深空探测中的X射线脉冲星导航方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深空探测是21世纪航天活动的热点。自主导航技术作为深空探测的关键技术之一,直接影响深空探测任务能否成功实施,同时能够降低航天器对地面支持系统的依赖,增强深空探测航天器的应用潜力。本文从X射线脉冲星导航的基本原理出发,结合深空探测航天器对自主导航的要求,深入研究了深空探测中的X射线脉冲星导航方法。论文的主要研究内容包括:
     (1)研究了X射线脉冲星导航的基本原理和算法。研究了X射线脉冲星导航所需的时空基准;基于X射线脉冲星导航的观测量获取方法,结合深空探测在不同阶段的动力学模型,建立了基于X射线脉冲星的深空探测导航系统;给出了X射线脉冲星守时模型。
     (2)提出基于单探测器的X射线脉冲星导航算法。从航天器的轨道特性出发,结合脉冲星观测方程的特点,建立了基于单探测器的X射线脉冲星导航定位观测模型、基于单探测器的同步定位/守时观测模型;对两个新建立的导航系统进行可观性和可观度分析,探求影响导航精度的因素;采用仿真方法验证了导航算法的性能。
     (3)研究了基于X射线脉冲星的平动点编队导航方法。建立了限制性三体问题下的绝对导航和相对导航动力学模型;研究了利用X射线脉冲星进行相对导航的基本测量原理;给出了利用传统的导航算法和单探测器算法的绝对导航结果,并分析了影响导航精度的因素;给出了相对导航的仿真结果,验证了相对导航算法的可行性。
     (4)搭建了X射线脉冲星导航全数字仿真平台。以X射线脉冲星导航的物理背景为依据,将X射线脉冲星导航系统进行模块化划分,确定每个节点所需实现的功能;然后,对每个节点继续进行模块化划分,分块实现各子模块的功能,从而保证整个仿真平台的功能实现;最后,利用特定轨道的导航任务来验证仿真平台的有效性,设计的正确性。
     本文的研究为X射线脉冲星导航与深空探测结合奠定了一定的理论基础,X射线脉冲星导航工程应用提供了技术支撑。
Deep space exploration is one of the main fields of the aerospace activities in the 21 century. As a key technology, autonomous navigation influences directly the missions’success. Spacecraft autonomous navigation can reduce the operational complexity of the ground-assisted system, and extends the potential space applications. This dissertation deeply studies the X-ray pulsar-based navigation in the deep space exploration, based on the priciple of X-ray pulsar-based navigation. The main contents of the dissertation are as follows.
     (1) The theory of X-ray pulsar-based navigation and corresponding algorithms are provided. In the first place, the space-time system used in the X-ray pulsar-based navigation was studed. Then, the X-ray pulsar-based navigation system in the deep space exploration was developed, based on the dynamics model of deep space exploration and the measurement of the X-ray pulsar-based navigation. Last but not least, the timing model using X-ray pulsar was given.
     (2) The algorithm for the X-ray pulsar-based navigation using singular detector was proposed. Firstly, the measurement models of X-ray pulsar-based positioning and positioning/timing using singular detector are developed, respectively. Moreover, the corresponding observability analyses are provided in order to prob the factors that might the performance of the navigation system.
     (3) The navigation method of spacecraft formation near the libration points of the sun-earth/moon system is developed. According to the circular restricted three-body problem, the dynamics models of absolute navigation and relative navigation are established, respectively. The comparisons of the conventional algorithm and the algorithm using singular detector are accomplished, and the factors that might affect the performances of the algorithms are given.
     (4) The simulation system of X-ray pulsar-based navigation was developed. Based on the physical components of X-ray pulsar-based navigation, the navigation system was divded into serval modules, the functions of which were specified respectively. Then, the modules divded was divded further to specific submodules, the functions of which are fundermental to the whole system. At last, the feasibility of such system was verified by the simulation examples with specific space missions.
     The achievement of the dissertation lays a solid foundation to the X-ray pulsar-based navigation in deep space exploration, and provides technological supports for the industrialization of X-ray pulsar-based navigation.
