射电望远镜天线相控阵馈源技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相控阵馈源是作为多波束馈源使用的小型相控阵天线。在射电天文领域,相控阵馈源可用于产生几十个乃至上百个紧密交叠的波束,有效地扩大射电望远镜的视场,提高其巡天效率,还可以消除人为因素对射电望远镜的电磁干扰以及重力等因素引起的反射面形变,因此被称为下一代射电望远镜的关键技术之一。本文在综述国内外相控阵馈源技术发展的基础上,结合科研课题,对射电望远镜相控阵馈源技术进行了系统和深入的研究,所取得的主要研究成果总结如下:
     1.深入研究了相控阵馈源与射电天文观测需求之间的联系。基于射电望远镜高灵敏度、高分辨率以及快速巡天的要求,分析了各种多波束天线方案的可行性,得出了以焦平面阵列馈电的反射面天线更适合于射电天文观测的结论。针对这一方案,详细比较了相控阵馈源与传统的馈源组(通过增加馈源数量实现多波束)这两种焦平面阵列的特点,前者在波束数量、方向图灵活性、视场范围和连续性以及抗电磁干扰等方面更具优势,能够更好的满足射电天文观测的需要。
     2.深入研究了馈源与反射面系统之间的联系。总结了各种形式的反射面天线及其建立的条件。以“五百米口径球面射电望远镜(FAST)”、上海65m射电望远镜(SHAO65m)以及平方公里阵(SKA)中频阵列单元的中国设计方案DVA-C等不同形式的射电望远镜天线为例,通过计算平面波在天线焦平面形成的场分布,分析了各种形式的反射面天线及其几何参数对馈源设计的影响,得到了反射面系统对馈源影响最大的参数是照射角的结论。该参数决定了馈源的口径和需要的口径场分布。重点研究了多波束应用中,反射面系统的形式和参数,以及赋形对波束扫描性能的影响,得出了一些实用的设计参数和规律,可用于指导工程设计。
     3.建立了基于焦面场分析的相控阵馈源天线阵列的设计方法,并深入研究了其对射电望远镜性能的影响。对于给定的反射面系统的参数和波束覆盖,可利用焦面场分析计算出天线阵列的尺寸,并根据采样定律确定出馈源阵列最大的阵元间距。详细分析了焦平面阵列馈电射电望远镜各波束增益存在差别的原因,研究了阵元尺寸和间距变化对射电望远镜增益和视场的影响,比较了矩形和六边形两种排列方式的特点,得出了射电望远镜性能随馈源阵列变化的一系列规律。基于这一方法,针对FAST的观测需求,具体设计了一个在L频段能够实现上百个波束观测的相控阵馈源(FAST PAF),并进行了初步的样机验证。
     4.针对FAST PAF的应用,提出了将背腔振子天线缩小尺寸、组阵使用的思路,其优点是展宽工作频带、提高方向图的对称性,同时抑制了阵元间耦合。通过比较背腔形状在六边形排列时的影响,选定以六边形背腔振子天线作为阵列单元,并进行了阵列单元和19元阵列的设计、加工、测试和验证。该单元形式能够充分利用阵列面积,适用于六边形排列的相控阵馈源阵列。
     5.建立了相控阵馈电射电望远镜天线系统性能分析的数学模型。在此基础上,分析了波束合成因子对射电望远镜性能的影响,比较了共轭匹配法、最大方向性系数和最大信噪比三种波束合成因子的特点,研究了波束合成因子与波束增益、系统噪声之间的联系。总结了射电望远镜系统噪声的组成和抑制方法,对阵列天线单元与低噪声放大器阻抗失配这一系统噪声的主要贡献进行了重点研究,并比较了各种阻抗匹配方法的特点和可行性。
     6.针对FAST的结构特点,提出以自适应波束合成消除馈源舱扰动引起的波束性能劣化和指向精度下降,建立了这一问题的数学模型、系统构架以及校准方案,并进行了初步的仿真验证。
Phased Array Feed (PAF), which is a small phased array antenna, playing a role asmulti-beam feed of reflector antenna. In radio astronomy applications, PAF provides thepossibility of observation with dozens or hundreds of closely overlapped beams, whichgreatly extents the Field-of-View (FoV) of the radio telescope and enhances the SurveySpeed (SS). Moreover, PAF also helps to mitigate the radio frequency interference (RFI)from human activities and reflector deformation due to gravity and other environmentalfactors. Thus it is called one of the key technologies for next generation of radiotelescopes. This paper reviews the development of PAF in China and abroad,systematically investigates the analysis and design techniques of PAF considering theproject requirement. The main contributions and innovations of this thesis are listed asfollows:
     1. The relationship between the PAF performance and the requirements fromradio astronomical observation is investigated. To pursue a radio telescope of highsensitivity, high resolution and fast sky survey, several multi-beam antennaconfigurations are studied and a conclusion that the reflector antennas with Focal PlaneArrays (FPA) are most suitable for radio astronomical observation is made. In thisscheme, two types of FPAs, the PAF and cluster feed are investigated and compared indetail. The former is more competitive in several crucial aspects, e. g. beam amount,beam pattern flexibility, the range and continuity of FoV and RFI mitigation, and bettermeets the observation requirements.
