星敏感器陀螺姿态确定系统在轨标定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姿态敏感器在轨标定本质上是实时地消除各种因素所致的系统性姿态误差,随着航天任务对姿态精度需求逐渐提高,在轨标定应用将越来越广泛。本文以星敏感器、陀螺组成的姿态确定系统为基本研究对象,对星敏感器在轨标定和姿态敏感器安装标定进行研究。本文主要内容细分如下:
     1.针对星敏感器成像过程中成像参数漂移造成星敏姿态输出具有系统性误差的问题,本文使用与航天器自身姿态无关的星角距不变原则对包括星敏感器像平面主点偏移、焦距偏差和镜头畸变在内的星敏感器主要成像参数进行了标定指标函数的建立,并对使用遗传算法对指标函数进行求解进行研究。
     2.在传统的Shuster提出的测量方差基础上,进一步在机理上提出了两种可能的方差形式——光锥方差和镜头畸变方差,相应给出了方差的影响方式。
     3.针对星敏感器在航天器姿态机动过程中出现姿态信息输出延迟和姿态方差增大问题,进行了机理建模和补偿方法的研究,并基于Kalman滤波方法对上述问题作出修正。
     4.针对星敏感器、陀螺组成的姿态确定系统在轨安装标定,为了真正实现确定航天器关键部件姿态,引入可以给出有效姿态信息的光学有效载荷,实现绝对安装方位标定。进行姿态敏感器间安装参数建模,以星敏感器为标定基准敏感器,建立陀螺、光学有效载荷相对星敏感器的相对安装参数矩阵,使得星敏感器、陀螺等姿态敏感器输出的姿态信息直接与航天器有效载荷关联,进而保证姿态确定的直接、有效性。在建立标定模型的基础上,依据不同需求进行了标准EKF、偏差隐式EKF、偏差显式EKF和UKF算法应用在安装标定领域的研究。
     5.针对姿态敏感器安装参数标定中系统维数大、计算量重的问题,基于线性分段常值方法、李导数秩条件、奇异值分解等可观性分析方法,以标准状态EKF为例进行可观性分析,并基于可观性分析对标定系统进行降维研究。
The essense of in-orbit calibration on attitude sensors is that it can reduce the sysyemerror e?ectively. With the increasing demand of precision, in-orbit calibration will be ap-plied more and more widely. This paper takes the attitude determination system composedof star tracker and gyroscopes as research object, focuses on two major aspects:researchon the factors in?uencing the results from star tracker, calibration model is bulit and ef-fective method is proposed; research on the alignment among attitude sensors, definitebase sensor is given, payload is added, and then several estimator is presented for thecalibration, in the end a reducing dimensions calibration scheme is proposed.
     1.Traditional used measure variance is based on the simplified by the assumptionof small FOV. And with the development of star tracker, larger FOV is more and morecommon. In this situation, a new, fine variance model is needed to be studied. This paperpresents two theoretical models, one is called light cone variance and the other is calleddistortion variance.
     2.The drift of imaging parameters of star tracker could a?ects the results of attitudedetermination, this paper presents a method to calibrate the principle points drift, focaldrift, distortion of star lens using equal angular criterion. A genetic algorithm is used tosolve the problem.
     3.When star tracker rotates fast, the precision of the star tracker output will be a lagsignal, and the magnitude of measure variance will get larger. A model is proposed, anda calibration method is presented.
     4.Alignment calibration on the system composed of star tracker, gyroscopes andoptic payload is researched. Since the payload is added to the calibration. Obsolute cali-bration can be proceeding. Several estimators are given, and the comparation is analyzed.
     5.For the high dimension of calibration system this paper proposed, a reduced di-mension calibraiton system based on the analysis is presented.
引文
[1] Helleputte T V, Doornbos E, Visser P. Champ and Grace Accelerometer Calibra-tion by Gps-based Orbit Determination[J]. Advances in Space Research, 2009,43(12):1890–1896.
    [2] Liebe C. Accuracy Performance of Star Trackers-a Tutorial[J]. Aerospace andElectronic Systems, IEEE Transactions on, 2002, 38(2):587–599.
    [3] Ackermann K, Adams N, Adler C, et al. Star Detector Overview[J]. Nuclear Instru-ments and Methods in Physics Research Section A: Accelerators, Spectrometers,Detectors and Associated Equipment, 2003, 499(2-3):624–632.
    [4] Serradeil R, De Dianous A, Hebert M. New Generation of Infrared Horizon Scan-ning Sensors for Low Altitude Spacecraft[J]. Acta astronautica, 1985, 12(2):101–106.
    [5] Appel P. Attitude Estimation from Magnetometer and Earth-albedo-correctedCoarse Sun Sensor Measurements[J]. Acta Astronautica, 2005, 56(1-2):115–126.