引文
[1]. H.B.Wiliam. Deep Impact Mission Design [J]. Space Science Reviews, 2005, 117(1-2):23~42.
    [2]. S.Mancuso. Vision Based GNC Systems for Planetary Exploration [C]. ESA ESTEC, Netherlands, 2004.
    [3].胡小平.自主导航理论与应用[M].长沙:国防科技大学出版社,2002.
    [4]. R.H.Battin. A Introduction to the Mathematics and Methods of Astrodynamics [M]. AIAA Education Series,1999.
    [5]. K.Bernard, M.Jay, and D.Robert. The Deep Space Program Science Experiment Mission Astrodynamics Mission Planing [C]. The 44th International Astronautical Federation Congress, Austria, October 16-22, 1993.
    [6]. J.K.Miller, B.G.Williams and W.E.Bollman. Navigation of the Near Earth Asteroid Rendezvous Mission [J]. Advances in the Astronautical Sciences, 1995, 18(3):605~610.
    [7]. J.J.Bordi, J.K.Miller B.G.Williams. Near Earth Asteroid Rendezvous (NEAR) Navigation Using Altimeter Range Obervations [R]. The Interplanetary Network Progress Report, IPN PR-42-146, 2001.
    [8]. S.Desai, D.Han and S.Bhaskaran et al. Autonomous Optical Navigation (AutoNav) Technology Validation Report [R]. Deep Space 1 Technology Validation Report-Autonomous Optical Navigation (AutoNav), 2002:1~39.
    [9]. S.Bhaskaran, J.E.Riedel and S.P.Synnott. Autonomous Nucleus Tracking for Comet/Asteriod Encounters: The STARDUST Example [C]. IEEE Aerospace Conference, 1998.
    [10]. J.Kawaguchi, T.Hashinmoto, T.Kubota, et al. Autonomous Optical Guidance and Navigation Strategy around a Small Body [J]. Journal of Guidance, Control and Dynamics, 1997,20(5):1210~1220.
    [11]. A.E.Marini, G.D.Racca, B.H.Foing. SMART-1 Technology Preparation for Furture Planetary Missions [J]. Advances in Space Research, 2002, 30(8):1895~1900.
    [12]. N.Thomas, H.U.Keller, E.Arijs, et al. OSIRIS-The Optical Spectroscopic and Infrared Remote Imaging System for Rosetta Orbiter [J]. Advances in Space Researth, 1998, 21(11):1505~1515.
    [13]. J.D.Lafontaine. Autonomous Spacecraft Navigation and Control for Comet Landing [J]. Journal of Guidance, Control and Dynamics, 1992, 15(3):567~576.
    [14]. M.Nikos, G.K.Daniel, and P.S.Stephen. Autonomous Navigation for the DeepImpact Mission encounter with comet temple 1 [J]. Space Science Review, 2005, 117: 95~121.
    [15]. T.Misu, T.Hashimto and K.Ninomiya. Optical Guidance for Autonomous Landing of Spacecraft [J]. IEEE Transaction on Aerospace and Electronic System, 1999, 35(2):459~473.
    [16]. Hewish A, Bell S.J, Pilkington J.D. et al. Observation of a Rapidly Pulsating Radio Source [J]. Nature,1968,217:709~713.
    [17]. Reichley P., Downs G., Morrris G. Use of Pulsar Signals as Clock [J]. NASA Jet Propulsion Laboratory Quarterly Technical Review, 1971, 1(2):80~86.
    [18]. Downs G S. Interplanetary Navigation Using Pulsation Radio Sources[R]. Washingtion: NASA, 1974.
    [19]. Downs G S, Reichley P E. Techniques for Measuring Arrival Times of Pulsar Signals I: DSN Observations from 1968 to 1980[R]. Washingtion: JPL, 1980.
    [20]. Chester T J, Butman S A. Navigation Using X-Ray Pulsars[R]. Washingtion: NASA, 1981.