     2. The interaction between the feeds and the reflector systems is investigated. Theconfigurations of reflector system, the law to establish a reflector system aresummarized. Taking the “Five-hundred-meter Aperture Spherical radio Telescope”(FAST), the Shanghai65m radio telescope (SHAO65m), and the Chinese DishVerification Antenna (DVA-C) for Square Kilometer Array (SKA) middle frequencyarray antenna element for examples, the effect of reflector configuration and geometryon feed design is analyzed via calculating the field distribution on the focal planeexcited by incident plane wave. And it is concluded that the feed design is mostsensitive to the (equivalent) illumination angle of the reflector system, which decidesthe feed aperture and the requisite aperture field distribution. Furthermore, since PAF isusually employed in multi-beam applications, the effect of reflector configuration andgeometry, as well as reflector shaping, on beam scanning performance is studied andsome design parameter and principles are reached.
     3. The PAF design method is established based on the focal field analysis. Theperformances of radios telescope with various types of PAF are investigated. For agiven reflector system and FoV requirement, the dimension of the feed array and themaximum element spacing can be estimated via focal field analysis and Nyquist Law.From antenna array aspect, the gain distinction between beams and FoV of FPA fedreflector antenna is investigated, the differences between rectangular and hexagonalarray arrangements are compared. And the relationship between the radio telescopeperformance and feed array configuration are concluded. A PAF which is capable ofsimultaneously synthesizing more than one hundred beams is designed for FAST (FASTPAF) and a smaller prototype is built for preliminary verification.
     4. In the design process of FAST PAF, The cavity-backed dipole is proposed tooperate as the feed element. It is fit to broaden the operating frequency bandwidth,improve the symmetry of pattern, and mitigate the mutual coupling between elements.After the comparison between cavity-backed dipoles of different cavity shapes,hexagonal cavity is adopted for hexagonal arrangement feed array. A single element wasfabricated first and then a19-element array was designed, manufactured, tested andverified. This type of antenna element can make best use of the array aperture and fit forhexagonal arranged PAF.
     5. The model for phased array fed radio telescope system performance estimationis established. Based on this model, the effect of beam-former on the performance ofradio telescope is analyzed. The characteristics of three common beam-formers: theconjugate field matching (CFM), the maximum directivity (max-directivity), and themaximum signal to noise ratio (max-SNR) are compared, and the connection betweenthe beam-former and corresponding beam gain, system noise temperature is studied.The composition and reduction method of radio telescope system noise temperature arepresented. As a major contributor to the system noise, the dismatch between arrayelements and LNAs is introduced, and the characteristics and feasibilities of severalimpedance matching methods are compared.
     6. Subject to the structure feature of FAST, the core ideology that using PAF withadaptive beam-forming to compensate for the feed cabin vibration, mitigate the beampattern deterioration and pointing accuracy decline is presented. The mathematic model,system framework, and calibration scheme are established, and the feasibility ispreliminarily verified in simulation.
引文
[1].向德琳.射电天文观测.北京:科学出版社,1990.
    [2].苏定强.望远镜和天文学:400年的回顾与展望.物理,2008,12,826-843.
