特殊环境下的光电图像获取与处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火炮静态参数测量是现代火炮研究、设计和使用中的一个必须而重要的技术环节,随着火炮研制、生产水平和使用要求的不断提高,原来基于光学望远系统的人工测量、人工处理数据的测量方法已经不能满足需要,必须建立高精度、高效率、高度自动化的测量系统。本文对我们所研制的、以激光准直与CCD成像测量为核心的、火炮身管弯曲度和药室容积等静态参数测量系统中的光电成像和图像处理等关键技术进行了深入研究。
     在对现役的火炮身管弯曲度和药室参数的测量原理、测量方法、测量装备的性能及其局限性进行深入研究的基础上,我们设计并实现了一种以激光准直与CCD成像为核心的身管弯曲度和药室参数测量系统方案,本文就系统中特殊环境下的光电图像获取和高精度图像测量两个方面的内容进行了深入重点研究,即针对火炮身管内膛的特殊环境,研究设计了光电成像场景状态控制和近距离高清晰成像的光学系统方案,根据所获取的特殊图像,研究出了相应的图像预处理、图像校正和高精度图像测量方案和算法。在进行了原理实验研究、计算机仿真优化的基础上,该方案和算法已经应用于火炮静态参数测量系统的工程研制,达到了预期效果。本文研究的具体内容主要有:
     一、光电图像获取方面
     1.针对火炮身管内膛结构复杂、表面光洁、反射光路极为复杂,用常规技术难以成像的特殊成像环境,利用模拟成像和图像处理技术,研究出了在该特殊环境下实现清晰成像所必须的照度分布条件和相应的照明环境,并采用分布式冷光源,通过光线的散射、折射、相互叠加和补偿等光学技术,形成了CCD相机摄取高质量图像所需的照度分布环境,而且只要适当调整光源配置参数,还可形成适应不同炮管内膛环境所需的最佳成像的照明环境。
     2.在图像信息获取中,通过对测量系统在物距短、视场角大的特殊要求下的光电成像的深入研究,分析了这种特殊要求下影响成像质量的主要因素和技术难题,即光学系统景深的限制导致的光图清晰度的非均匀分布,通过数学建模、优化方案设计解决了该难题。在对图像传感器的工作原理进行了深入分析的基础上,建立了相应的调制传递函数;为确保成像测量系统具有较高的空间分辨率,对光学系统及其景深和几何畸变校正等进行了深入研究,并建立了相应的数学模型,重点研究了测量系统在大视场角的条件下同时具有高空间分辨率、大景深和小几何畸变的相关技术,通过设计和调控光学焦距、光瞳大小和光学系统的结构参数等技术途径,较好地解决了在特殊条件下,实现大视场角、大景深、高清晰度、高逼真地获取火炮膛内复杂图像的技术难题。
     二、光电图像处理、测量方面
     1.针对测量系统所获取图像的特点和测量的特殊要求,研究并设计了相应的图像预处理、图像分割和图像校正方案和算法。在研究多种图像预处理算法的基础上,提出了一套高效的图像预处理算法,实验证明该算法能在增强图像的同时有效地保持高精度图像测量所需的图像细节;作者通过对多种图像分割算法的深入分析和实验研究,确立了一种适应本测量系统的最佳分割方案—自适应双阈值分割方案;图像的空域处理主要包括光靶同心圆区域的自适应划分、同心圆参数检测、图像几何畸变校正、激光光斑形心检测等多个环节。
     2.研究了高精度图像测量的算法。针对被测图像是图像和图形混合体的特点,研究并设计了将其先分后合的测量算法,即先对多个同心圆形和激光光斑图像实施亚像素检测,然后将其合并计算,从而不仅可实现高精度图像测量,而且同时完成了测量数值的现场定标。
     作者不仅设计并实现了对所获取图像的上述特殊处理和高精度测量的整套算法,而且可将测算结果形成的离散数据自动生成身管弯曲度图形曲线并直观地显示在监视器屏幕上。另外,本文还对激光光束在空气介质中传输产生的漂移对测量结果产生的不良影响进行了分析和估算。
The measurement of cannon static parameters is a prerequisite and importance technique process in studying, designing and using of modern cannon. The laggard measurement method based on optics glass and data processing artificiality can not satisfy new requirement that following progression of cannon development, manufacture level and using requirement. It is must to build high efficiency, precision, automatism measurement system. This dissertation studies on key technique such as photoelectricity imaging and image processing thoroughly in cannon static parameters measurement system that developed by us and based on laser collimation and CCD imaging.
