基于X射线脉冲星的航天器自主导航方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主导航是提高航天器自主运行能力的关键,是制约我国航天事业发展的主要瓶颈技术之一。论文以提高航天器的自主导航能力这一重大需求为牵引,围绕X射线脉冲星导航中尚未解决的关键技术问题,系统地研究了基于X射线脉冲星导航的原理与方法、守时与同步定位/守时问题、组合导航问题及星表位置误差估计问题,发展了X射线脉冲星导航半实物仿真技术。全文主要研究成果如下:
     研究了X射线脉冲星导航的原理、模型和算法。1)在X射线脉冲星导航原理研究基础上,建立了导航相关数学模型,分析了脉冲星信号特征、探测器性能、观测时间和背景噪声等因素对脉冲到达时间测量精度的影响;2)研究了基于EKF和UKF的脉冲星导航滤波算法,对X射线脉冲星的导航精度进行了数值分析,研究了TOA估计精度、星载时钟钟差、航天器机动和星表方位误差等因素对导航精度的影响。
     研究并提出了基于X射线脉冲星的自主守时及同步定位/守时的理论、模型和算法。1)研究了基于X射线脉冲星的自主守时原理并建立了相关数学模型,提出基于卡尔曼滤波和样条滤波的守时算法;2)采用线性系统可观性秩条件判据从理论上证明了基于单脉冲星守时的系统是可观的,分析了不同因素对单星守时精度的影响;3)提出一种基于X射线脉冲星进行同步定位/守时的方法并建立了相关数学模型,设计了系统初步方案,采用非线性系统可观性秩条件判据从理论上证明了该同步定位/守时系统的可观性。
     深入研究了X射线脉冲星/SINS组合导航方法。1)根据X射线脉冲星导航特点和惯性导航优势,设计了X射线脉冲星/惯性简单组合、松耦合组合和紧耦合组合导航方案,给出了各组合导航方案下的系统工作流程;2)基于间接组合滤波方案,建立了X射线脉冲星/SINS紧组合数学模型;3)提出一种X射线脉冲星/SINS组合导航中的钟差修正方法,采用PWCS可观性分析方法验证了所建立系统的可观性;4)以两冲量霍曼转移轨道、Lambert三冲量和四冲量机动变轨轨道为例,分析了X射线脉冲星/SINS组合导航在典型机动轨道中应用的可行性。
     研究并提出了X射线脉冲星位置误差估计理论、模型和算法。1)针对目前导航中常使用的最小二乘、递推最小二乘和卡尔曼滤波算法,推导了脉冲星位置误差对以上几种导航算法状态估计影响的解析表达式;2)在已知卫星位置信息情况下,提出一种X射线脉冲星星表位置误差估计方法;3)针对星表位置误差为常值和星表误差存在漂移两种不同情况,分别建立了基于CP和CV模型的星表误差估计数学模型,采用PWCS可观性分析方法证明了所建立模型的可观性。
     发展了X射线脉冲星导航半实物仿真技术。1)提出一种X射线脉冲星信号地面模拟方法,设计并研制了国内首套X射线脉冲星导航半实物仿真系统,该系统具有探测器性能测试、TOA估计算法和导航算法验证等功能;2)基于所研制的半实物仿真系统开展了射线源稳定性试验、不同观测时间和流量的波形恢复试验以及TOA估计算法验证试验,试验结果对X射线脉冲星自主导航研究的可行性验证、系统特性测试和工程应用具有一定的参考价值。
     论文以导航基本理论为基础,研究了X射线脉冲星导航的理论、方法和半实物仿真技术,梳理并展望了X射线脉冲星导航下一步需要解决的技术问题,研究工作为我国X射线脉冲星导航技术的发展奠定了一定的理论基础,能够为X射线脉冲星导航空间飞行试验的开展提供技术支持。
Autonomous navigation is essential in enhancing the autonomous spacecraft operation, and also an important technology that restricts the development of Chinese spaceflight. For the purpose of improving the autonomous operation ability of spacecraft, solving the critical problem and further developing the new theory and methods of X-Ray pulsars navigation, this dissertation studies the principle and algorithms, timing and navigation with consideration of synchronous timing problem, integrated navigation problem, pulsar position error estimation problem and the Hardware-in-the-Loop simulation technology of X-Ray pulsars navigation. The main results achieved in this dissertation are summarized as follows.