    [21]. Wood K S. Navigation studies utilizing the NRL-801 experiment and the ARGOS satellite[C]. International Society of Optical Engineering Proceedings 1993.
    [22]. John H. Principles of X-ray Navigation[D]. California: Stanford University, 1996.
    [23]. Josep S, Andreu U, Xavier V, etal. Feasibility Study for a Spacecraft Navigation System relying on Pulsar Timing Information[R]. Spain: ESA, 2004.
    [24]. Dennis W W. Use of X-Ray Pulsar for Aiding GPS Satellite Orbit Determination [D]. Air University, 2005.
    [25]. Suneel I S. The Use of Variable Celestial X-Ray Sources for Spacecraft Navigation [D]. Maryland: University of Maryland, 2005.
    [26]. Suneel I S, Ronald W H, Richard A M. High-Order Pulsar Timing For Navigation[C]. ION 63rd Annual Meeting, Cambridge, Massachusetts, 2007.
    [27]. Graven J P, Collins J T, Suneel I S, etal. XNAV for Deep Space Navigation[C] 31th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE, Breckenridge, Colorado, 2008.
    [28]. Paul G, John C, Suneel I S, etal. XNAV Beyond the Moon[C]. ION 63rd Annual Meeting, Cambridge, Massachusetts, 2007.
    [29]. Graven P H, Collins J T, Suneel I S, etal. Spacecraft aviagtion Using X-Ray Pulsars[C]. 7th International ESA ConferenceE on Guidance, Navigation & Control Systems, County Kerry, Ireland, 2008.
    [30]. Suneel I S, Paul S R, Kathryn W, etal. Relative Navigation of Spacecraft Utilizing Bright Aperiodic Celestial Sources[C]. ION 63rd Annual Meeting,Cambridge, Massachusetts, 2007.
    [31]. Amir A E, Cassio G L, Jason L S. Online Time Delay Estimation of Pulsar Signals for Relative Navigation using Adaptive Filters[C]. 2008 IEEE/ION PLANS, California, 2008.
    [32]. Emadzadeh A A, Robert A, Speyer J L, et al. Consistent Estimation of Pulse Delay for X-ray Pulsar-based Relative Navigation [C]. Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, 2009:1488~1493.
    [33]. Emadzadeh A A, Robert A, Speyer J L, et al. Asymptotically Efficient Estimation of Pulse Time Delay for X-ray Pulsar-based Relative Navigation [C]. AIAA Guidance, Navigation, and Control Conference, Chicigo, USA 2009:1~12..
    [34]. Emadzadeh A A, Robert A, Speyer J L, et al. Relative Navigation between Two Spacecraft Using X-ray Pulsars [J]. IEEE Transactions on Control Systems Technology, 2010.
    [35]. Graven P H, Collins J T, Suneel I S, etal. Spacecraft Naviagtion Using X-Ray Pulsars[C]. 7th International ESA ConferenceE on Guidance, Navigation & Control Systems, County Kerry, Ireland, 2008.
    [36].帅平,李明,陈绍龙,黄震.X射线脉冲星导航系统原理与方法[M].北京,中国宇航出版社,2009.
    [37]. John T C. Autonomous X-ray Pulsar-based Spacecraft Navigation[R]. Hawthorne: Microcosm, Inc., 2004.
    [38].郑伟,李黎.脉冲星导航及其在深空探测中的应用[C],2005年航天测控技术研讨会论文集,2005年11月.
    [39].李黎.基于X射线脉冲星的航天器自主导航方法研究[D],国防科学技术大学,2006.12.
    [40].孙守明,郑伟,汤国建.考虑钟差修正的X射线脉冲星导航算法研究[J]宇航学报, 2010, 31(3):734-738.
    [41].孙守明,郑伟,汤国建. X射线脉冲星SINS组合导航中的钟差修正方法研究[J].国防科技大学学报, 2010,32(6):82-86.
    [42].孙守明,郑伟,汤国建. X射线脉冲星/SINS组合导航研究[J].空间科学学报, 2010, 30(6):579-583.