     On foundation of lucubratting for measuring principle, measuring method and performance and limitation of the active furnishment about non-straightness of barrels and chamber parameters of cannon, the precept of non-straightness of barrels measurement system based on laser collimation and CCD imaging was presented and realized. Two aspects that photoelectricity image acquirement in the special environment and precision image measurement were studied as pivot. The scene state control in photoelectricity image and optical system precept for close quarters and fine definition imaging that based on special environment of cannon chamber were studied and designed. The precept and arithmetic of image pretreatment, image calibration and precision image measurement based on special image that acquiring were founded. These precept and arithmetic were application in the engineering development of cannon static parameters measurement system already that passed through theories studying and calculating machine simulate optimization and achieved the anticipative purpose. Main contents that studied in the dissertation was:
     1. Photoelectricity image acquisition
     a. Contraposing the special imaging environment that is difficulty to imaging by general technique because complexity structure, surface smooth and clean, the complicated reflected ray in cannon chamber. The illumination distributing condition and corresponding environment was founded that the distinctly imaging request was founded by simulating imaging and image process technique. The illumination distributing environment that requiring by high quality imaging of CCD camera was founded by adopting separate cold lamp-house and through optical technique such as ray scatter, reflection, addition and compensate. And the illumination environment can adapt different cannon chamber and insure imaging best by adjust the collocate parameters of lamp-house.
     b. Studying the photoelectricity imaging thoroughly that requiring measurement system possess the special short distance and big angle of view in image information acquisition. Analyzing the primary factor and technique difficultness that effect imaging quality in special requirement. That is non-uniformity distributing of definition bringing by the limitation of depth of field of optical system. This difficultness was resolved by mathematics modeling and optimization. The MTF was founded by analyzing the principle of image sensor thoroughly. The resolution, depth of field and calibration of aberration of optics system was studied thoroughly and the mathematics model was founded insuring that imaging measurement system possess high space resolution. The technique that system possess high space resolution, big depth of field and small aberration synchronously was studied emphatically. Realize to acquire complicated image within cannon chamber with big angle of view, long depth of field, fine definition and high fidelity in special condition by design and control parameters such as focus length, size of diaphragm and structure size of optical system.
     2. Image process and measurement
     a. Studying and designing the precept and arithmetic of image pretreatment, image segmentation and image calibration by contraposing characteristic of acquiring image and special requirement by measurement system. A set of high efficiency arithmetic was presented by studying multifold image pretreatment arithmetic. It was proved by experiment could enhance image and preserve image detail that required by measurement at same time. The optimal precept of image segmentation that self-adaptive double threshold segmentation was established through studying multifold image segmentation arithmetic thoroughly. The image space process mainly involves concentric circle region self-adaptive parting, examining the concentric circle parameters, calibration the geometry distortion, ascertainment the centroid of laser spot.
     b. Studying arithmetic of high precision image measurement. Studying and designing arithmetic that departing first and then uniting by contraposing characteristic of measuring image is mixture of image and graph. That is detecting concentric circle and laser spot by sub-pixel and then calculate it unite. This arithmetic not only realized high precision image measurement, and furthermore, it achieved calibrating measuring data locale.
     The author not only designed and realized series arithmetic of special processing and high precision measurement for acquiring image, further more, the measure curve was created automatically by separate data formed by measurement was displayed on the screen of monitor straightforward. Otherwise, The badness effect to measurement that laser beam shift brings by transmission through air medium was analyzed and estimated.
引文
[1]火炮静态参数检测手册.1986年8月.
    [2]杨志文.光学测量[M].北京:北京理工大学出版社,1995年8月.
    [3]苏大图,沈海龙,陈选材,曹根瑞.光学测量与像质鉴定[M].北京:北京工业学院出版社,1988年6月.
    [4]陈东波.固体成像器件和系统[M].北京:兵器工业出版社,1991年9月.
    [5]刘贤德.CCD及其应用原理[M].武汉:华中理工大学出版社,1990年11月.
    [6]吴晓波,杨永琴.图像测量技术的新应用[J].光学精密工程,1998(3)
    [7]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].北京:科学出版社.2002年4月.