    [3].克里斯琴森,霍格玻姆著,陈建生译.北京:科学出版社,1977.
    [4]. B MacA Thomas, J T Schafer, M W Sinclair, et al. The Parkes radio telescopemodified for rapid receiver changes. IEEE Antennas and Propagation Magazine,1997,39(2):54-66.
    [5]. P A Castleberg, K M Xilouris. The Arecibo Observatory. IEEE Potentials,1997,33-39.
    [6]. N Roddis, G J Kitching. A Compact L Band Feed for a Multi-frequency CassegrainRadio Telescope. European Microwave Conference,1996,640-643.
    [7]. B Nikolic, R E Hills, and J S Richer. Measurement of antenna surfaces from in-andout-of-focus beam maps using astronomical sources. Astronomy&Astrophysics,2007,465,679–683.
    [8]. G Swenson Jr, Y Lo. The University of Illinois radio telescope. IRE Transactions onAntennas and Propagation,1961:9-16.
    [9]. E de Lera Acedo, N R Ghods, P Scott, et al. SKA AA-low front-end developments(At Cambridge University).6th European Conference on Antennas and Propagation,2012:616-620.
    [10]. M McKinnon, M Revnell, S Durand. The Expanded Very Large Array.Proceedings of the IEEE,2009,97(8),1448-1462.
    [11]. P Benthem, G W Kant. EMBRACE: Results from an aperture array for radioastronomy.6th European Conference on Antennas and Propagation,2012:629-633.
    [12]. P S Kildal, M Johansson, T Hagfors, et al. Analysis of a cluster feed for theArecibo trireflector system using forward ray tracing and aperture integration. IEEETransactions on Antennas and Propagation,1993,41(8):1019-1025.
    [13]. A Orfei, L Carbonaro, A Cattani, et.al. A multi-feed receiver in the18to26.5GHzband for radio astronomy. IEEE Antennas and Propagation Magazine,2010,52(4):62-72.
    [14]. W A Van Appellen, L Bakker, T A.Oosterloo. APERTIF: Phased array feeds forthe westerbork synthesis radio telescope. IEEE International Symposium on PhasedArray Systems and Technology (ARRAY), Boston,2010:640-647.
    [15]. A Chippendale, A Schinckel. ASKAP: Progress towards36parabolic reflectorswith phased array feeds. General Assembly and Scientific Symposium, Istanbul,2011:13-20.
    [16]. B Veidt, G J Hovey, T Burgess, et al. Demonstration of a dual-polarizedphased-array feed. IEEE Transactions on Antennas and Propagation,2011,59(6):2047-2057.
    [17]. K F Warnick, D Carter, T Webb, et al. Towards a high sensitivity cryogenicphased array feed antenna for the Green Bank Telescope. General Assembly andScientific Symposium. Istanbul, August13-20,2011.
    [18]. W Van Cappellen, J G B de Vaate, K F Warnick, et al. Phased array feeds for theSquare Kilometre Array. General Assembly and Scientific Symposium, Istanbul,2011:1-4.
    [19].施浒立,张巨勇.我国大天线的新进展.电子机械工程,2004,20(6):21-24.
    [20]. B Du, Y P Zheng, Y F Zhang, et al. Progress in SHAO65m Radio TelescopeAntenna. International Symposium on Antenna and Propagation, Nanjing,2013:1-3.
    [21]. R D Nan, D Li, C J Jin, et al. The Five-hundred-meter Aperture Spherical RadioTelescope (FAST) project. International Journal of Modern Physics D,2011,20:989-1024.
    [22].束咸荣,何炳发,高铁.相控阵雷达天线.北京:国防工业出版社,2007.
    [23]. S Tanaka, T Yamada, T Murata, et al. A study on pattern synthesis method forarray-fed reflector antenna for advanced direct broadcasting satellites. IEEEInternational Symposium on Antennas and Propagation Society,2001, Vol.1:566-569.
    [24].刘少东.星载有限电扫描天线的研究.西安电子科技大学博士论文,2005.
    [25].伍洋,杜彪,金乘进,等.射电望远镜相控阵馈源技术.电波科学学报,2013,28(2):348-353.
