细胞周期调控对慢性癫痫大鼠反应性星形胶质细胞增殖活化以及神经元凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察细胞周期素依赖性蛋白激酶(Cyclin-dependent protein kinases,CDK)的选择性抑制剂olomoucine对戊四氮点燃大鼠慢性癫痫模型反应性星形胶质细胞(Astrocyte,AST)增殖活化和凋亡的影响,以及对神经元凋亡的影响,探讨细胞周期调控与慢性癫痫反复发作的关系。
     方法建立戊四氮(PTZ)点燃的大鼠慢性癫痫模型,随机分为生理盐水对照组,戊四氮组和olomoucine+戊四氮组,在完全点燃后1d、3d、7d、21d、30d、49d断头取脑行冰冻切片,利用共聚焦显微镜结合免疫荧光化学方法(immunofluores- cence staining)和原位末端标记法(TdT-mediated dUTP-biotin nick end labeling,TUNEL),观察戊四氮完全点燃后各组不同时期皮层及海马胶质细胞纤维酸性蛋白(glial fibrillary acidic protein ,GFAP)、神经元凋亡(neuronal apoptosis)、星形胶质细胞凋亡(astrocytic apoptosis)的动态变化。
     结果1.慢性癫痫模型被完全点燃后大鼠海马及皮层星形胶质细胞(AST)增殖活化,选择性CDK抑制剂olomoucine干预后能抑制AST的增殖活化;2.慢性癫痫模型完全点燃后星形胶质细胞增殖活化的同时存在AST凋亡增加,选择性CDK抑制剂olomoucine部分减少AST凋亡;3.戊四氮完全点燃的慢性癫痫模型各时期神经元凋亡明显高于生理盐水对照组(p<0.05); PTZ+olo组与生理盐水相比,早期神经元凋亡(1d,3d,7d)显著增加(p<0.05),晚期无显著性差异(p>0.05); PTZ+olo组与PTZ组相比神经元凋亡明显减少(p<0.05),olomoucine明显减少了慢性癫痫大鼠海马及皮层脑区神经元凋亡,具有神经保护作用;4.选择性CDK抑制剂olomoucine并不能抑制慢性癫痫模型完全点燃,且早期有促痫性发作。
     结论癫痫反复发作可促使神经细胞细胞周期(cell cycle)启动,AST反应性增殖活化,同时神经细胞凋亡增加。CDK选择性细胞周期抑制剂olomoucine可以调控细胞周期,抑制AST的反应性肥大、活化和增殖,减少神经元的凋亡,并能部分减少胶质细胞凋亡,为痫性发作的神经保护提供新靶点。
Abstract Object:To study the effect of Cyclin-dependent protein kinases selective inhibitor olomoucine on the activation and proliferation and of AST,and on astrocytic apoptosis and on neuronal apoptosis in pentylenetrazol induced chronic epileptic rats.to explore the effect of cell cycle regulation on chronic epilepsy.
     Methods: The chronic epileptic model was induced by Pentylenetetrazol ( PTZ ) .Rats were randomly divided into 3 groups:sham-operated control groups(are treated by physiological saline);PTZ group and Olomoucine+PTZ group.The experimental rats were sacrificed on day 1,3,7,21,30,and 49 after complete kindling.The brain was taken, and then the apoptosis of neurons and astrocytes was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL).The expression of NeuN and GFAP were observed by immunofluorescence staining.To observed the dynamic change of GFAP、neuronal apoptosis、astrocytic apoptosis in cortical or hippocampus after treated with Olomoucine - a selective CDK inhibitor.
     Result:1.After kindling, As a response to“brain injury”, AST in cortical and hippocampus area appeared hypertrophy、proliferation,the number Of the GFAP-positive cells increased. After treated with Olomoucine,the hypertrophy proliferation of AST mitigated;the number of the GFAP-positive cells decreased. 2.After kindling,the number of TUNEL-positive astrocytes in cortical or hippocampus significantly increased , After treated with Olomoucine , the number of TUNEL-positive astrocytes in cortical or hippocampus partly decreased.3.After kindling,in the PTZ groups,the number of TUNEL-positive neurons in cortex or hippocampus prominent increased compared with that of the control group(p<0.01). Compared with PTZ groups,the number of TUNEL-positive neurons decreased significantly in Olomoucine+PTZ groups(p<0.05).In Olomoucine+PTZ groups, the number of TUNEL-positive neurons increased significantly in the early period (1,3,7d), notablely on day 1(p<0.01) ,but shows little difference in the later phase( 21,30,49d,p>0.05),compared with that of the control group. 4.Cell cycle inhibitor olomoucine can not prevent the chronic epilepsia model was complete kindling.In the early period,the chronic epilepsia rats were easily kindled after treated with Olomoucine.