    [8]章毓晋.图像工程-图像处理和分析[M].北京:清华大学出版社,1999年3月.
    [9]王之江,伍树东.成像光学[M].北京:科学出版社,1991年9月.
    [10]冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2003年3月.
    [11]植村恒羲.图像测量入门[M].北京:计量出版社,1983年4月.
    [12]A.W.罗曼.光学信息处理[M].北京:清华大学出版社,1987年7月.
    [13]M.波恩,E.沃尔夫.光学原理[M].北京:科学出版社,1978年12月.
    [14]李志能.现代光学系统原理[M].武汉:北京理工大学出版社,1994年6月.
    [15]土井康弘,安藤繁.图像处理概论[M].北京:原子能出版社,1986年12月.
    [16]Keigo Iizuka.工程光学[M].重庆:西南师范大学出版社,1991年3月.
    [17]D.卡萨森特.光学数据处理-应用[M].北京:科学出版社,1987年8月
    [18]M.弗朗松.光学像的形成和处理[M].北京:科学出版社,1978年6月.
    [19]迁内顺平,村田和美.光学信息处理[M].北京:机械工业出版社,1985年8月.
    [20]章毓晋.图像理解与计算机视觉[M].北京:清华大学出版社,1999年8月.
    [1]沙占祥.摄影镜头的性能与选择[M].北京:中国摄影出版社,2001年6月.
    [2]陈邕麟.镜头的选择和应用[M].北京:中国摄影出版社,1955年3月.
    [3]W.T.威尔福特.对称光学系统的像差[M].北京:科学出版社,1982年7月.
    [4]林大健.工程光学系统设计[M].北京:机械工业版社,1987年9月.
    [5]王庆有,孙学珠.CCD应用技术[M].天津:天津大学出版社,1993年3月.
    [6]GU Xingfa, LI Xiaoying, MIN Xiangjun. In flight MTF monitoring and compensation for CCD camera on CBERS-02[J]. Science in China Ser.E,2005, 48:29~43.
    [7]麦伟麟.光学传递函数及其数理基础[M].北京:国防工业出版社,1979年3月.
    [8]郭悦,刘晓鹏,杨桦.CCD的调制传递函数MTF分析[J].航天返回与遥感,2004,25(3):25~28.
    [9]Gerald C. Holst. Electro-Optical Imaging System Performance[M]. second edition, SPIE OPTICAL ENGINEERING PRESS,2000.
    [10]王之江,伍树东.成像光学[M].北京:科学出版社,1991年9月.
    [11]M.M.鲁西诺夫.技术光学[M].北京:科学出版社,1962年10月.
    [12]林家明.面阵CCD摄像机光学镜头参数及其相互关系[J].光学技术,2000,26(2):183~185.
    [13]王志坚,王鹏.瑞利判断与斯托列尔准则[J].光子学报,2000,29(7):621~625.
    [14]李奇,徐之海,冯华君等.数字成象系统自动对焦区域设计[J].光子学报,2002,31(1):63~66.
    [15]彭志红,张淳民.显微偏振干涉成像光谱仪中景深对系统分辨力的影响[J].光学学报,2006,26(2):239-243.
    [16]李晓彤.几何光学和光学设计[M].杭州:浙江大学出版社.1997年12月.
    [17]胡家升.光学工程导论[M].大连:大连理工大学出版社,2002年8月.
    [18]А.И.杜德罗夫斯基.光学仪器理论[M].北京:科学出版社,1958年7月.
    [19]陈开周.最优化计算方法(M).西安:西安电子科技大学出版社,1984.
    [20]董超平,萧楠,晋磊.车灯线光源的优化设计问题[J].工程数学学报,2003,20(5):48-56.
    [21]刘金根,刘上乾.光电窥膛光学系统参数优化选择[J].光电工程,2002,29(3):47~49.
    [22]王学军,袁健康.光电自动测量三维曲面仪的研究[J].仪器仪表学报,1999,20(4):356~360.
    [23]吴国华,齐臣杰.在线测长用CCD光学系统优化模型[J].浙江大学学报,2000,34(3):341~345.
    [24]Б.H.别戈诺夫,H.H.柴卡斯诺夫,C.И.基留辛,B.И.柯雪契夫.光学系统理论[M].北京:机械工业版社,1986年8月.