    [6]李松.数字式太阳敏感器标定与抗干扰分析[D].哈尔滨:哈尔滨工业大学,2009:1–48.
    [7] Akella M, Halbert J, Kotamraju G. Rigid Body Attitude Control with Inclinometerand Low-cost Gyro Measurements[J]. Systems & control letters, 2003, 49(2):151–159.
    [8]袁彦红.星敏感器在轨标定算法研究[D].哈尔滨:哈尔滨工业大学, 2007:1–74.
    [9] Reid D B. Calibration of the Milstar Attitude Determination System[C]//AmericanControl Conference. Chicago, Illinois: IEEE, 1997:557–563.
    [10] Erikjebo. Satellite Attitude Determination-three-axis Attitude Determination UsingMagnetometers and a Star Tracker[D]. :Department of Engineering Department ofEngineering Cybernetics,NTNU, 2000.
    [11]苏雪峰,覃方君,许江宁,等.一种六加速度计无陀螺惯性导航系统安装误差校准方法研究[J]. JOURNAL OF NAVAL UNIVERSITY OF ENGINEERING,2007, 19(4):102–105.
    [12]周红进,许江宁,刘睿.基于加速度计的无陀螺惯性导航系统设计与仿真[J]. SYSTEMS ENGINEERING, 2007, 29(7):1209–1212.
    [13]孟红秋.无陀螺及单陀螺捷联惯性导航系统研究[D].哈尔滨:哈尔滨工程大学, 2008:21–48.
    [14]吴廷元.基于恒星和地心矢量观测的微小卫星定姿方案及算法研究[D].南京:南京航空航天大学, 2008:1–57.
    [15]张锐,朱振才,张静,等.基于磁强计的微小卫星姿态确定[J].宇航学报,2006, 27(4):578–581.
    [16]段方,刘建业,李丹.微小卫星太阳敏感器/磁强计实时标定算法研究[J].航空学报, 2007, 28(1):173–176.
    [17] Wahba G. A Least Squares Estimate of Satellite Attitude[J]. SIAM review, 1965,7:409.
    [18] Keat J. Analysis of Least-squares Attitude Determination Routine, Doaop[R]. Tech.rep., Computer Sciences Corp., Report CSC/TM-77/6034, 1977.
    [19] Shuster M D. The Taste Test[J]. Journal of the Astronautical Sciences, 2009, 57(1-2):61–71.
    [20] Shuster M D, Oh D S. Three-axis Attitude Determination from Vector Observation-s[J]. Journal of Guidance, Control, and Dynamics, 1981, 4(1):70–77.
    [21] Shuster M D. Maximum Likelihood Estimation of Spacecraft Attitude[J]. Journalof the Astronautical Sciences, 1989, 37(1):79–88.
    [22] Shuster M D. The Triad Algorithm as Maximum Likelihood Estimation[J]. Journalof the Astronautical Sciences, 2006, 54(1):113–123.
    [23] Shuster M D, FREESLAND D C. The Statistics of Taste and the In?ight Estimationof Sensor Precision[C]//Proceedings (CD), NASA Flight Mechanics Symposium,NASA Goddard Space Flight Center. Greenbelt, Maryland: NASA, 2005:1–12.
    [24] Bar-Itzhack I Y, Idan M. Recursive Attitude Determination from Vector Observa-tions Euler Angle Estimation[C]//Guidance, Navigation and Control Conference.Snowmass, 1985:628–633.
    [25] Bar-Itzhack I Y, Oshman Y. Attitude Determination from Vector Observations:Quaternion Estimation[J]. IEEE Transactions on Aerospace and Electronic Systems,1985, (1):128–136.
    [26] Bar-Itzhack I Y, Reiner J. Recursive Attitude Determination from Vector Obser-vations Direction Cosine Matrix Identification[J]. Journal of Guidance,Control,andDynamics, 1984, 7:51–56.
    [27] Shuster M D. Kalman Filtering of Spacecraft Attitude and the Quest Model[J].Journal of the Astronautical Sciences, 1990, 38(3):377–393.
    [28] Shuster M D. A Simple Kalman Filter and Smoother for Spacecraft Attitude[J].Journal of the Astronautical Sciences, 1989, 37(1):89–106.
    [29] Shuster M D. Filter Quest Or Request[J]. Journal of Guidance, Control, and Dy-namics, 2009, 32:643–645.
    [30] Shuster M D. A Suboptimal Algorithm for Attitude Determination from MultipleStar Cameras[J]. Advances in the Astronautical Sciences, 2000, 105:383–393.
    [31] Le?erts E J, Markley F L, Shuster M D. Kalman Filtering for Spacecraft AttitudeEstimation[J]. Journal of Guidance, Control, and Dynamics, 1982, 5(5):417–429.