     The X-Ray pulsars navigation theory, methods and implementations are studied and proposed. 1) Based on the principle of X-Ray pulsars navigation, the models of navigation are formulated, and the effects of pulsar characteristics, performance of X-Ray navigation detector, and the observation time and background noise on the precision of TOA are analyzed. 2) Firstly, the navigation arithmetic with Extended Kalman Filter and Unscented Kalman Filter are studied, then navigation precision is analyzed, including the effects of TOA, clock error, orbital maneuver and pulsar position error on X-Ray pulsars navigation precision.
     The timing and navigation with consideration of synchronous timing based on X-Ray pulsars navigation theory, methods and implementations are developed. 1) The principle and models of X-Ray pulsars timing are formulated, then the timing arithmetic with Kalman Filter and Spline Filter are studied. 2) Based on the observability rank condition of linear system, the system of timing based on single pulsar is proved to be observable, and the effects of different factors on the timing precision are analyzed. 3) A new synchronous location and timing method based on X-Ray pulsars is proposed, alse the models and system architectures are constructed. Based on the observability rank condition of nonlinear system, the system of navigation with consideration of synchronous timing based on X-Ray pulsars is proved to be observable.
     X-Ray pulsars navigation/SINS integrated navigation system is studied and proposed. 1) Based on the advantages of X-Ray pulsars navigation and SINS, an integrated navigation system is proposed, the architectures and work flows of non-coupled system, loosely coupled system and tightly coupled system are designed. 2) Taking the indirect filter project as instruct, the models of X-Ray pulsars navigation/SINS tightly coupled system are designed. 3) A new clock error control algorithm of X-Ray pulsars/SINS integrated navigation is proposed, based on the Piece-Wise Constant System(PWCS) observability theory, the new method is proved to be feasible. 4) Taking the Homan transfer orbit, three and four pulses Lambert transfer orbit as example, the application feasibility of typical maneuver orbits is testified.
     X-Ray pulsar position error theory, methods and implementations are developed. 1) The analytic effects of X-Ray pulsar position error on the Least Square arithmetic, Iterative Least Square arithmetic and Kalman Filter arithmetic are deduced. 2) Based on the navigation ephemerides of the satellite, a new estimation algorithm of the X-Ray pulsar position error is proposed. 3) Modeling the X-Ray pulsar position error as Constant Position(CP) model and Constant Velocity(CV) model separately, the pulsar position error system is proved to be observable with PWCS observability theory.
     The Hardware-in-the-Loop simulation technology of navigation based on X-Ray pulsars is developed. 1) A new simulation method of X-ray pulsars signal is proposed. The first domestic Hardware-in-the-Loop simulation system of navigation based on X-Ray pulsars is designed and developed, which is an effective means to identify the performance of X-Ray navigation detector, verify the TOA estimation, and test the arithmetic of pulsars navigation. 2) The experimentations of X-Ray sources stability, signal fusing with different observation time and flux, and TOA estimation arithmetic are carried out, and the results of which are helpful to verify the feasibility of pulsars navigation, test the system performance and apply the navigation based on X-Ray pulsars in the future.
     Based on the basic navigation methods, this dissertation expands the research domain of the current X-Ray pulsars navigation by developing the X-Ray pulsars navigation theory, methods and Hardware-in-the-Loop simulation technology, teases and views the future crucial works of X-Ray pulsars navigation. The present work provides much theoretical significance and lays a solid foundation to future study of X-Ray pulsars navigation, and can also provide technological supports for the flight experiments of X-Ray pulsars navigation.
引文
[1]中国空间科学学会.空间科学学科发展报告[M].北京:中国科学技术出版社, 2009:12-16.
    [2] Charles F B. Statement of Administrator National Aeronautics and Space Administration[Z]. Washington:NASA, 2010:1-9.
    [3] James W C. Paradigm Shift in U.S. Space Policy[J]. AEROSPACE AMERICA, 2010(6): 22-28.
    [4] Jeff K. A Pillar of American Space Flight[J]. Marshall Institute Policy Outlook, 2010(6):1-4.
    [5] Tudor V. The rocket carries and orbiter and a solar sail demonstrator[N]. Softpedia, 2010-5-17.
    [6] Mitsubishi H I. Launch Plan of Venus Climate Orbiter Small Secondary Satellites by H-IIA Launch Vehicle No. 17[R]. Japan: JAXA, 2010:1-23.
    [7] Dennis J L. Mission to Probe Venus s Curious Winds And Test Solar Sail for Propulsion[EB/OL]. Http:// www.sciencemag.org , 2010-5-12.
    [8] Shin I N. JAXA's Space Exploration Vision[R]. Japan: JAXA, 2010:1-22.