    [25]王之江.光学设计理论基础(第二版)[M].北京:科学出版社,1985年2月.
    第三章参考文献
    [1]王庆有,孙学珠.CCD应用技术[M].天津:天津大学出版社,1993年3月。
    [2]Jenkins F.A. and White H.E.. Fundamentals of optics[M]. Mcgraw-Hill, New York,4th Ed,1976.
    [3]Ioannis Pitas. Digital Image Processing Algorithms[M]. Prentice Hall,1993.
    [4]W.K. pratt. Digital Image Processing[M]. Wiley, New York,1978.
    [5]L.R.Foulds. Optimization Techniques[M]. Springer-Verlag, New York,1981.
    [6]Gerald C.Holst. Electro-Optical System Parameters and Evaluation[M]. second edition, SPIE OPTIC ENGINEERING PRESS,2000.
    [7]G.Q.Wei. Implicit and Explicit Camera Calibration:Theory & Experiments[J]. IEEE Trans on Pattern Analysis & Machine Intelligence,1994,16(5):469-480.
    [8]Zhang Y J. A Surveyon Evaluation Methods for Image Segmentation[J]. Pattern Recognition.1996,29(8):1335~1346.
    [9]Li L,Gong J,Chen W. Grey-Level Image Thresholding Based on Fisher Linear Projection of Two Dimension Histogram[J]. Pattern Reconition,1997.30(5): 743-750.
    [10]S.S.Gleason. Subpixel Measurement of Image Features Based on Paraboloid Surface Fit[J]. SPIE,1990, vol.1386:1135~1144.
    [11]汤进,张春燕,罗斌.基于图谱分解和概率神经网络的图像分类[J].中国图象图形学报,2006,11(5):630~634
    [12]任建峰,沈云涛,郭雷.基于多类神经网络机的自然图像分类[J].西北工业大学学报,2004,22(4):431~434.
    [13]陈杨生,颜钢锋.基于复合余弦基神经网络的图像去噪滤波器[J].浙江大学学报(工学版),2006,40(8):1348~1351.
    [14]赖一楠,董惠娟,谭家祥.基于模糊神经网络的彩色图像滤波器研究[J].哈尔滨工业大学学报,2003,35(8):996~999.
    [15]汪海明,郭仕德,余道衡.一类用神经网络实现图像去噪的新方法[J].北京大学学报(自然科学版),2003,39(5):666~674.
    [16]马义德,齐春亮,钱志柏,史飞,张在峰.基于脉冲耦合神经网络和施密特正交基的一种新型图像压缩编码算法[J].电子学报,2006,34(7):1255~1259.
    [17]孟静,王加俊,黄贤武.基于耦合梯度神经网络的光学层析图像重建[J].电子学报,2006,34(5):892~896.
    [18]陈华,金伟其,张楠,石俊生,王霞.基于神经网络的三维宽场显微图像复原研究[J].光子学报,2006,35(3):473-476.
    [19]徐海荣,田国会,李晓磊.一种基于自组织神经网络的彩色图像分割方法[J].山东大学学报(工学版),2005,35(6):67~70.
    [20]黄旭明,周冬明,张立明.GVF场的多层细胞神经网络实现及其在图像分割中的应用[J].复旦学报(自然科学版),2004,43(1):54~61.
    [21]张军英,樊秀菊,董继扬,石美红.一种改进型脉冲耦合神经网络及其图像分割[J].电子学报,2004,32(7):1223~1226.
    [22]王珂娜,邹北骥,黄文梅.一种基于神经网络的畸变图像校正方法[J].中国图象图形学报,2005,10(5):603~607.
    [23]黄德双.神经网络模式识别理论[M].北京:电子工业出版社,1996年5月.
    [24]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,1998年11月.
    [23]钱士雄.非线性光学-原理与进展[M].上海:复旦大学出版社,2001年10月.
    [1]田捷,沙飞,张新生.实用图像分析与处理技术[M].电子工业出版社,1995.
    [2]李宏贵.非线性滤波器在红外图像增强中的应用[J].数据采集与处理,1999,14(3):302~305.
    [3]蔡靖,杨晋生,丁润涛.模糊加权均值滤波器[J].中国图象图形学报,2000,5(A/1):52~56.