    [26]. M V Ivashina, J D B A Van Ardenne. A way to improve the field of view of theradiotelescope with a dense focal plane array.12th International Conference onMicrowave and Telecommunication Technology. Sevastopol,2002:278-281.
    [27].陈腾博.星载有限电扫描天线阵列馈源的研究.西安电子科技大学博士论文,2007.
    [28]. M V Ivashina, J D Bregman, J G bij de Vaate, et al. Experimental results for afocal plane array, synthesized with conjugate field method. IEEE Symposium onAntennas and Propagation Society,2004, Vol.1:21-24.
    [29]. R J Fisher, F Bradley. Full-sampling focal plane arrays. Image at Radio throughSubmilimeter wavelengths, Proceedings,2000,217:11-18.
    [30]. J Landon, M Elmer1, J Waldron, et al. Phased Array Feed Calibration,Beamforming, and imaging. The Astronomical Journal,2010,139:154–1167.
    [31]. G Cortes-Medellin, G Rajagopalan, P Perillat, et al. Field of view characterizationof Arecibo radio telescope with a phased array feed. IEEE International Symposiumon Antennas and Propagation (APSURSI),2011,847-850.
    [32]. K F Warnick, T Webb, M Adhikari, et al. Progress in high sensitivity phased arrayfeeds for large single-dish radio telescopes. International Conference onElectromagnetics in Advanced Applications,2012:199-201.
    [33]. G Lacy, A Gray. Measurement of a10metre composite radio dish surface shapebetween2008and2010. General Assembly and Scientific Symposium,2010:1-4.
    [34]. A D Gray, B Carlson, S M Dougherty. Activities of the Dominion RadioAstrophysical Observatory. General Assembly and Scientific Symposium,2011:1-4.
    [35]. SKA Office. SKA1System Baseline Design.2013.
    [36]. Y Wang, Y L Zheng, Z H Feng, et al. Focal field analysis of very largeapproximated parabolic multibeam reflector.4th International Conference onMicrowave and Millimeter Wave Technology Proceedings,2004:211-214.
    [37].吕善伟,吴东梅,王伟,等.射电天文望远镜的焦面阵设计.北京航空航天大学学报,2007,33(3):341-344.
    [38]. Y Wu, K F Warnick, C J Jin. Design Study of an L-band PAF for Wide-FieldSurveys and Vibration Compensation on FAST. IEEE Transactions on Antennas andPropagation,2013,61(6):2996-3033.
    [39].何晨阳.相控阵列馈源关键技术研究.中国科学院大学硕士论文,2007.
    [40].胡红芬,白晓红.多波束天线的应用及发展.现代雷达,2002,24(4):69-75.
    [41].周乐柱,李斗,郭文嘉.卫星通信多波束天线综述.电子学报,2001,29(6):824-828.
    [42]. M Masmousdi, T Touya, D Auroux. Large Multibeam Array Antennas withReduced Number of Active Chains. The2nd European Conference on Antennas andPropagation,2007:1-9.
    [43].杜彪.多波束抛物环面天线的研究.上海大学博士论文.1996.
    [44]. W J Gao, X M Liu. Amplitude-only optimizing method of multi-subaperturemulti-beam antenna for SAR applications. International Conference on Electronics,Communications and Control,2011:117-120.
    [45]. Z X Wang, F Yang, D P Fan. A lens antenna for multi-beam scanning. GlobalSymposium on Millimeter Waves,2012:163-165.
    [46]. A J Parfitt, J S Kot, G L James. The Luneburg lens as a radio telescope element.IEEE International Symposium on Antennas and Propagation Society,2000, Vol.1:170_173.
    [47]. G W Kant, P D Patel, J S Wijnholds, et al. EMBRACE: A Multi-Beam20,000-Element Radio Astronomical Phased Array Antenna Demonstrator. IEEETransactions on Antennas and Propagation,2011,59(6),1990-2003.
    [48]. S D White, B A Werner, C Tucker, et al. MUSTANG. First light and current status.Joint32nd International Conference on Infrared and Millimeter Waves and the15thInternational Conference on Terahertz Electronics,2007:1-2.