    [32] Jwo D-J, Cho T-S. Critical Remarks on the Linearised and Extended Kalman Filterswith Geodetic Navigation Examples[J]. Measurement, 2010, 43(9):1077–1089.
    [33] Zamora-Izquierdo M A, Betaille D F, Peyret F, et al. Comparative Study of ExtendedKalman Filter, Linearised Kalman Filter and Particle Filter Applied to Low-costGps-based Hybrid Positioning System for Land Vehicles[J]. International Journalof Intelligent Information and Database Systems, 2008, 2(2):149–166.
    [34] Chou J. Quaternion Kinematic and Dynamic Di?erential Equations[J]. Roboticsand Automation, IEEE Transactions on, 1992, 8(1):53–64.
    [35] Bar-Itzhack I Y, Deutschmann J, Markley F L. Quaternion Normalization in AdditiveEkf for Spacecraft Attitude Determination[C]//Flight Mechanics/Estimation TheorySymposium. AIAA, 1991:403–421.
    [36] Bar-Itzhack I, HARMAN R R. A Comparison between Implicit and Explicit Space-craft Gyro Calibration[J]. WSEAS Transactions on Circuits and Systems, 2003,2(4):728–734.
    [37] Pittelkau. Everything Is Relative in Spacecraft System Alignment Calibration[J].Journal of Spacecraft and Rockets, 2002, 39(3):460–466.
    [38] Julier S, Uhlmann K. A General Method for Approximating Nonlinear Transforma-tions of Probability Distributions[R]. Tech. rep., Robotics Research Group, Depart-ment of Engineering Science, University of Oxford, 1996.
    [39] Julier S J, Uhlmann J K. Reduced Sigma Point Filters for the Propagation of Meansand Covariances Through Nonlinear Transformations[C]//Proceedings of the Amer-ican Control Conference. Anchorage,AK: AACC, 2002:887–892.
    [40] Julier S J, Uhlmann J K. The Scaled Unscented Transformation[C]//Proceedings ofthe American Control Conference. Anchorage,AK: AACC, 2002:4555–4559.
    [41] Julier S, Uhlmann J. A New Extension of the Kalman Filter to Nonlinear System-s[C]//Int. Symp. Aerospace/Defense Sensing, Simul. and Controls. Citeseer, 1997,3:26.
    [42]武元新.四元数导航算法与非线性高斯滤波研究[D].长沙:国防科技大学,2005:77–84.
    [43] VanDyke M C, Schwartz J L, Hall C D. Unscented Kalman Filtering for SpacecraftAttitude State and Parameter Estimation[J]. Department of Aerospace & OceanEngineering, 2004:1–13.
    [44] Van D M R, Wan E A. The Square-root Unscented Kalman Filter for State andParameter-estimation[C]//IEEE International Conference on Acoustics, Speech, andSignal Processing. NASA, 2001:3461–3464.
    [45]熊剑,李丹,刘建业.基于最小偏度采样的卫星自主导航srukf算法[J].南京航空航天大学学报, 2009, 41(1):54–58.
    [46]刘建业,陆海勇,赵伟.捷联惯导初始对准的超球体采样srukf算法[J].应用科学学报, 2009, 27(3):311–315.
    [47] Cheng Y, Crassidis J L. Particle Filtering for Sequential Spacecraft Attitude Estima-tion[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. AIAA,2004:1–18.
    [48] Markley F L, Crassidis J L, Cheng Y. Nonlinear Attitude Filtering Method-s[C]//AIAA Guidance, Navigation, and Control Conference. San Francisco, Cali-fornia: AIAA, 2005:1–32.
    [49] Crassidis J L, Markley F L, Cheng Y. Survey of Nonlinear Attitude EstimationMethods[J]. Journal of Guidance Control and Dynamics, 2007, 30(1):12–28.
    [50]林玉荣,邓正隆.基于矢量观测确定飞行器姿态的算法综述[J].哈尔滨工业大学学报, 2003, 35(1):38–45.
    [51]李承东,赵剡.一个基于Cmos器件的新型嵌入式星敏感器设计[J].航天控制, 2004, 22(1):68–72.
    [52]许苏晓,肖靖.基于Cmos Aps的星敏感器技术发展研究[J].长江大学学报:自然科学版, 2004, 1(4):115–117.
    [53]王晓东.大视场高精度星敏感器技术研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所), 2003:1–93.
    [54]孙宝祥,李铁寿.三轴稳定通信卫星在地球指向模式下的陀螺标定[J].航天控制, 1994, (3):64–68.
    [55]孙宝祥,李铁寿.三轴稳定通信卫星在地球搜索模式下的陀螺标定[J].航天控制, 1994, (4):15–19.