    [43].孙守明.基于X射线脉冲星的航天器自主导航方法研究[D],国防科学技术大学,2011.4.
    [44].曹鹤,郑伟.基于X射线脉冲星的航天器姿态确定方法[C].大连:中国空间科学学会第七次学术年会, 2009:342.
    [45].曹鹤.基于X射线源的航天器自主定位/定姿方法研究[D].长沙:国防科技大学, 2009:60-75 .
    [46].杨廷高,仲崇霞.脉冲星时稳定度及可能应用[J].时间频率学报, 2004, 27(2):129-137.
    [47].仲崇霞,杨廷高.三种综合脉冲星时算法的研究和比较[J].中国科学院研究生院学报, 2007, 24(6):806-813.
    [48].仲崇霞,杨廷高.小波域中的维纳滤波在综合脉冲星时算法中的应用[J].物理学报, 2007, 56(10):6157-6163.
    [49].仲崇霞,杨廷高.综合脉冲星时的小波分析算法[J].天文学报, 2007, 48(2):228-238.
    [50].仲崇霞,杨廷高.四种综合脉冲星时算法比较[J].天文学报, 2009, 50(4):425-437.
    [51].尹东山,高玉平,陈鼎等.基于脉冲星的星载钟时间修正算法研究[J].时间频率学报, 2009, 32(1):43-49.
    [52].毛悦,宋小勇,贾小林等.基于X射线脉冲星的航天器动力学定轨[J].武汉大学学报, 2010, 35(4):500-503.
    [53].毛悦,宋小勇,冯来平. X射线脉冲星导航可见性分析[J].武汉大学学报, 2009, 34(2):222-225.
    [54].毛悦,宋小勇,贾小林等.利用X射线源实现航天器相对定位[J].空间科学学报, 2009, 29(5):508-514.
    [55].毛悦,宋小勇.脉冲星时间模型精化及延迟修正分析[J].武汉大学学报, 2009, 34(5):581-584.
    [56].帅平.美国X射线脉冲星导航计划及其启示[J].国际太空, 2006,7: 7~10.
    [57].帅平,陈绍龙,吴一帆等. X射线脉冲星导航技术及前景分析[J].中国航天, 2006(10):27-32.
    [58].熊凯,魏春岭,刘良栋.基于脉冲星的空间飞行器自主导航技术研究[J].航天控制, 2007, 25(4):36-40
    [59].熊凯,魏春岭,刘良栋.鲁棒滤波技术在脉冲星导航中的应用[J].空间控制技术与应用,2008, 34(6):8~17.
    [60]. Xiong K, Wei C L, Liu L D. The Use of X-ray Pulsars for Aiding Navigation of Satellites in Constellations [J]. Acta Astronautica, 2009, 64(4):427~436.
    [61].费保俊,肖昱,孙维瑾等. XNAV中的相对论效应(I)——引力频移和Doppler频移[J].装甲兵工程学院学报, 2006, 20(4):91-95.
    [62].费保俊,肖昱,张民等. XNAV中的相对论效应(II)——光线弯曲和引力延缓[J].装甲兵工程学院学报, 2006, 20(5):90-93.
    [63].费保俊,肖昱,孙维瑾等. XNAV中的相对论效应(III)——时空测量值的坐标转换[J].装甲兵工程学院学报, 2006, 20(5):94-98.
    [64].费保俊,孙维谨,潘高田等. X射线脉冲星自主导航的光子到达时间转换[J].空间科学学报, 2010, 30(1):85-90.
    [65].姚国政,闫长华,费保俊. X射线脉冲星的波形及其对光子接收的影响[J].装甲兵工程学院学报, 2010, 24(3):82-85.
    [66].孙维瑾,费保俊,肖星等. X射线脉冲星自主导航的光传播时间方程[J].天文学报, 2008, 49(2):198-206.
    [67].张华,许录平,谢强,罗楠.基于Bayesian估计的X射线脉冲星微弱信号检测[J].物理学报,2010, 60(4):49701~49707.
    [68].张华,许录平.脉冲星脉冲轮廓累积的最小熵方法[J].物理学报,2010, 60(3):39701~39708.
