F., Li Y. Z., et al. Two new 3D metal-organic frameworks of nanoscale cages constructed by Cd(II) and conformation-flexible cyclohexane hexacarboxylate[J]. Chemical Reviews,2006:3166-3168.
    [152]戴昉纳.基于多羧酸配体的新型金属--有机超分子的合成、结构及性能研究[D].山东大学博士学位论文,2011:49.
    [153]Withersby M. A., Blake A. J., Champness N. R., et al. Synthesis, Structure, Photophysical Properties, and Redox Behavior of Cyclometalated Complexes of Iridium(III) with Functionalized 2,2'-Bipyridines [J]. Inorganic Chemistry,1999, 38(10):2259-2266.
    [154]Lopez S., Keller S. W. New Linear Coordination Polymers Based on Copper(I) and 4,7-Phenanthroline:Structure Dependence on Solvent and Counteranion[J]. Inorganic Chemistry,1999,38(8):1883-1888.
    [155]Chen B. L., Fronczek F. R., Maverick A. W. Solvent-dependent 44 Square Gri d and 64.82 NbO Frameworks Formed by Cu(Pyac)2(bis[3-(4-pyridyl)pentane-2,4-dionato] copper(II)) [J]. Chemical Communications,2003,17:2166-2167.
    [156]Tynan E., Jensen P., Kruger P. E., et al. Solvent Templated Synthesis of Metal-Organic Frameworks:Structural Characterization and Properties of the 3D Network Isomers{[Mn(dcbp)]·1/2DMF}n and {[Mn(dcbp)]-2H2O}n [J]. Chemical Communications,2004,7:776-777.
    [157]Tabellion F. M., Seidel S. R., Arif A. M., et al. A Novel, Tunable Manganese Coordination System Based on a Flexible "Spacer" Unit:Non covalent Templation Effects [J]. Journal of American Chemical Society,2001,123(48):11982-11990.
    [158]Withersby M. A., Blake A. J., Champness N. R., et al. Assembly of a Three-Dimensional Polyknotted Coordination Polymer [J]. Journal of American Chemical Society,2000,122(17):4044-4046.
    [159]Nattinen K. I., Rissanen K. Ligand Entrapment in Twofold Interpenetrating PtS Matrixes by Metallo-Organic Frameworks [J]. Inorganic Chemistry,2003,42(17): 5126-5134.
    [160]Yang Jin., Li Guo-Dong., Cao Jun-Jun., et al. Structural Variation from ID to 3D: Effects of Ligands and Solvents on the Construction of Lead(II)-Organic Coordination Polymers [J]. Chemistry- A European Journal,2007,13:3248-3261.
    [161]Sheldrick G. M. SHELXS, University of Gottingen, Germany,1997.
    [162]Sheldrick G. M. SHELXL, Program for the Refinement of Crystal Structures, University of Gottingen, Germany,1997.
    [163]钟地长,石少明,邓记华,等.新法合成Cu2(B enzoate)4(C affeine)4及其性质[J].广西师范大学学报:自然科学版,2007,25(3):68-71.
    [164]Zhang W. H., Wang Y. Y., Lermontova E. K., et al. Interaction of 1,3-Adamantanediacetic Acid (H2ADA) and Ditopic Pyridyl Subunits with Cobalt Nitrate under Hydrothermal Conditions:pH Influence, Crystal Structures, and Their Properties[J]. Crystal Growth & Design,2010,10(1):76-84.
    [165]Han Z. B., Cheng X. N., Chen X. M., et al. Effect of the size of aromatic chelate ligands on the frameworks of metal dicarboxylate polymers:from helical chains to 2-D networks[J]. Crystal Growth & Design,2005,5(2):695-700.
    [166]Ma L. F., Wang L. Y., Hu J. L., et al. Syntheses, Structures, and Photoluminescence of a Series of d10 Coordination Polymers with R-Isophthalate (R = -OH,-CH3, and-C(CH3)3)[J]. Crystal Growth & Design,2009,9(20):5334-5342.
    [167]Peng X. J., Du J. J., Fan J. L., et al. A selective fluorescent sensor for imaging Cd2+ in living cells[J]. Journal of the American Chemical Society,2007,129(6):1500-1501.
    [168]Ma J. F., Yang J., Zheng G. L., et al. A porous supramolecular architecture from a copper (II) coordination polymer with a 3D four-connected 86 net[J]. Inorganic Chemistry,2003,42(23):7531-7534.
    [169]Yang J., Ma J. F., Liu Y. Y., et al. Four novel 3D copper (II) coordination polymers with different topologies[J]. European Journal of Inorganic Chemistry,2005,11: 2174-2180.