     Conclusion:After kindling, AST entered cell cycle and appeared proliferation and activation, and astrocytic apoptosis increased, neuronal apoptosis increased prominently as well.Olomoucine, a selective CDK inhibitor could inhibit the hypertrophy, activation and proliferation of astrocytes effectively through regulating cell cycle. Our results also suggest that cell cycle regulation can reduce astrocytic and neuronal apoptosis after kindling . which might provide a new target for neuroprotection during chronic epilepsy.
引文
1.Sternevi U, et al. Effects of localized intracerebral injections of nerve growth factor on the regenerative growth of lesioned central noradrenergic neurones. Brain Res 1974 Apr5;69(2):217-34.
    2.Norton WT,Aquino DA,et al.Quantitative aspects of reactive gliosis:a review.Neurochem Res;1992 Sep;17(9):877-885.
    3.Rao SD,Weiss JH.Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci. 2004 Jan;27(1):17-23.
    4.Goldman S. Glia as neural progenitor cells. Trends Neurosci.2003 Nov; 26(11) :590-6.
    5. Horner PJ, Palmer TD.New roles for astrocytes: the nightlife of an 'astrocyte'. La vida loca! .Trends Neurosci.2003Nov;26(11):597-603.
    6.Newman EA.New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci.2003 Oct;26(10):536-42
    7.Ransom B,Behar T,Nederqaard M.New roles for astrocytes (stars at last). Trends Neurosci.2003 Oct;26(10):520-2
    8.Bennett MV,et al. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci.2003Nov;26(11):610-7
    9.Nederqaard M,et al.New roles for astrocytes: redefining the functional archi- tecture of the brain. Trends Neurosci.2003 Oct;26(10):523-30
    10.Slezak M,Dfrieqer FW. New roles for astrocytes: regulation of CNS synapto- genesis. Trends Neurosci.2003 Oct;26(10):531-5
    11.Meijer L, Borgne A, Mulner O, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997, 243(1-2): 527-536.
    12.Liu DX, Greene LA. Regulation of neuronal survival and death by E2F-dependent gene repression and derepression. Neuron, 2001, 32(3): 425-438.
    13.王萍,王伟.神经元细胞周期再进入的研究进展,国际脑血管病杂志,2006,14(9):711-713.
    14.Love S. Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neurosci Lett, 2003, 353(1): 29-32.
    15.Husseman JW, Nochlin D, Vincent I. Mitotic activation: A convergent mechanism for a cohort of neurodegenerative diseases. Neurobiol Aging, 2000, 21(6): 815-828.
    16.Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci, 2001, 21(8): 2661-2668.
    17.Byrnes KR,Faden AI. Role of cell cycle proteins in CNS injury.Neurochem Res.2007 Apr 3;[Epub ahead of print]
    18.陈晨,王伟等.细胞周期调控对大鼠全脑缺血后海马迟发性神经元死亡的影响.中国组织化学与细胞化学杂志,2005,1(14):1-6
    19.Di Giovanni S,et al.Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury.Proc Natl Acad Sci USA,2005 Jun 7;102(23):8333-8
    20.王艺,李智平等.戊四氮点燃大鼠慢性癫痫模型的建立及评价.复旦学报(医学版),2006 ,33(2):206-208
    21. Fathollahi Y,Motamedi F,Semnanian S,et a1.Examination of persistent effects of reperted administration of pentyleneterazol on rat hippocampal CAl:evidence from vitro study on hippocampal slices.Brain Res,1997,758(1-2):92-8
    22.Binder DK,Steinhauser C.Functional Changes in Astroglial Cells in Epilepsy. Glia,2006 Oct;54(5):358–368
    23.Langle SL,et al.Neuronal-glial remodeling: a structural basis for neuronal–glial interactions in the adult hypothalamus. Journal of Physiology - Paris 2002,
    96(3-4):169–175
    24.Morimoto K, et al.Kindling and status epilepticus models of epilepsy: rewiring the brain.Progress in Neurobiology 2004,73(1):1-60
    25.Zhang ZG, Brower L, et al.Three-dimensional measurement of cerebral microvascular plasma perfusion, glial fibrillary acidic protein and microtubule associated protein-2 immunoreactivity after embolic stroke in rats: a double fluorescent labeled laser-scanningconfocal microscope study. Brain Res 1999 Oct9; 844(1-2): 55-56
    26.Lefrancois T,et al.Neuritic outgrowth associated with astroglial phenotypic changes induced by antisense glial fibrillary acidic protein (GFAP) mRNA in injured neuron-astrocyte cocultures. J Neurosci,1997 Jun 1;17(11):4121–4128
    27.Teixeira A,Chaverot N, et al. Differential regulation of cyclin D1 and D3 expression in the control of astrocyte proliferation inducd by endothelin-1.J Neurochem.2000 Mar;74(3),1034-1040
    28.Albrecht PJ,et al. Ciliary neurotrophic factor activates spinal cord astrocytes,stimulating their production and release of fibroblast growth factor-2,to increase motor neuron survival.Exp Neurol. 2002 Jan,173(1)46-62
    29.Levison SW, Jiang FJ, et al.IL-6 type cytokines enhance epidermal growth factor-stimulated astrocyte proliferation .Glia, 2000 Dec,32(3):328-337
    30.Lin TN, Wang PY, Chi SI, Kuo JS. Differential regulation of ciliary neurotrophic factor(CNTF)and CNTF receptor alpha(CNTFR alpha) expression following focal cerebral ischemia. Brain Res Mol Brain Res, 1998 Mar 30,55(1): 71-80
    31.Osuga H,Osuga S,Wang FH,et a1. Cyclin-depedent kinases as a therapeutic target for stroke.Proc Natl Acad Sci USA,2000 Aug,97 (18):10254—10259
    32.Smith ML, Booze RM. Cholinergic and GABAergic neurons in the nucleus basalis region of young and aged rats. Neuroscience, 1995; 67:679–688.