    [49]. T S Bird. A Multibeam Feed for the Parkes Radio-telescope. InternationalSymposium on Antennas and Propagation Society,1994, Vol.2:966_969.
    [50]. B J Boyle, L Ball, M Storey, et al. Australian SKA Pathfinder: A High-DynamicRange Wide-Field of View Survey Telescope. Proceedings of the IEEE,97(8):1507-1521.
    [51].章日荣等.反射镜天线及高效率馈源.北京:人民邮电出版社,1977.
    [52].章文勋.世纪之交的天线技术.电波科学学报.2000,15(1):97-100.
    [53].王永根.堆积均匀多波束成像反射面天线研究.电子科技大学硕士论文,2008.
    [54]. O Sotoudeh, P S Kildal, P Ingvarson, et al. Single-and Dual-Band MultimodeHard Horn Antennas With Partly Corrugated Walls. IEEE Transactions on Antennasand Propagation,2006,54(2):330-339.
    [55].李建斌,彭勃,孙建民,等.射电天文站电磁环境测量方法及分析[J].电波科学学报,2009,24(3):523-528.
    [56].孙建民,罗韬.射电天文业务及干扰保护标准研究.中国无线电,2008, Vol.4:51-54.
    [57]. C Hansen, K F Warnick, B D Jeffs. Interference cancellation using an array feeddesign for radio telescopes. International Symposium on Antennas and PropagationSociety,2004, Vol.1:539–542.
    [58].闫丰,杜彪.赋形卡式天线最佳吻合反射面的计算方法.无线电通信技术,2011,41(3):38-40.
    [59].赵卫,叶骞,冯正进.射电望远镜主动反射面控制技术简析.现代雷达,2011,33(5):85-90.
    [60]. Y Rahmat-Samii. Array Feeds for Reflector Surface Distortion Compensation:Concepts and Implementation. IEEE Antennas and Propagation Magazine,1990:20-26.
    [61]. K F Warnick, B Woestenburg, L Belostotski, et al. Minimizing the Noise PenaltyDue to Mutual Coupling for a Receiving Array. IEEE Transactions on Antennas andPropagation,2009,57(6):1634-1644.
    [62].吴盛殷,南仁东,彭勃等. FAST计划的现状和期望.中国电子学会第七届学术年会论文集,2001:7-12.
    [63]. P Bo, C J Jin, Q M Wang, et al. Preparatory Study for Constructing FAST, theWorld's Largest Single Dish. Proceedings of the IEEE,2009,97(8),1391-1402.
    [64]. P J Napier. The large synthesis radio telescopes of the National Radio AstronomyObservatory. IEEE International Microwave Symposium Digest,1992, Vol.3:1243-1246.
    [65]. G Yashwant. Observatory report for the GMRT. General Assembly and ScientificSymposium,2011.
    [66]. C J Jin, K Zhu, J Fan, et al. The optics of the Five-hundred-meter ApertureSpherical radio Telescope. The12th International Symposium on Antennas andPropagation, Nanjing, China.
    [67]. A D Hellicar, T S Bird, S M Hanham. Wideband Short Horn Design for aMultibeam Radiotelescope. International Conference on Electromagnetics inAdvanced Applications,2010:863-866.
    [68]. H Q Gan, C J Jin, H Y Zhang, et al. A Way to Improve the Field of View of theLarge Aperture Radiotelescope. Asia-Pacific Radio Science ConferenceProceedings,2004:380-382.
    [69].李辉,朱文白,潘高峰. FAST射电望远镜馈源支撑中的力学问题及其研究进展.力学进展,2011,41(2):133-154.
    [70]. J Baars. The Paraboloidal Reflector Antenna in Radio Astronomy andCommunication. Springer,2007.
    [71].杨可忠.特殊波束面天线技术[M].北京:人民邮电出版社,2009:120-126.
    [72]. T Ulversoy, P S Kildal. Improved element pattern for the line feeds of thespherical reflector antenna in Arecibo. IEEE Transactions on Antennas andPropagation,1989,37(12),1624-1627.
    [73]. P S Kildal, L Baker, T Hagfors. Development of a dual-reflector feed for theArecibo radio telescope: an overview. IEEE Antennas and Propagation Magazine,1991,33(5),12-18.