    [69]. Zhang Hua, Xu LuPing, Xie Qiang. Modeling and Doppler measurement of X-ray Pulsar [J]. Science China G, 2011, 54(6):1068~1076.
    [70].苏哲,王勇,许录平等.一种新的脉冲星累积脉冲轮廓辨识算法[J].宇航学报, 2010, 31(6):1563~1568.
    [71].苏哲,许录平,王勇等.改进小波空域相关滤波的脉冲星微弱信号降噪[J].系统工程与电子技术,2010,32(12):2500~2505.
    [72].苏哲,许录平,王勇等.一种利用三阶互小波累积量的脉冲星累积脉冲轮廓时间延迟测量算法[J].武汉大学学报(信息科学版), 2011, 36(1):14~17.
    [73].王勇,许录平,田玉琴,徐飞.一种微光子导航源的混沌辨识方法[J]. 2011, 41(5): 685~690.
    [74]. Manchester R.H, Hobbs G.B, Teoh A et al. The Australia Telescope National Facility Pulsar Catalogue [J]. AJ,2005, 129:1993~2006.
    [75].魏学.脉冲星观测及其若干应用I [J].天文学进展,1990,8(4):303~309.
    [76].朱慈墭.天文学教程(下册)[M].北京:高等教育出版社, 2003, 95~108.
    [77].漆贯荣.时间科学基础[M].北京:高等教育出版社,2006.
    [78].刘利生,吴斌,杨萍.航天器精确定轨与自校准技术[M].北京:国防工业出版社,2005.
    [79]. Dennis D.McCarthy, Geard Petit. IERS Conventions(2010) [R]. IERS Technical Note No.32.
    [80]. Jean Souchay, Martine Feissel-Vernier. The International Celestial Reference System and Frame [R]. ICRS Center Report for 2004~2010, IERS Technical Note No.34.
    [81].倪广仁,杨廷高.毫秒脉冲星计时和原子时[J].计量学报, 2011, 22(4) :308~313.
    [82].贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社, 1993.
    [83].郗晓宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2003.
    [84].李济生.航天器轨道确定[M].北京:国防工业出版社, 2003.
    [85].周剑敏,张洪华.基于UKF的深空探测光学自主导航方法[J].航天控制, 2007, 25(2):41-46.
    [86].张金槐,蔡洪.飞行器试验统计学[M].长沙:国防科技大学出版社, 2009.
    [87].郑广楼,刘建业,乔黎,熊智.单脉冲星自主导航系统可观测性分析[J].应用科学学报,2008,26(5):506~510.
    [88]. E.B.Lee and L. Markus. Foundations of Optimal Control Theory [M]. John Wiley, New York, 1967.
    [89].郑大钟.线性系统理论[M].北京:清华大学出版社, 2005.
    [90].邢光谦.量测系统的能观度和状态估计精度[M].自动化学报,1985, 11 (2) : 152~158.
    [91]. B.Friedland. Controllability Index Based on Conditioning Number [J]. Journal of Dynamic Systems Measurement and Control, Transactions of the ASME, 1975, 97, ser G (4):444~445.
    [92]. R.Farquhar. Utilization of Libration Points for Human Exploration in the Sun-Earth-Moon System and Beyond. Acta Astronautica, 2004, 55:6878~700.
    [93]. Belinda G.Marchand, Spacecraft Formation Keeping near The Libration Points of The Sun-Earth/Moon System [D].West Lafayette, Purdue University, 2004.
    [94]. Richard J.Luquette. Nonlinear Control Design Techniques for Precision Formation Flying at Lagrange Points [D]. University of Mayland, 2006.
    [95].周建勇.分布式仿真系统设计及应用研究[D].国防科学技术大学,2008.
    [96]. Yim J R. Autonomous Spacecraft Orbit Navigation [D]. Texas A&M University, 2002.
    [97]. Keric A.Hill. Autonomous Navigation in Libration Point Orbits[D]. Doctoral Dissertation, University of Colorado, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700