    [9] Tudor V. Mars 500 Experiment Full Crew Announced[N]. Softpedia, 2010-5-20.
    [10] Tania I, Vladimir S. Project Greenhouse-Mars Plant Growth Study with Different Spectra LEDs Light Units[C]. Second Scientific Conference with International Participation, Varna, Bulgaria, 2006:1-6.
    [11] RIA N. Russia Announces Participants in Mars Flight Simulation Mission[EB/OL]. http://en.rian.ru/science/20100518/159068321.html, 2010-5-18.
    [12] ESA s Directorate of Human Spaceflight. Mars 500 Isolation Study[R]. Noordwijk: ESA, 2010:1-40.
    [13]蔡志武,韩春好,陈金平等.导航卫星长期自主定轨的星座旋转误差分析与控制[J].宇航学报, 2008, 29(2):522-528.
    [14] Codik A. Autonomous Navigation of GPS Satellites: A Challenge for the Future[J]. Journal of The Institute of Navigation, 1985, Aes-10: 221-224.
    [15] Menn M. Autonomous Navigation for GPS via Crosslink Ranging[C]. Inst. of Electrical and Electronics Engineers Position Location and Navigation Symposium, New York: Inst. of Electrical and Electronics Engineers, 1986:143-146.
    [16] Ananda M P, Bernstein H, etal. Global Positioning System Autonomous Navigation[C]. Inst. of Electrical and Electronics Engineers Position Location and Navigation Symposium, New York: Inst. of Electrical and Electronics Engineers, 1990:497-508.
    [17] Bernstein H, Bowen A F, Gartside J H. GPS User Position Accuracy with Block IIR Autonomous Navigation[C]. Proceedings of the ION GPS-93, Salt Lake City UT: Inst. of Navigation, 1993: 1389-399.
    [18] Huberte S. Inertial Navigation[R]. Alexandria: Defense Documentation Centre, 1978.
    [19] Pitman G R. Inertial Guidance[M]. New York: John Wiley&Sons Inc., 1962.
    [20] Mueller F K. Considerations on Inertial Guidance for Missiles[J]. Navigation: Journal of the Institute of Navigation, 1959, 6(4):9-17.
    [21] Chory M A, Hoffman D P, LeMay J L. Satellite Autonomous Navigation Status and History[C]. IEEE Position Location and Navigation Symposium, Las Vegas 1986:110-121.
    [22]廖春发,葛榜军,刘焕杰.俄罗斯全球导航卫星系统、概况、现状与发展趋势[J].卫星应用,1999 (4):60-64.
    [23] Paul F. GALILEO: A New Dimension In International Satellite Navigation[C]. 46th International Symposium Electronics, Zadar, Craotia, 6-14.
    [24] Werner E. Galileo: Impact on Spacecraft Navigation System[J]. Journal of Global Positioning Systems, 2003, 2(2): 135-138.
    [25]何晓峰.北斗/微惯导组合导航方法研究[D].长沙:国防科技大学, 2009.
    [26] Goldenberg F. Geomagnetic Navigation Beyond Magnetic Compass[C]. PLANS San Diego, California, 2006:684-694.
    [27]郭才发,胡正东,张士峰等.地磁导航综述[J].宇航学报, 2009, 30(4):1314-1319.
    [28] Shorshi G, Itzhack I Y. Satellite Autonomous Navigation Based on Magnetic Field Measurements[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(4):843-850.
    [29] Deutschmann J, Itzhack I Y. Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Date[J]. Journal of Guidance, Control and Dynamics, 2001, 24(3):616-626.
    [30] Tyrén C. Magnetic Anomalies as a Reference for Ground Speed and Map Matching Navigation[J]. Journal of Navigation, 1982, 35(2):242-254.
    [31] Tyrén C. Magnetic Terrain Navigation[C]. Proceedings of the 5th Int Symp on Unmanned Untethered Submersible Technology, 1987:245-256.
    [32]李捷,陈义庆.航天器自主导航技术的新进展[J].航天控制, 1997, 15(2):76-81.
    [33]李勇,魏春岭.卫星自主导航技术发展综述[J].航天控制, 2002, 20(2):70-74.
    [34] Wertz J R. Implementing Autonomous Orbit Control[C]. Proceedings of the Annual AAS Guidance and Control Conference, Breckenridge, Colorado, 1996: 57-68.
    [35] Collins J T, Conger R E. MANS: Autonomous Navigation and Orbit Control for Communication Satellites[J]. AIAA 94-1127-CP, 1994
    [36] Tai F, Noerdlinger P D. ALow Cost Autonomous Navigation System[C]. Proc. of the Annua. AAS Guidance and Control Conference, Keystone, Colorado, 1989:3-23.