    [4]Wang J H, Lin L D. An Improved Median Filter Using Minmax Algorithm for Image processing[J]. Electron Lett,1997,33(16):1362~1363.
    [5]Brownrigg D R K. The Weighted Median Filter[J]. Comm Ass Comput Mach, 1984,27(8):807~818.
    [6]Arce G R, Foster R E. Detail Preserving Ranked order Based Filters for Image Processing[J]. IEEE Trans on ASSP,1989,37(1):83~89.
    [7]Sun T, Neuvo Y. Detail-preserving Median Based Filters in Image Processing[J]. Pattern Recognition Lett,1994,15(4):341~347.
    [8]Yu P, Lee C S. Adaptive Fuzzy Median Filter[A]. Proc Int Symp Artificial Neural Networks[C]. London:Elsevier Science Publishers B V,1993.318~362.
    [9]Wang J H,Yu M D. Image Smoothing by Adaptive Fuzzy Optimal Filter [A]. Proc IEEE Int Conf Syst Man,and Cybern[C]. New York:IEEE Computer Society Press,1995.845~848.
    [10]Makoto Nagao, Takashi Malsuyams. Edge Preserving Smoothing[J]. Computer Graphics and Image Processing.1979,9:394~407.
    [11]Richard N. Czerwinski,Douglas L. Jones, William D.O'Brien. Ultrasound Speckle Reduction By directional Median Filtering[C]. Image Processing Proceeding International Conference,1995,1:358~361.
    [12]G.R.Arce, Multistage order statistic filters for image sequence processing [J]. IEEE Trans. on Signal Processing,1991,39(5),1146~1163.
    [13]余庆军,谢胜利.一个基于相邻像素兼容度的模糊加权平均滤波器[J].通信学报,24(12):1-8.
    [14]朱菊华,杨新,李俊.一种改进的自适应保细节中值滤波算法[J].计算机工程与应用,2001,3:93~95.
    [15]Kenneth. R. Castleman.数字图像处理(Digital Image Processing) [M].电子工业出版社/PRENTICE HALL出版公司,1998年9月.
    [16]Pizer S. Adaptive histogram equalization and its variations[J]. CVGIP,1987, 39(3):355~368.
    [17]Silverman J,Mooney J M. Vickers V E. Display of wide dynamic range infrared images from PtSi chottky barrier cameras[J]. Optical Engineering,1990,29(2): 97~104.
    [18]Pizer S. Adaptive histogram equalization and its variations[J]. CVGIP,1987, 39(3):355~368.
    [19]J. G. M. Schavemaker. Image Sharpening by Morphological Filtering[J]. Pattern Recognition,2000,33:997~1012.
    [20]Van den Boomgaard R,Smeulders A. The morphological structure of images,the differential equations of morphological scale-space[J]. IEEE Transactions PAMI,1994,16(11):1101~1113.
    [21]PAL S K. Image Enhancement Using Smoothing with Fuzzy Sets. IEEE,1981, SMC.11(7):494~501.
    [22]S.K.Pal and R.A.King. On edge detection of X-ray images using fuzzy sets[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1983,5(1):69~77.
    [23]张飞,李承芳.红外背景抑制与弱小目标的检测算法[J],光学技术,2004,30(3):337~342
    [24]张新明,沈兰荪.基于小波和统计特性的自适应图像增强[J],信号处理.2001,17(3):227~231
    [25]S. Mallat, et al. Characterization of signals from multiscale Edge[J]. IEEE Transactions PAMI,1992,14(7):710~732.
    [26]J C Olivo. Automatic threshold selection using the wavelet transform[J]. CVGIP: Graphical Models and Image Procession.1994,56(3):205~218.
    [27]贾天序,郑南宁,黄小虎等.基于一类中心B样条二进小波的多尺度边缘提取[J].西安交通大学学报,1996,30(1):91~95.
    [28]解梅,顾德仁.使用小波变换的图像边缘检测算法[J].电子科技大学学报,1996.25(4):353~356.
    [29]戴青云,余英林.一种基于形态小波的在线掌纹的线特征提取方法[J].计算 机学报,2003,26(2):234~238.
    [30]Nalwa V S, Binford T O. On deteccting edges[J]. IEEE Trans on PAMI,1986, 8(6):699~714.