    [74]. Y Ranga, L Matekovits, K Esselle, et al. Multioctave Frequency Selective SurfaceReflector for Ultrawideband Antennas. IEEE Antennas and Wireless PropagationLetters,2011, Vol.10:219-222.
    [75].方芳.频率选择表面天线副反射面研制.电子机械工程,2009,25(5):41-43,64.
    [76]. M Brenner, M J Britcliffe, W A Imbriale. Gravity Deformation Measurements of70m Reflector Surfaces. IEEE Antennas and Propagation Magazine,2002,44(6):187-192.
    [77]. D Woody, S Padin, D Redding, et al. Design for CCAT, a25m diameter telescopeoperating from200GHz to1.5THz. General Assembly and Scientific Symposium,2011:1-4.
    [78]. V Courtonne, T Dusseux, P Brunet. Feed cluster synthesis from focal fielddistribution. International Symposium on Antennas and Propagation Society, Heldin Conjuction with: URSI Radio Science Meeting and Nuclear EMP Meeting,1992,Vol.20-23.
    [79]. Esquivel M S, Imbriale W A. DSS-13S-band Design Optimization Using theFocal-plane Method. International Symposium on Antennas and PropagationSociety,1993:1638-1641.
    [80]. M V Ivashina, C G M van't Klooster. Focal field analyses for front-fed and offsetreflector antenna. International Symposium on Antennas and Propagation Society,2003, Vol.2:750_753.
    [81]. W A Imbriale, R E Hodges. The Linear Phase Triangular Facet Approximation inPhysical Optic Analysis of Reflector Antennas. Applied Computational Electro-magnetic Society,1991,6(2):74-85.
    [82]. Y Rahmat-Samii, V Galindo-Israel. Shaped Reflector Antenna Analysis using theJacobi-Bessel Series. IEEE Transactions on Antennas and Propagation,1980,28(4):425-435.
    [83].汪茂光.几何绕射理论.西安:西安电子科技大学出版社.
    [84].杨可忠,杨智友,章日荣.现代面天线新技术.北京:人民邮电出版社,1993.
    [85].波恩,沃尔夫著,杨葭荪等译.光学原理(第七版).北京:电子工业出版社,2009.
    [86].林昌禄.天线工程手册.北京:电子工业出版社,2002.
    [87]. Y. Mizugutch, M. Akagawa and H. Yokoi. Offset dual reflector antenn. IEEE APSInternational Symposium Digest, October1976: pp.1–5.
    [88]. G Cortes-Medellin. The64m Sardinia radio telescope optics design. InternationalSymposium on Antennas and Propagation Society,2002, Vol.4:136-139.
    [89]. R Wohlleben, R Wielebinski, H Mattes. Feeds for the100-m Effelsberg Telescope.2nd European Microwave Conference,1971:1-4.
    [90]. JLRAT. DVAC-1concept design: offset Gregorian antenna, SKA report,2011.
    [91]. Lo Y. On the beam deviation factor of a parabolic reflector. IRE Transactions onAntennas and Propagation,1960,8(3):347-349.
    [92]. P Bolli, V Natale, A Orfei. Electromagnetic analysis of the Petzval surface forMedicina Radio Telescope. International Conference on Electromagnetics inAdvanced Applications,2007:519-522.
    [93]. H K Schuman, D R Pflug. A phased array feed, dual offset reflector antenna fortesting array compensation techniques. International Symposium on Antennas andPropagation Society, Vol.1:466_469.
    [94]. J Rodriguez-Alvarez, M Arrebola, C Tienda, et al. Bifocal antenna based ondual-reflectarray dual-offset configuration.6th European Conference on Antennasand Propagation,2012:2348-2352.
    [95]. R J Mailloux. Phased Array Antenna Handbook,2nd Edition. Artech House,2005.
    [96].伍洋,杜彪,刘肖萌,等.焦面场分析与相控阵馈源设计.电子与信息学报,2013,35(5):1236-1240.
    [97]. D H Hayman, A R Forsyth, A Grancea, et al. Focal Plane Array Development forASKAP (Australian SKA Pathfinder). The Second European Conference onAntennas and Propagation,2007:1-5.