    [37] Hosken R W, Wertz J R. Microcosm Autonomous Navigation System On-Orbit Operation[C]. Proc. of the Annual AAS Guidance and Control Conference, Keystone, Colorado, 1995:491-506.
    [38] Mark L. Psiaki and Huang L J. Ground Tests of Magnetometer-Based Autonomous Navigation (MAGNAV) for Low-Earth-Orbiting Spacecraft[J]. AIAA-91-2725-CP.
    [39]杨博.航天器星敏感器自主定位方法及精度分析[J].宇航学报, 2002, 23(3):81-84.
    [40] Counley R, Whie R, Cai E. Autonomous Satellite Navigation by Stellar Refraction[J]. Journal of Guidance, 1984, 7(2):129-134.
    [41] Robert G, Robert W, and Eliezer G. Autonomous Satellite Navigation by Stellar Refraction[J]. J. Guidance, 1984(2): 129-134.
    [42]李鹏.机载组合导航技术研究[D].长沙:国防科技大学, 2006.
    [43]陈海明,熊智,乔黎等.天文-惯性组合导航技术在高空飞行器中的应用[J].传感器与微系统, 2008, 27(9):4-10.
    [44]杨廷高,仲崇霞.脉冲星时稳定度及可能应用[J].时间频率学报, 2004, 27(2):129-137.
    [45] Reichley P, Downs G, Morris G. Use of Pulsar Signals as Clocks[J], NASA Jet Propulsion Laboratory Quarterly Technical Review, 1971, 1(2): 80-86.
    [46] Suneel I S. The Use of Variable Celestial X-Ray Sources for Spacecraft Navigation[D]. Maryland: University of Maryland, 2005.
    [47] Downs G S. Interplanetary Navigation Using Pulsation Radio Sources[R]. Washingtion: NASA, 1974.
    [48] Downs G S, Reichley P E. Techniques for Measuring Arrival Times of Pulsar Signals I: DSN Observations from 1968 to 1980[R]. Washingtion: JPL, 1980.
    [49] Chester T J, Butman S A. Navigation Using X-Ray Pulsars[R]. Washingtion: NASA, 1981.
    [50] Allan D W. Millisecond Pulsar Rivals Best Atomic Clock Stability[C], Philadelphia: 41st Annual Frequency Control Symposium, 1987.
    [51] Wood K S. Navigation studies utilizing the NRL-801 experiment and the ARGOS satellite[C]. International Society of Optical Engineering Proceedings 1993.
    [52] John H. Principles of X-ray Navigation[D]. California: Stanford University, 1996.
    [53] Josep S, Andreu U, Xavier V, etal. Feasibility Study for a Spacecraft NavigationSystem relying on Pulsar Timing Information[R]. Spain: ESA, 2004.
    [54] Dennis W W. Use of X-Ray Pulsar for Aiding GPS Satellite Orbit Determination [D]. Air University, 2005.
    [55] Robert G A. On Pulse Phase Estimation and Tracking of Variable Celestial X-Ray Sources[C]. ION 63rd Annual Meeting, Cambridge, Massachusetts, 2007.
    [56] Emadzadeh A A, Speyer J L, Hadaegh F Y. A Parametric Study of Relative Navigation using Pulsars[C]. ION 63rd Annual Meeting, Cambridge, Massachusetts, 2007.
    [57] Suneel I S, Ronald W H, Richard A M. High-Order Pulsar Timing For Navigation[C]. ION 63rd Annual Meeting, Cambridge, Massachusetts, 2007.
    [58] Suneel I S, Paul S R, Kathryn W, etal. Relative Navigation of Spacecraft Utilizing Bright Aperiodic Celestial Sources[C]. ION 63rd Annual Meeting, Cambridge, Massachusetts, 2007.
    [59] Paul G, John C, Suneel I S, etal. XNAV Beyond the Moon[C]. ION 63rd Annual Meeting, Cambridge, Massachusetts, 2007.
    [60] Graven J P, Collins J T, Suneel I S, etal. XNAV for Deep Space Navigation[C] 31th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE, Breckenridge, Colorado, 2008.
    [61] John H, Suneel I S, Paul G, etal. Noise Analysis for X-ray Navigation Systems[C]. 2008 IEEE/ION PLANS, California, 2008.
    [62] Amir A E, Cassio G L, Jason L S. Online Time Delay Estimation of Pulsar Signals for Relative Navigation using Adaptive Filters[C]. 2008 IEEE/ION PLANS, California, 2008.