    [170]Liu Y. Y., Ma J. F., Yang J., et al. Syntheses and characterization of six coordination polymers of zinc (II) and cobalt (II) with 1,3,5-benzenetricarboxylate anion and bis (imidazole) ligands[J]. Inorganic Chemistry,2007,46(8):3027-3037.
    [171]Wen L. L., Lu Z. D., Lin J. G., et al. Syntheses, Structures, and Physical Properties of Three Novel Metal-Organic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons[J]. Crystal Growth & Design,2007, 7(1):93-99.
    [172]Jin S. W., Chen W. Z., Qiu H. Y., et al. Syntheses and Structural Characterization of a One-Dimensional Chain, Two-Dimensional Noninterpenetrated Grid, and Three-Dimensional Polycatenane Coordination Polymers Assembled from Flexible Bidentate Imidazolyl Ligands[J]. Crystal Growth & Design,2007,7(10):2071-2079.
    [173]Jin S. W., Chen W. Z., Qiu H. Y., et al. Syntheses and structural characterization of inorganic-organic hybrid solids of diimidazolium hexachlorostannate complexes[J]. Journal of Coordination Chemistry,2008,61(8):1253-1264.
    [174]Hoskins B. F., Robson R., Slizys D. A., et al. An Infinite 2D Polyrotaxane Network in Ag2(bix)3(NO3)2(bix=1,4-bis(imidazol-1-ylmethyl)benzene)[J]. Journal of the American Chemical Society,1997,119:2952-2953.
    [175]Yang J., Ma J. F., Liu Y. Y., et al. Two New CuII Coordination Polymers:Studies of Topological Networks and Water Clusters[J]. European Journal of Inorganic Chemistry,2006, (6):1208-1215.
    [176]Fang R. Q., Zhang X. M. Diversity of Coordination Architecture of Metal 4,5-Dicarboxyimidazole[J]. Inorganic Chemistry,2006,45:4801-4810.
    [177]Xu Y. H., Lan Y. Q., Shao K. Z., et al. Auxiliary aromatic-acid effect on the structures of a series of Zn {sup II} coordination polymers:Syntheses, crystal structures, and photoluminescence properties[J]. Journal of Solid State Chemistry,2010,183: 849-857.
    [178]Zhu H. F., Fan J., Okamura T., et al. Syntheses and structures of zinc (II), silver (I), copper (II), and cobalt (II) complexes with imidazole-containing ligand: 1-(1-Imidazolyl)-4-(imidazol-1-ylmethyl) benzene[J]. Crystal Growth & Design,2005, 5:289-294.
    [179]Jin S. W., Wang D. Q., Chen W. Z. Synthesis, luminescence, and structural characterization of Zn and Cd coordination polymers of flexible bis(imidazolyl) derivatives [J]. Inorganic Chemistry Communications,2007,10:685-689.
    [180]Jin S. W., Chen W. Z. Synthesis, spectral and crystallographic characterization of manganese(II) coordination polymers based on aliphatic dicarboxylate and flexible bis(imidazolyl) derivatives [J]. Inorganica Chimica Acta,2007,360:3756-3764.
    [181]Spek A.L., PLATON, Utrecht University, Utrecht, The Netherlands,1998.
    [182]Genuis E. D., Kelly J. A., Patel M., et al. Coordination Polymers from the Self-Assembly of Silver(I) Salts and Two Nonlinear Aliphatic Dinitrile Ligands, Cis-1,3-Cyclopentanedicarbonitrile and Cis-1,3-Bis(cyanomethyl)cyclopentane: Synthesis, Structures, and Photoluminescent Properties [J]. Inorganic Chemistry,2008, 47(14):6184-6194.
    [183]Du M., Jiang X. J., Zhao X. J. Molecular Tectonics of Mixed Ligand Metal-Organic Frameworks[J]. Inorganic Chemistry,2007,46(10):3984-3995.
    [184]文桂林.基于V型配体2,5-二(4-吡啶基)-1,3,4-噻二唑的分子工程及功能配位聚合物的研究[D].西北大学博士学位论文,2009:123.
    [185]张亚男.基于柔性配体6,6'-二硫二烟酸构筑的配位聚合物的合成、结构和性质的研究[D].西北大学博士学位论文,2011:73.
    [186]Sengupta S. K., Pandey O. P., Srivastava B. K., et al. Synthesis, structural and biochemical aspects of titanocene and zirconocene chelates of acetylferrocenyl thiosemicarbazones[J]. Transition Metal Chemistry,1998,23:349-353.