    [31]Haralick R M. Digital step edges from zero crossing of second directional derivatives[J]. IEEE Trans on PAMI,1984,6(1):58~68.
    [32]章毓晋.图像分割[M].北京:清华大学出版社,2000年3月.
    [33]SAHOO P K, SOLTANIS, WONG A K C. A Survey of thresholding technique[J]. Computer Vision Graphics Image Process,1988(41):233~260.
    [34]PAL N R. Review on image segment techniques[J]. Patter Recognition,1993,26: 1274~1294.
    [35]Kapur J N, Sahoo P K, Wong A K C. A new method for grey-level picture thresholding using the entropy of the histogram. CVGIP,1985,29:273~285.
    [36]OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Trans SMC,1979,9(1):62~69.
    [37]Lingworth J.Kittler J.A survey of the Hough transform. CVGIP,1988,44,87~116.
    [38]胡占义,杨长江,马颂德.Hough变换的新定义[J].计算机学报,1997,20(8):744~752.
    [39]梁毅军,贺朋令,蔡元龙.基于初级视觉模型的Hough变换的改进算法[J].西安交通大学学报,1996,30(9):47~52.
    [40]陈洪波,王强,徐晓蓉,张超英.基于改进Hough变换的符号线段特征提取[J].光学精密工程,2003,11(6):632~636.
    [41]陈燕新,戚飞虎.基于随机Hough变换的快速圆检测方法[J].上海交通大学学报,1998,32(10):17~20
    [42]胡正平,王成儒,于莉娜.基于改进随机Hough变换的虹膜定位算法[J].仪器仪表学报,2003,24(5):477~480.
    [43]袁卫鹏,施鹏飞.模糊随机Hough变换算法[J].上海交通大学学报.2002,36(12):1825~1828.
    [44]高隽.用改进的前向神经网络实现离散Hough变换[J].中国图象图形学报,1998,3(10):836~839.
    [45]孔兵,王昭,谭玉山.基于圆拟合的激光光斑中心检测算法[J].红外与激光工程,2002,31(3):275~279.
    [46]聂铁军.数值计算方法[M].西安:西北工业大学出版社,1990.
    [47]王之江,伍树东.成像光学[M].北京:科学出版社,1991年9月.
    [48]王莲莲,王健.高精度测量光学成像系统畸变的一种新方法[J].苏州大学学报,2001,17(1):69~73.
    [49]张剑,杜志江,富历新,孙立宁.一种基于神经网络的X光图像畸变校正方法[J].机械与电子,2005(3):38-41.
    [50]刘金根.一种基于现场定标的光电图像畸变校正算法[J].光子学报,2004,33(6):732~735
    [51]马丽华,梁志毅,郑宏志.一种显示器投影成象系统的彩色图象几何畸变校正方法[J].光子学报,2001,30(5):624~627
    [52]王欣刚,宋建中,顾海军.红外观察仪图像畸变的校正[J]. 光学精密工程,2001,9(1):39~42.
    [53]易大义,陈道崎.数值分析引论[M].杭州:浙江大学出版社,1998年9月.
    [1]万德安.激光基准高精度测量技术[M].北京:国防工业出版社,1999年6月.
    [2]曹益平,苏显渝,刘明健,刘晓丽:采用液晶光阀的氦氖激光准直控制[J].光电工程,2004,31(3):19~22.
    [3]程勇,孙斌,王晓兵等.光轴零漂移的热传导冷却重复频率激光器研究[J].中国激光,2002,A29(6):495~497.
    [4]焦明星,邢俊红,刘苔,范吉中,安龙华.半导体激光器温度控制系统的设计[J].激光与红外,2006,36(4):261~264.
    [5]王海林,黄维玲,周卓尤,曹红兵.二极管激光器运行特性的研究[J].激光技术,2002,26(1):23-25.
    [6]安毓英.激光传输技术[J].激光与红外,2002,32(6):435~438.
    [7]曹国华,徐洪吉,苏成志.大气湍流对激光校准轴系的影响[J].兵工学报,2005,26(3):327~329.
    [8]李岩,孟祥旺,章恩耀.一种新型激光扫描式大工件孔-孔同轴度测量仪[J].激光与红外,2000,30(5):280~282.
    [9]龚知本.激光大气传输研究若干问题进展[J].量子电子学报,1998,15(2):114~133.