    33.Murnane JP.Cell cycle regulation in response to DNA damage in mammalian cells:a historical perspective.Cancer Metastasis Rev,1995 Mar;14(1):17-29
    34.Norbury C,Nurse P.Animal cell cycles and their control.Annu Rev Biochem, 1992;61:441-470
    35.Weinberg RA. The retinoblastoma protein and cell cycle control. Cell, 1995;81 (3):
    323–330.
    36.Lees E. Cyclin dependent kinase regulation. Curr. Opin. Cell. Biol. 1995;7: 773–780.
    37.Malumbres M. Revisiting the“cdk-centric”view of the mammalian cell cycle. Cell cycle, 2005; 4 (2): 206-210.
    38.Murray AW. Recycling the cell cycle: cyclins revisited. Cell, 2004;116 (2): 221-234.
    39.Mgbonyebi OP, Russo J.Roscovitine induces cell death and morphological changes indicative of apoptosis in MDA-MB-231 breast cancer cells.Cancer Res 1999 Apr15; 59(8):1903-1910
    40.King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol. 1998;60:601-17
    41.Abraham RT, Acquarone M et, al.Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases. Biol Cell 1995;83(2-3),105-20
    42.Schutte B, Nieland L, et al.The effect of the cyclin-dependent kinase inhibitor olomoucine on cell cycle kinetics. Exp. Cell Res.1997 Oct 10;236(1),4-15
    43.Vermeulen K, Van Bockstaele DR and Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003 Jun 36(3), 131–149 review
    44.Montagnoli A, et al.Ubiquitination of p27 is regulated by CDK-dependent phosphorylation and trimeric complex formation. Genes Dev.1999 May 13(9): 1181-9
    45.Liou AK,Clark RS,el a1.To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy:a review on the stress-activated signaling pathways and apoptotic pathways.Prog Neurobiol,2003 Feb,69(2):103-142
    46.Wen Y, Yang S, Liu R, et al. Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzhermer’s disease-like tauopathy in female rats. J Biol Chem, 2004,279(21): 22684-22692.
    47.Park DS, Obeidat A, Giovanni A, et al. Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiol Aging, 2000, 21(6): 771-781.
    48.Nguyen MD, Boudreau M, Kriz J, et al. Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci, 2003, 23(6): 2131-2140.
    49.Niquet J,Wasterlain CG.Bin,Bad,and Bax:a deadly combination in epileptic seizures[J].J Clin Invest,2004,113:960-962
    50.Henshall DC;Simon RP,et al.Epilepsy and apoptosis pathways.J Cereb Blood Flow Metab,2005 Dec,25(12):1557-1572.Review
    51.Padmanabhan J.Role of cell cycle regulatory protein incerebellar granule neuron apoptosis.J Neurosci,1997,19:8747-8756
    52.Slimone DG,Vilen M,Fafid A,et al. Cel1 cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brmn injury.PNAS,2005,102 (23):8333—8338
    53.Meikrantz W, Schlegel R. Apoptosis and the cell cycle. J Cell Biochem,1995 Jun,58(2):160-174
    54.Hardcastle IR, Golding BT, Griffin RJ.Designing inhibitors of cyclin-dependent kinases. Annu Rev Pharmacol Toxicol.2002; 42:325-348.