    [63] Graven P H, Collins J T, Suneel I S, etal. Spacecraft aviagtion Using X-Ray Pulsars[C]. 7th International ESA ConferenceE on Guidance, Navigation & Control Systems, County Kerry, Ireland, 2008.
    [64] Emadzadeh, A A, Robert A, Speyer, J L. Consistent estimation of pulse delay for x-ray pulsar based relative navigation[C]. Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, 2009:1488-1493.
    [65] Emadzadeh, A A, Speyer, J L. Asymptotically Efficient Estimation of Pulse Time Delay For X-ray Pulsar Based Relative Navigation. AIAA Guidance, Navigation, and Control Conference, Chicago, 2009:1-12.
    [66] Emadzadeh, A A, Speyer, J L. Relative Navigation Between Two Spacecraft Using X-ray Pulsars[J]. IEEE Transactions on Control Systems Technology, 2010.
    [67] Alan H. EXPRESS Pallet Payload Interface Requirements[R]. Space Station Payloads Office, 2004. Darryll J P. ARPA/DARPA Space Programs[R]. DARPA, 2004.
    [68] John T C. Autonomous X-ray Pulsar-based Spacecraft Navigation[R]. Hawthorne:Microcosm, Inc., 2004.
    [69]李黎.基于X射线脉冲星的航天器自主导航方法研究[D].长沙:国防科学技术大学, 2006.
    [70]帅平,陈绍龙,吴一帆等. X射线脉冲星导航技术及前景分析[J].中国航天, 2006(10):27-32.
    [71]史世平,徐青. X射线脉冲星导航定位原理及应用[J].测绘科学与工程, 2007, 27(2):5-7,13.
    [72]毛悦,宋小勇. X射线脉冲星导航几何法确定航天器位置[J].武汉大学学报, 2009, 34(6):790-793.
    [73]冯来平,毛悦,孙中苗. X射线脉冲星导航定位技术研究[J].测绘科学, 2009, 34(3):19-21.
    [74]杨廷高,南仁东,金乘进等.脉冲星在空间飞行器定位中的应用[J].天文学进展, 2007, 25(3):249-261.
    [75]费保俊,孙维瑾,肖昱等. X射线脉冲星自主导航的基本测量原理[J].装甲兵工程学院学报, 2006, 20(3):59-63.
    [76]郑伟,孙守明,汤国建.基于X射线脉冲星的深空自主导航方法[J].中国空间科学技术, 2008, 28(5):1-6.
    [77]孙守明,郑伟,汤国建.基于X射线脉冲星的航天器自主导航数值分析研究[J].空间科学学报, 2008, 28(6): 573-577.
    [78]黄良伟,梁斌.基于X射线脉冲星的高轨卫星自主初轨确定[J].系统仿真学报, 2010, 22(2):258-261.
    [79]帅平,陈忠贵,曲广吉.关于X射线脉冲星导航的轨道力学问题[J].中国科学E辑, 2009, 39(3)556~561.
    [80]毛悦,宋小勇,贾小林等.基于X射线脉冲星的航天器动力学定轨[J].武汉大学学报, 2010, 35(4):500-503.
    [81]毛悦,宋小勇,冯来平. X射线脉冲星导航可见性分析[J].武汉大学学报, 2009, 34(2):222-225.
    [82]费保俊,姚国政,杜健等. X射线脉冲星自主导航的脉冲轮廓和联合观测方程[J].中国科学G辑, 2010, 40(5): 644-650.
    [83]兰盛昌,徐国栋,张锦绣.基于脉冲星相关的编队航天器间相对距离的确定[J].系统工程与电子技术, 2010, 32(3):650-654.
    [84]毛悦,宋小勇,贾小林等.利用X射线源实现航天器相对定位[J].空间科学学报, 2009, 29(5):508-514.
    [85]熊凯,魏春岭,刘良栋.基于脉冲星的空间飞行器自主导航技术研究[J].航天控制, 2007, 25(4):36-40
    [86]郑广楼,刘建业,乔黎等.基于X射线脉冲星的地球同步卫星绝对定位方法[J].上海航天, 2009(1):20-30.
    [87] LI J X, KE X Z. Study on Autonomous Navigation Based on Pulsar Timing Model[J]. Sci China Ser G-Phys Mech Astron, 2009, 52(2): 303-309.
    [88]刘劲,马杰,田金文.基于MMAE-UKF的脉冲星/CNS组合导航[J].华中科技大学学报, 2009, 37(11):61-64.