    [10]范承王.高斯束状波斜程传输的大气湍流效应[J].量子电子学报,1999,16(6):519~525.
    [11]金国藩,李景镇.激光测量学[M].北京:科学出版社,1998年7月.
    [12]刘兴占,梁晋文,陈博一等.双光束补偿准直系统[J].计量技术,1999(1):12~15.
    [13]冯其波,梁晋文.单模光纤激光准直仪的研制[J].激光技术,1994(6):357~360.
    [14]Fan K C, Zhao yang. A laser straightness measurement system using optical fiber and modulation techniques[J]. International Journal of Machine Tools & Manufacture.2000,40:2073~2081.
    [15]郝群,赵洋,李达成,曹芒.位相板在大型几何量形位误差测量中的应用[J].光学精密工程.1998,6(4):118~122.
    [16]林春蔚,徐学云,程存学等.C环境下地图图像矢量化及图形编辑技术与实例[M].北京:海洋出版社,1993.
    [17]马建波.C语言图像处理程序集[M].北京:海洋出版社,1992.
    [18]Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns[J]. Comm ACM,1984,27:236~239.
    [19]杨淑莹.VC++图像处理程序设计[M].北京:清华大学出版社,2003.
    [20]章毓晋.图像工程(上册)-图像处理和分析[M].北京:清华大学出版社,2000:225~226.
    [21]吴选忠.Zhang快速并行细化算法的扩展[J].福建工程学院学报,2006,4(1):89~92.
    [22]翟波,纪玉波,聂琰,基于方向信息的指纹图像预处理[J].计算机工程与科学,2005,27(7):60~62.
    [23]Nalwa V S, Binford T O. On detecting edges[J]. IEEE Trans on PAMI,1986,8(6): 699~714.
    [24]Haralick R M. Digital step edges from zero crossing of second directional derivatives[J]. IEEE Trans on PAMI,1984,6(1):58~68.
    [25]罗西平,田捷,诸葛婴等.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300~312.
    [26]J. Canny. Acomputational approach to edge detection[J]. IEEE Trans on PAMI, 1986,8(6):679~698.
    [27]W. H. H. J. Lunscher, et al. Optimal edge detector design:Parameter selection and noise affections [J]. IEEE Trans on PAMI,1986,8(2):164~177.
    [28]W. H. H. J. Lunscher, et al. Optimal edge detector design II:Coefficient quantization[J]. IEEE Trans on PAMI,1986,8(2):178~187.
    [29]V. S. Nalwa, et al. On detecting edges[J]. IEEE Trans on PAMI,1986,8(6): 699~714.
    [30]王艳丽,陈哲.基于模糊和最小二乘的SAR图像线特征提取[J].北京航空航天大学学报,2003,29(4):342~345.
    [31]王广君,田金文,柳健.基于四叉树结构的图像分割技术[J].红外与激光工程,2001,30(1):12-14.
    [32]张灵,章云,杨宜民.基于模糊聚类的缺损图像的边缘检测[J].计算机工程, 2004,30(2):21~22.
    [33]Hojjatoleslami S A, Kittler J. Region Growing:A New Approach[J]. IEEE Transactions on Image Processing,1998,20(8):1079~1084.
    [34]Hansen W M, Higgin W E. Relaxation method scheme and its application to edge detection[J]. IEEE PAMI,1997,19(9):946~962.
    [35]German S, German D. Stochastic relaxations, Gibbs distribution and Bayesian restoration of images[J]. IEEE PAMI,1984,6(6):799~813.
    [36]张新明,沈兰荪.基于小波和统计特性的自适应图像增强[J],信号处理.2001,17(3):227~231.
    [37]冯国进,顾国华,陈钱.基于形态学的红外图像边缘增强[J].激光与红外2003,33(6):453-454.
    [38]戴青云.数学形态学在图像处理中的应用进展[J].控制理论与应用,2001,18(4):478~482.
    [39]J. A V Meighem, et al. Straight line extraction using iteration total least square methods[J]. Journal of Visual Communication and Image Representation.1995, 6(1):59~68.
    [40]M. J J Wang, et al. A new edge detection method through template matching [J]. International Journal of Patern Recognition and Artificial Intelligence.1994, 8(4):899~917.
    [41]M. Gokmen, et al. Edge detection and surface reconstruction using refined regularization [J]. IEEE PAMI,1993,15(5):492~499.