    55.Vermeulen K, Strnad M, et al. Plant cytokinin analogues with inhibitory activity on cyclin dependent kinases (CDK) exert their antiproliferative effect through induction of apoptosis initiated by the mitochondrial pathway: determination by a multiparametric flow cytometric analysis. Exp Hematol.2002 Oct;30(10), 1107-14.
    56. Ongkeko W, Ferguson DJ, Harris AL, Norbury C .Inactivation of Cdc2 increases the level of apoptosis induced by DNA damage. J Cell Sci.1995 Aug;108(pt 8): 2897-904.
    57.王萍,王伟等.大鼠脑缺血再灌注后神经元和星形胶质细胞凋亡的比较研究.中国组织化学与细胞化学杂志,2006,15(2):113-118.
    58. Lippa CF,Saunders AM,Smith TW,et a1.Familia and sporadic Alzheimer"s disease:neuropathology can not exclude a find common pathway.Neurology,Feb 1996,46:406-412
    59.朱舟,王伟,杨渝珍.胶质疤痕研究新进展.国外医学·物理医学与康复学分册,2004,24:136-139
    1.Wang MJ,Jeng KC , et al.c-Jun N-terminal kinase and, to a lesser extent, p38 mitogen-activated protein kinase regulate inducible nitric oxide synthase expression in hyaluronan fragments-stimulated BV-2 microglia.Journal of Neuroimmunology 2004,146(1-2): 50–62.
    2.Shao Y, McCarthy KD. Plasticity of astrocytes. Glia, 1994,11(2):147~155.
    3.Langle SL,et al.Neuronal-glial remodeling: a structural basis for neuronal–glial interactions in the adult hypothalamus. Journal of Physiology - Paris 2002,96(3-4):169–175.
    4.Morimoto K, et al.Kindling and status epilepticus models of epilepsy: rewiring the brain.Progress in Neurobiology 2004,73(1):1-60.
    5.Marchi1 N,et al.Significance of MDR1 and multiple drug resistance in refractory human epileptic brain.BMC Medicine 2004,9(2):37.
    6.Osesa JP, et al.Biochemical brain markers and purinergic parameters in rat CSF after seizure induced by pentylenetetrazol.Brain Research Bulletin 2004,64(3):237–242.
    7.Nakagaw T, et al. Regional expression of the radial glial marker vimentin at different stages of the kindling process. Epilepsy Research 2004,61(1-3):141–151.
    8.Vessala M, et al.Might astrocytes play a role in maintaining the seizure-prone state?.Brain Research 2005,1044(2): 190–196.
    9.Scorza C.A., Arida R.M.,et al.Expression of nestin in the hippocampal formation of rats submitted to the pilocarpine model of epilepsy. Neuroscience Research 2005 ,51(3):285-291.
    10.Benveniste EN,Sparacio SM,Bethen JR.TNF-αEnhances IFN-γinduced MHC-Ⅱclass antigen expression on astrocytes.J Neuroimmunol,1989,25(2-3),209-219.
    11.Theodosis DT, et al. Neuronal, glial and synaptic remodeling in the adult hypothalamus: functional consequences and role of cell surface and extracellular matrix adhesion molecules.Neurochemistry International 2004,45(4):491–501.
    12.Fonseca CG,et al.Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy.Brain Research 2002,929(1):105–116.
    13. Wallraff Anke,et al.The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. JNeurosci, 2006,26(20):5438–5447.
    14.Rizzi M, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development.Neurobiology of Disease 2003,14(3) 494–503.
    15.Abiru Y,et al. High potassium enhances secretion of neurotrophic factors from cultured Astrocytes.Brain Research 1998 ,809(1):115–126.
    16.Kim1 SY,et al.Osteopontin in Kainic Acid-induced Microglial Reactions in the Rat Brain.Mol. Cells.2002,13(3):429-435.
    17.Spori? D, et al.Association of refractory complex partial seizures with a polymorphism of ApoE genotype.J. Cell. Mol. Med. 2005,9(3) :698-703.
    18.Butt AM, Kalsi A. Inwardly rectifying potassium channels (Kir) in central nervous system glia:a special role for Kir4.1 in glial functions. J. Cell. Mol. Med. 2006,10(1):33-44.
    19.Rogawski AM.Astrocytes get in the act in epilepsy. Nature Med;2005,11(9):919-920.
    20.夏峰,黄远桂.谷氨酸转运蛋白与癫痫.卒中与神经疾病,2000,7(3):187-189.
    21.HQH,EloqayliH,Sonnewald U.Pentylenetetrazole Affects Metabolism of Astrocytes in Culture.Journal of Neuroscience Research 2005,79(1-2):48–54 .
    22.李锐,黄远桂.P糖蛋白与难治性癫痫.卒中与神经疾病,2003,10(5):315-317。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700