    [89]刘劲,马杰,田金文.利用X射线脉冲星和多普勒频移的组合导航[J].宇航学报, 2010, 31(6):1553-1557.
    [90]孙守明,郑伟,汤国建. X射线脉冲星/SINS组合导航研究[J].空间科学学报, 2010, 30(6):579-583.
    [91]孙守明,郑伟,汤国建. X射线脉冲星SINS组合导航中的钟差修正方法研究[J].科大学报(已录用)
    [92]曹鹤,郑伟.基于X射线脉冲星的航天器姿态确定方法[C].大连:中国空间科学学会第七次学术年会, 2009:342.
    [93]曹鹤.基于X射线源的航天器自主定位/定姿方法研究[D].长沙:国防科技大学, 2009:60-75 .
    [94]兰盛昌,叶东,林杰等. X射线脉冲星矢量多平面观测的姿态测量[J].光学精密工程, 2010, 18(2):397-405.
    [95]杨廷高,陈鼎.应用X射线源的航天器姿态测量[J].时间频率学报, 2009, 32(1):70-80.
    [96]仲崇霞,杨廷高.三种综合脉冲星时算法的研究和比较[J].中国科学院研究生院学报, 2007, 24(6):806-813.
    [97]仲崇霞,杨廷高.小波域中的维纳滤波在综合脉冲星时算法中的应用[J].物理学报, 2007, 56(10):6157-6163.
    [98]仲崇霞,杨廷高.综合脉冲星时的小波分析算法[J].天文学报, 2007, 48(2):228-238.
    [99]仲崇霞,杨廷高.四种综合脉冲星时算法比较[J].天文学报, 2009, 50(4):425-437.
    [100]尹东山,高玉平,陈鼎等.基于脉冲星的星载钟时间修正算法研究[J].时间频率学报, 2009, 32(1):43-49.
    [101] Sun S M, Zheng W, Tang G J. A Research on the Pulsar Timing Based on Kalman Filtering[J]. CHINESE ASTRONOMY AND ASTROPHYSICS, 2010, 34(2):187-193.
    [102] SUN S M, ZHENG W, TANG G J. Research on the Navigation Algorithm Based on X-Ray Pulsars with Consideration of Clock Error[C]. Korea: 60th IAC,IAC.09.B2.5.13 ,2009.
    [103]魏二虎,李冠,刘经南等.脉冲星用于深空探测器导航定位及授时的探讨[J].测绘信息与工程, 2009, 34(3):1-3.
    [104]费保俊,肖昱,孙维瑾等. XNAV中的相对论效应(I)——引力频移和Doppler频移[J].装甲兵工程学院学报, 2006, 20(4):91-95.
    [105]费保俊,肖昱,张民等. XNAV中的相对论效应(II)——光线弯曲和引力延缓[J].装甲兵工程学院学报, 2006, 20(5):90-93.
    [106]费保俊,孙维谨,潘高田等. X射线脉冲星自主导航的光子到达时间转换[J].空间科学学报, 2010, 30(1):85-90.
    [107]费保俊,肖昱,孙维瑾等. XNAV中的相对论效应(III)——时空测量值的坐标转换[J].装甲兵工程学院学报, 2006, 20(5):94-98.
    [108]孙维瑾,费保俊,肖星等. X射线脉冲星自主导航的光传播时间方程[J].天文学报, 2008, 49(2):198-206.
    [109]姚国政,闫长华,费保俊. X射线脉冲星的波形及其对光子接收的影响[J].装甲兵工程学院学报, 2010, 24(3):82-85.
    [110]毛悦,宋小勇.脉冲星时间模型精化及延迟修正分析[J].武汉大学学报, 2009, 34(5):581-584.
    [111] Huang Z, Li M, Shuai P. On time transfer in X-ray pulsar navigation[J]. Science in China Series E, 2009, 52(5): 1413-1419.
    [112]刘昊,萧耐园.脉冲星观测中的日月岁差效应[J].天文学报, 2009, 50(1):37-44.
    [113]李建勋,柯熙政,汪丽.基于高阶统计量自适应滤波的毫秒脉冲星信号处理[J].西安理工大学学报, 2009, 25(1):76-79.
    [114]苏哲,许录平,王光耀等.基于离散方波变换的脉冲星微弱信号周期性检测[J].宇航学报, 2009, 30(6):2243-2248.
    [115]朱晓明,廖福成,唐远炎.基于小波分析的脉冲星信号消噪处理[J].天文学报, 2006, 47(3):328-335.