    [187]覃事栋.多苯并咪哩配合物的合成及其超氧化物歧化酶模拟活性研究[D].山西大学博士学位论文,2005:81-110
    [188]李风华,刘天府,吴红星,等.2,9-二(n-2',5'-二氮杂庚基)-1,10-菲罗啉镍(Ⅱ)配合物的合成、晶体结构及生物活性研究[J].南开大学学报(自然科学版),2004,37(1):27-32
    [189]王莉,魏丽梅,张勇,等.配合物[Mn(EDTB)] (NO3)·2DMF的合成、晶体结构及多酚氧化酶(PPO)活性的研究[J].无机化学学报,2011,27(1):125-130
    [190]覃事栋,冯思思,张红梅,等.配合物[Ni(EDTB)]·2Cl·CH3OH·C2H5OH的合成、晶体结构及SOD模拟活性的研究[J].化学学报,2005,63(13):1155-1160
    [191]Marklund S., Marklund G.. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase[J]. European Journal of Biochemistry,1974,47:469-474.
    [192]Yamashita Y., Kawada S. Z., et al. Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids, genistein and orobol [J]. Biochemical Pharmacology,1990,39(4):737-744.
    [193]Cornard J.P., Merlin J.C.. Comparison of chelating power of hydroxyflavones [J]. Journal of Molecular Structure,2003,651-653:381-387.
    [194]钟地长,张淑凤,陈振锋,等.天然产物黄酮类化合物的提取、纯化及其金属配合物的研究进展[J].化学世界,2006,9:561-573.
    [195]Zhou J., Wang L.F., Wang J.Y., et al. Antioxidative and anti-tumour activities of solid quercetin metal (II) complexes [J]. Transition Metal Chemistry,2001,26:57-63.
    [196]Bravo A., Anacona J. R.. Metal complexes of the flavonoid quercetin:antibacterial properties [J]. Transition Metal Chemistry,2001,26:20-23.
    [197]朱金婵.三种黄酮铜配合物的合成及其生物活性研究[D].广西师范大学硕士学位论文,2005:21-43.
    [198]俞梅兰.榭皮素铬(Ⅲ)配合物的合成、表征及生物活性研究[D].南昌大学硕士学位论文,2006:28-42.
    [199]贾小燕,闫素清,柴保臣,等.槲皮素-钼配合物对超氧阴离子和羟自由基的清除作用[J].华西药学杂志,2008,23(1):040-042.
    [200]李思睿,董慧茹,毕鹏.禹黄芩苷-Fe(Ⅱ)配合物的合成与表征[J].北京化工大学学报,2006,33(2):97-101.
    [201]Nicole C., Maria C. P., Maria C. A., et al. Antioxidant properties of hydroxyl flavones [J]. Free Radical Biology & Medicine,1996,20(1):35-43.
    [202]关立立,侯微,金银萍,等.干玉竹根与鲜玉竹根萃取组分清除DPPH·活性比较[J].特产研究,2011,(1):42-43,58.
    [203]Marklund S.. Involvement of the super oxide anion radical in the autoxidation pyrogallol and a convenient assay for super oxide dismutase[J]. European Journal of Biochemistry,1974,47:469-474.
    [204]文镜,贺素华,杨育颖,等.保健食品清除自由基作用的体外测定方法和原理[J]. 食品科学,2004,25(11):190-195.
    [205]曾军,石国荣.天然产物抗氧化活性的测定方法和原理[J].安徽农学通报,2008,14(22):35-36.
    [206]蒋柳云,刘玉明.两种槲皮素-Zn配合物的抗氧化活性及其结构的量子化学研究[J].安徽农学通报,2005,25(6):684-689.
    [207]陈季武,胡天喜,朱大元.11种黄酮类化合物清除超氧阴离子的构效关系研究[J].中国药学杂志,2002,37(1):57-58.
    [208]Tu C., Wu X., Liu Q., et al. Crystal structure, DNA-binding ability and cytotoxic activity of platinum (II) 2,2'-dipyridylamine complexes [J]. Inorganica Chimica Acta, 2004,357(1):95-102.
    [209]李燕华.黄酮类希夫碱配合物的合成、表征、抗氧化活性以及与DNA结合的研究[D].兰州大学硕士学位论文,2006:53.
    [210]彭斌,巢晖,计亮年.含萘环结构的手性Salen-Mn(III)配合物与DNA的相互作用[J].中国科技论文在线,2008,3(9):698-702.
    [211]蒋小磊.卟啉缀合物的合成、表征及其与DNA作用的活性研究[D].广东药学院硕士学位论文,2010:27-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700