    [56] Shuster M D, Chitre D M, Niebur D P. In-?ight Estimation of Spacecraft AttitudeSensor Accuracies and Alignments[J]. Journal of Guidance,Control,and Dynamics,1982, 5(4):339–343.
    [57] Bierman G J, Shuster M D. Spacecraft Alignment Estimation[C]//Proceedings ofthe 27th Conference on Decision and Control Austin. Texas: IEEE, 1988:856–859.
    [58] Shuster M D, Pitone D S. Batch Estimation of Spacecraft Sensor Align-ments,ii.absolute Alignment Estimation[J]. The Journal of The Astronautical Sci-ences, 1991, 39(4):547–571.
    [59] Shuster M D, Pitone D S, Bierman G J. Batch Estimation of Spacecraft SensorAlignments,i.relative Alignment Estimation[J]. The Journal of The AstronauticalSciences, 1991, 39(4):519–522.
    [60] Hashmall J A, Rowe J, Sedlak J. Spacecraft Attitude Sensor Calibration from On-orbit Experience[C]//Digital Avionics Systems Conference. AIAA/IEEE, 1997:8.4–1–8.4–8.
    [61] Lai K L, Crassidis J L, Harman R R. In-space Spacecraft Alignment CalibrationUsing the Unscented Filter[C]//Proc. of AIAA Guidance, Navigation, and ControlConference and Exhibit. IEEE, 2003:1–11.
    [62] Fosbury A, Nebelecky C. Spacecraft Actuator Alignment Estimation[C]//Guidance,Navigation, and Control Conference. Chicago, Illinois: AIAA, 2009:1–18.
    [63] Kannala J, Brandt S. A Generic Camera Calibration Method for Fish-eye Lens-es[C]//ICPR 2004. Proceedings of the 17th International Conference on. Anchor-age,AK: IEEE, 2004:10–13.
    [64] Wei-yi L, Ya-lin D, Ji-Qiang J, et al. Calibration of Inner Orientation Elementsfor Camera by Means of Star Points[J]. Optics and Precision Engineering, 2010,18(9):2086–2093.
    [65] Weng J, Cohen P, Herniou M. Camera Calibration with Distortion Models and Ac-curacy Evaluation[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2002, 14(10):965–980.
    [66] Ahmed M, Farag A. Non-metric Calibration of Camera Lens Distor-tion[C]//International Conference on Image Processing. Tucson, Arizona: IEEE,2001:157–160.
    [67] Ahmed M, Farag A. Nonmetric Calibration of Camera Lens Distortion: Di?erentialMethods and Robust Estimation[C]//IEEE Transactions on Image Processing. IEEE,2005:1215–1230.
    [68] Clarke T A, Fryer J G. The Development of Camera Calibration Methods and Mod-els[J]. The Photogrammetric Record, 1998, 16(91):51–66.
    [69] Singla P, Gri?th D T, Crassidis J L, et al. Attitude Determination and AutonomousOn-orbit Calibration of Star Tracker for the Gifts Mission[J]. Advances in the As-tronautical Sciences, 2002, 112,Part 1(4):19–38.
    [70] Pal M, Bhat M S. Star Camera Calibration Combined with Independent Space-craft Attitude Determination[C]//American Control Conference. St. Louis: AIAA,2009:4836–4841.
    [71] Alonso R, Shuster M D. Centering and Observability in Attitude-independentMagnetometer-bias Determination[J]. Journal of the Astronautical Sciences, 2003,51(2):133–142.
    [72] Alonso R, Shuster M D. Complete Linear Attitude-independent Magnetometer Cal-ibration[J]. Journal of the Astronautical Sciences, 2002, 50(4):477–490.
    [73] Shuster M D, Alonso R. Magnetometer Calibration for the First Argentine Space-craft[J]. Advances in the Astronautical Sciences, 1996, 91(Part I):29–46.
    [74] Guang-Fu M, Xue-Yuan J. Unscented Kalman Filter for Spacecraft Attitude Esti-mation and Calibration Using Magnetometer Measurements[C]//Machine Learningand Cybernetics. Guangzhou: IEEE, 2005:506–511.
    [75] Schaub H, Junkins J. Analytical Mechanics of Space Systems[M]. AIAA, 2002:63–114.
    [76]曹立明,王小平.遗传算法——理论、应用与软件实现[M].第一版.,西安:西安交通大学出版社, 2002:1–231.
    [77] Bar-Itzhack I Y, Oshman Y. Attitude Estimation for Large Field-of-view Sensors[J].Journal of the Astronautical Sciences, 2006, 54(3-4):433–448.
    [78]郭长贵.从普遍的洛仑兹变换推导多普勒效应和光行差的一般规律[J].大学物理, 1990, (6):27–29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700