    [98]. M V Ivashina, M N M Kehn, P S Kildal. Optimal Number of Elements andElement Spacing of Wide-Band Focal Plane Arrays for a New Generation RadioTelescope. The Second European Conference on Antennas and Propagation.Edinburgh,2007:1-7.
    [99]. R Fisher. GBT phased array feed system design. http://www.cv.nrao.edu/~rfisher/PAF project/design/PAFsystemDesign_rev0.
    [100]. K F Warnick, D Carter, T Webb, et al. Design and Characterization of an ActiveImpedance Matched Low-Noise Phased Array Feed. IEEE Transactions onAntennas and Propagation,2011,59(6):1876-1885.
    [101]. A S Turk, O M Yucedag. Parametric analysis of open-ended waveguide arrayfeeder for pattern shaping of parabolic reflector antenna. Microwaves, Radar andRemote Sensing Symposium,2011:93-96.
    [102]. P J Hall, K P Esselle, T S Bird, et al. Experimental Demonstration of FocalPlane Array Beamforming in a Prototype Radiotelescope. IEEE Transactions onAntennas and Propagation,2010,58(6):1922-1934.
    [103]. B F Burke, F Graham-Smith. An Introduction to Radio Astronomy,2ndEdition.Cambridge University Press,2002.
    [104]. J Engberg, T Larsen. Noise Theory of Linear and Nonlinear Circuits. JohnWiley&Sons Ltd.,1995.
    [105]. K F Warnick. Optimal noise matching for a phased array feed. InternationalSymposium on Antennas and Propagation Society,2009:1522-3965.
    [106]. J F Rose. Digital beamforming receiver technology. International Symposiumon Antennas and Propagation Society,1990, Vol.1:380-383.
    [107].刘肖萌,高文军,邓云凯.有限扫描反射面天线相控波束重构技术.电子与信息学报,2012,34(2):481-486.
    [108]. N Jin, Y Rahmat-Samii. Hybrid Real-Binary Particle Swarm Optimization(HPSO) in Engineering Electromagnetics. IEEE Transactions on Antennas andPropagation,2012,58(12):3786-3794.
    [109]. J Landon, B D Jeffs, and K F Warnick. Model-based subspace projectionbeamforming for deep interference nulling[J]. IEEE Transactions on Antennas andPropagation,2012,60(2):.1215-1228.
    [110]. R Acosta, A Zaman. Adaptive feed array compensation system for reflectorantenna surface distortion. International Symposium on Antennas and PropagationSociety,1989, Vol.3:1187-1190.
    [111].刘源,邓维波,李雷等.高频段超方向性天线阵列设计.电子学报,2006,20(4):72-75.
    [112]. R D Norrod, R J Fisher, B D Jeffs, et al. Development of cryogenic phasedarray feeds for Radio Astronomy antennas. IEEE International Symposium onPhased Array Systems and Technology (ARRAY),2010:629-631.
    [113]. B D Jeffs, K F Warnick, J Landon, et al. Signal processing for phased arrayfeed in radio astronomy. IEEE Journal of Selected Topics in Signal Processing,2008,2(5):635-646.
    [114].李耀华.基于LMS的射电天文大天线抗干扰技术的研究与实现.国防科学技术大学硕士论文,2011.
    [115]. S J Wijnholds, S van der Tol, R Nijboer, et al. Calibration Challenges forFuture Radio Telescopes. IEEE Signal Processing Magazine,2010:30-42.
    [116]. M Bentum, A Boonstra, R Millenaar. Assessment of RFI measurements forLOFAR. Telecommunication Engineering, University of Twente, The Netherlands.
    [117]. W van Cappellen. Eliminating sensitivity ripples in prime focus reflectors withlow-scattering Phased Array Feeds. International Workshop on Phased ArrayAntenna Systems for Radio Astronomy.2010. Provo, Utah, USA.
    [118]. J Landon, B D Jeffs. Deep Nulling of Moving Interferers with AstronomicalPhased Array Feeds. International Workshop on Phased Array Antenna Systems forRadio Astronomy.2010. Provo, Utah, USA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700