    [116]刘劲,马杰,田金文.基于小波和双谱的脉冲星信号识别[J].信息与控制, 2009, 38(2):249-252.
    [117]苏哲,王勇,许录平等.一种新的脉冲星累积脉冲轮廓辨识算法[J].宇航学报, 2010, 31(6):1563-1568.
    [118]毛悦,宋小勇,柴飞.脉冲星TOA测量误差及几何精度分析[J].测绘科学技术学报, 2009, 26(2):140-143.
    [119]吴萌,刘劲,马杰,田金文.基于脉冲星的航天器定位算法[J].计算机工程与应用, 2010, 46(1):203-205.
    [120]谢振华,许录平,倪广仁.基于最大似然的X射线脉冲星空间定位研究[J].宇航学报, 2007, 28(6):1605-1608.
    [121]谢振华,许录平,郭伟等.基于整周期数关系式的TDOA周期模糊求解算法[J].仪器仪表学报, 2008, 29(6):1134-1138.
    [122]黄震,李明,帅平.脉冲星导航的整周模糊度解算方法研究[J].空间控制技术与应用, 2010, 36(1):14-18.
    [123]杨博,郭星灿,杨勇. X射线脉冲星导航在行星际轨道上的应用[J].北京航空航天大学学报, 2009, 35(11):1384-1387
    [124]郭星灿,杨博.一种求解X射线脉冲星导航周期模糊数的新方法[J].航天控制, 2009, 27(4):14-18.
    [125]乔黎,刘建业,郑广楼等. XNAV算法及其整周模糊度确定方法研究[J].宇航学报, 2009, 30(4):1460-1465.
    [126]毛悦,宋小勇. X射线脉冲星导航中相位模糊度解算[J].宇航学报, 2009, 30(2):510-514.
    [127]康连生.中国射电天文观测和研究展望[J].北京师范大学学报, 2005, 41(3):268-270.
    [128]王娜.脉冲星观测研究和导航应用[C]. X射线脉冲星自主导航专题研讨会,西安临潼, 2008.
    [129]南仁东. 500m球反射面射电望远镜FAST[J].中国科学G辑, 2005, 35(5): 449-466.
    [130]卢方军.空间高能天文观测与脉冲星导航[C]. X射线脉冲星自主导航专题研讨会,西安临潼, 2008.
    [131]韩大炜. HXMT卫星进行脉冲星导航部分算法验证的初步方案[C]. X射线脉冲星自主导航专题研讨会,西安临潼, 2008.
    [132]陈勇.脉冲星导航的探测器技术[C]. X射线脉冲星自主导航专题研讨会,西安临潼, 2008.
    [133] Hellings R W. Relativistic Effects in Astronomical Timing Measurements[J]. Astronomical Journal, 1986, 91(3)650-659.
    [134] Lorimer D R. Binary and Millisecond Pulsars at the New Millennium[J]. Living Reviews in Relativity, 2001, 4(1):5-6.
    [135] Moyer T D. Transformation from Proper Time on Earth to Coordinate Time in Solar System Barycentric Space-Time Frame of Reference - Part One[J]. Celestial Mechanics, 1981, 23(1):33-56.
    [136] Moyer T D. Transformation from Proper Time on Earth to Coordinate Time in Solar System Barycentric Space-Time Frame of Reference - Part Two[J]. Celestial Mechanics, 1981, 23(1):57-68.
    [137]余明.简明天文学教程[M].北京:科学出版社, 2001.
    [138]张捍卫,王志军,杜兰.完整后牛顿近似下原时与坐标时的转换[J].测绘学院学报, 2004, 21(2):79-81.
    [139]郗晓宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2003.
    [140] Petit G. Report of the BIPM/IAU Joint Committee on Relativity for Space-Time Reference Systems and Metrology[C]. IAU, Washington, 2000.
    [141] Soffel M. Report of the Working Group Relativity for Celestial Mechanics and Astrometry [C]. IAU, Washington, 2000.
    [142] Bernard G. Time and Standards An Overview[C]. IAU, Washington, 2000
    [143]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社, 1993.
    [144]李济生.航天器轨道确定[M].北京:国防工业出版社, 2003.
    [145]周剑敏,张洪华.基于UKF的深空探测光学自主导航方法[J].航天控制, 2007, 25(2):41-46.
    [146] Julier J S, Uhlmann K J and Durrant Whyte F H.A. New Method for the Nonlinear Transforation of Means and Covariances in Filters and Estimators[J] . IEEE Trans actions on Automatic Control, 2000, 45(3): 477-482.