    [42]李映,焦李成.基于自适应免疫遗传算法的边缘检测[J].中国图象图形学报,2003,8(8):890~895.
    [43]A D Kulkarni, G B Giridhar, Parveen Coca.Neural Network Based Fuzzy Logic Decision System for Multispectral Image Analysis[J]. Neural, Parallel & Scientific Computation,1995:(3),205~218.
    [44]Ghosals Mehrotra, R.Orathogonal. Moment operators for subpixel edge detection[J]. Pattern Recognition.1993,26(2):295~306.
    [45]D J Park, et al. Edge-detection in noisy image based on the co-occurrence matrix[J]. Pattern recognition.1994,27(6):767~775.
    [46]S N Srihari, et al. Analysis of textual image using the Hough transform[J]. Machine Vision and Applications,1989,2(3):141~153.
    [47]W E Higgins, et al. Edge detection using two-dimension local structure information[J]. Pattern recognition.1994,27(6):767~775.1994,27(2): 277~294.
    [48]马苗,樊养余,谢松云等.基于灰色系统理论的图象边缘检测新算法[J].中国图象图形学报,2003,8(10/A):1136~1139.
    [49]M M Fleck. Some defects in finite-difference edge finders[J]. IEEE Trans on PAMI,1992,14(3):337~345.
    [50]A Huteras, et al. Detection of intensity changes with suppixel accuracy using Laplace-Gaussial masks[J]. IEEE Trans on PAMI,1986,8(5):651~664.
    [51]Gerald C. Holst, Electro-Optical Imaging System Performance[M]. second edition, SPIE OPTICAL ENGINEERING PRESS,2000.
    [52]邹仲中.提高CCD尺寸分辨力的解调测量法[J].仪器仪表学报,1986,7(1):38-44.
    [53]E P Lyvers, et al. Suppixel measurement using a moment-based edge operator[J]. IEEE Trans on PAMI,1989,11(12):1293~1309.
    [54]丁兴号,邓善熙,杨永跃等.基于空间矩和Zernike矩的亚像素边缘检测[J].2004,22(2):191~194.
    [55]黄莎白.基于样条函数的灰度图像插值[J].信息与控制,1989,(2):48~51.
    [56]A Hachicha, et al. Subpixel edge detection for precise measurements by a vision system[J]. ISPIE,1988,1010:148~157.
    [57]武拴虎,谈正.盈亏修正法图象边缘检测[J].中国图象图形学报,2000,5(6/A):493-496.
    [58]S. S Gleqson, et al. Subpixel measurement of image features based on paraboliod surface[J]. ISPIE,1990,1386:135~1144.
    [59]吴晓波.应用多项式插值提高CCD尺寸测量的分辨力[J].仪器仪表学报,1996,17(2):154~159.
    [60]杨敏,叶邦彦,牟丽等.机械零件图像中直线边缘亚像素定位方法[J].华南理工大学学报,31(12):30-33.
    [61]史万明,杨骅飞,吴裕树,孙新.数值分析[M].北京:北京理工大学出版社,2002年8月.
    [62]袁红星,王志兴,李振华,贺安之.Hanning低通滤波在PSD法测量直管不直度中的应用[J].南京理工大学学报,1999,23(1):81~85.
    [63]苟文选.材料力学(Ⅰ)[M].西安:西北工业大学出版社,2000年1月.
    [64]吴崇试.数学物理方法[M].北京:北京大学出版社,1999年4月.
    [65]袁红星,吕爱民,王志兴,贺安之.PSD法测量直管弯曲度的步长优化研究.弹道学报[J],1998,10(2):54~57.
    [66]肖明耀.误差理论与应用[M].北京:计量出版社,1985年8月.
    [67]HOLST G C. CCD Arrays Cameras and Displays[M].Washington:JCD Publishing and SPIE Optical Engineering Press.1998.
    [68]HANCOCK B R, STIRBL R C, CUNNINGHAM T J, et at. CMOS active pixel sensor specific performance effects on star tracker/imager position accuracy [C], Proceeding of SPIE, Optics Electromechanics and Electronics,2001,4284: 43-53.
    [69]张辉,袁家虎,刘恩海.CCD噪声对星敏感器星点定位精度的影响[M],红外与激光工程,2006,35(5):629-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700