    [147] Zhang Y Y, Fang J.Study of the Satellite Autonomous Celestial Navigation Based on the Unscented Kalman Filter[J].Journal of Astronautics, 2003, 24(6): 646-650.
    [148] Julier J S.The scaled unscented Transformation[C].Proceeding of the 2002 American Control Conference, Anchorage, USA, 2002.
    [149]房建成,宁晓琳.天文导航原理及应用[M].北京:北京航空航天大学出版社, 2006.
    [150]张金槐,蔡洪.飞行器试验统计学[M].长沙:国防科技大学出版社, 2009.
    [151]张兵.大气层外动能拦截器末制导段性能研究[D].长沙:国防科技大学, 2005.
    [152]汪雄良,周海银,朱炬波.三状态样条滤波与平滑[J].数学理论与应用, 2002, 22(1):109-112.
    [153]汪雄良,朱炬波,王春玲.三状态样条Kalman滤波与目标机动检测[J].现代雷达, 2004, 26(4):21-28.
    [154]郑大钟.线性系统理论[M].北京:清华大学出版社, 2005.
    [155]李方洲. GPS同步时钟系统设计[J].全球定位系统, 2001, 26(3):43-45.
    [156]袁海波,李滚,王正明.小波包分解算法及Kalman滤波进行原子钟信号消噪的比较[J].电子测量与仪器学报, 2005, 119(16):21-24.
    [157] Hermann R, Arthur J K. Nonlinear controllability and observability[J]. IEEE Transactions on Automatic Control, 1977, 22(5):728-740.
    [158] Michael F.A, Michael J S, Alan D, etal. A Large-Scale Active Experiment on a Cometary Nucleus[J]. Space Science Reviews. 2005(1):1-21.
    [159]黄翔宇,崔平远,崔祜涛.深空自主导航系统的可观性分析[J].宇航学报, 2006, 27(3):332-337.
    [160]张国良,曾静.组合导航原理与技术[M].西安:西安交通大学出版社, 2008.
    [161]董绪荣,张守信,华仲春. GPS/INS组合导航定位及应用.湖南长沙:国防科技大学出版社, 1998.
    [162] Titterton D H, Weston J L. Strapdown inertial navigation technology[M]. UK: MPG Books Limited, Bodmin, Cornwall, 2004.
    [163]张金槐,蔡洪.飞行器试验统计学[M].长沙:国防科技大学出版社, 1995.
    [164]帅平,陈定昌,江涌. GPS/SINS组合导航系统状态的可观测度分析方法[J].宇航学报, 2004, 25(2):219-224.
    [165]吴海仙,俞文伯,房建成. SINS/CNS组合导航系统的降阶模型研究[J].航天控制, 2005, 23(6):12-16.
    [166] Goshen M D, Bar Itzhack I Y. Observability Analysis of Piece-Wise Constant System Part I: Theory[J]. IEEE Transactions on Aerospace and Electronics Systems, 1992, 28(4):1056-1067.
    [167] Goshen M D, Bar Itzhack I Y. Observability Analysis of Piece-Wise Constant System Part II: Application to Inertial Navigation In-Flight Alignment[J]. IEEE Transactions on Aerospace and Electronics Systems, 1992, 28(4): 1068-1075.
    [168]孙连云.卡尔曼滤波稳健估计在天体参数测算中的应用[J].青岛大学学报, 2003, 18(2): 20-23.
    [169]田晓东.基于小波分析的天体参数卡尔曼滤波计算[J].系统工程与电子技术, 2004, 26(5): 568-569, 577.
    [170] Ulmer M P, Matz S M. OSSE Observations of the Crab Pulsar[R]. Washington: National Aeronautics and Space Administration, 1991.
    [171] Ulmer M P, Matz S M, Cameron R. A, etal. OSSE Observations of the Crab Pulsar[R]. Washington: National Aeronautics and Space Administration, 1992.
    [172] Rots A H. Monitoring The Crab Pulsar[R]. Washington: National Aeronautics and Space Administration, 2001.
    [173] Boboltz D A, Fey A L, Johnston K J, etal. Astrometric Positions and Proper Motions of 19 Radio Stars[R]. Washington: Naval Observatory, 2003.
    [174]金文敬,夏一飞,唐正宏等.国际天球参考系[J].天文学进展, 1999, 17(4):281-291.
    [175]吴鑫基,盘军.脉冲星平均脉冲不对称性的研究[J].紫金山天文台台刊, 1999, 18(3):299-302.
    [176]杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700