冲击波加载下PZT95/5铁电陶瓷的力学及电学特性数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过电极化后的PZT95/5铁电陶瓷能够在冲击波加载作用下快速去极化释放出束缚电荷,以形成高功率的瞬态电能输出,在国防工业中有着重要的应用。但是在冲击波的作用下,PZT95/5陶瓷可能会发生力学损伤或破坏以及电击穿等,使得PZT95/5铁电陶瓷脉冲电源失效,不能输出稳定的电能。因此,研究冲击波作用下PZT95/5陶瓷的动力学性能及电学特性对于认识PZT95/5陶瓷的性能及提高其利用率有重要意义。基于此,本文通过数值模拟方法研究了冲击波加载下PZT95/5陶瓷的动力学及电学特性。本文的主要工作与结果如下:
     1、开展了PZT95/5铁电陶瓷在冲击波作用下的动力学特性的数值模拟与仿真。采用显式分析有限元软件ANSYS/LS-DYNA,选用JH-2陶瓷类脆性材料动力学本构模型,参考美国Sandia实验室及中国工程物理研究院等实验观测结果,计算获得了PZT95/5铁电陶瓷的JH-2模型相关参数。数值模拟了氧化铝(A1203)陶瓷飞片以不同速度撞击PZT95/5铁电陶瓷的动力学响应过程,给出了PZT95/5铁电陶瓷自由面的粒子速度历程曲线,并与实验结果进行了对比分析。
     2、分析了电极化后的PZT95/5铁电陶瓷在冲击波加载下的瞬态放电过程与特征。对于垂直于极化方向的冲击波加载情形,我们通过将去极化过程中的PZT95/5铁电陶瓷等效为—电流源、电容和电导的并联,同时考虑电路负载、冲击波前后的铁电陶瓷材料介电常数、电导率的影响效应等,建立了一描述冲击波垂向加载下PZT95/5铁电陶瓷去极化和放电过程的模型。该模型较系统地考虑了冲击波压力对其波速、去极化相变过程等的影响,并解析获得了冲击波作用下铁电陶瓷的放电电流表述。
     3、在上述去极化放电模型基础上,开展了短路和电阻负载条件下铁电陶瓷冲击放电过程中的输出电流特征分析,冲击波前后材料介电常数和电导率的变化对输出电流的影响,并与相关实验观测结果进行了对比。相关结果表明:本文模型能够较好地模拟实验观测的PZT95/5铁电陶瓷的冲击放电过程,以及冲击波压力、负载电阻等对冲击放电输出电流的影响规律等。
Bound charges of PZT95/5ferroelectric ceramics with polarization will be released by shock wave loading, to form a high-power electrical energy output, which is very important and applied in the defense industry. However, PZT95/5ceramic may be damaged and destroyed on mechanics or broke out on electricity, then PZT95/5ceramic pulse power failed and the stable power cannot be output. So, studying on the mechanical and electrical properties of PZT95/5ceramic under shock loading important, which is very important for recognizing PZT95/5ceramic performance and improve their utilization. For this reason, kinetic and electrical properties of PZT95/5ceramics under shock wave load were study by the numerical simulation in this paper. The main work of this paper as follows:
     1The kinetic properties of PZT95/5ferroelectric ceramic were analyzed by using numerical simulation method. The explicit finite element analysis software ANSYS/LS-DYNA was used and the JH-2ceramic material dynamics model was chose as the kinetic model. The JH-2model parameters of PZT95/5ceramic were calculated by means of the experimental results of the U.S. Sandia Laboratory and the Chinese Academy of Engineering Physics. The process of alumina (Al2O3) ceramic impact PZT95/5ceramic at different speeds was simulated, and the particle velocity history curves of free surface of PZT95/5ceramic was given. The simulation results were comparing with the experiment results, and the reason for the difference was analyzed.
     2The transient discharge process and characteristics of PZT95/5ferroelectric ceramic with polarization was analyzed. For a shock loading perpendicular to the polarization direction, a model describing the depolarization and discharge process of PZT95/5ferroelectric ceramic by normal shockwave is proposed. The effects of Shockwave pressure on the wave velocity and the depolarization phase transition process are considered systematically in our study. The PZT95/5ferroelectric ceramics depoling process is analyzed by a parallel circuit with a current source, a capacitance and a conductance, and the circuit load. The effects of changes in the dielectric constant and conductivity during shock loading are taken into consideration.
     3The output current characteristics of ferroelectric ceramics discharge process in the short-circuit and resistive load conditions, the effects of changes in the dielectric constant and conductivity are analyzed by using the model and compared with the experimental results. The results show that, the present theoretical model can predict well the discharge process of PZT95/5ferroelectric ceramics under shock compression.
引文
[1]聂恒昌.多孔PZT95/5铁电陶瓷微结构调控及冲击波压缩下去极化行为研究[D].上海:上海硅酸盐研究所.2011.
    [2]J Y Li, R C Rogan, E Ustundag, and K Bhanttacharya. Domain switching in polycrystalline ferroelectric ceramics[J]. Nat. Mater.2005,4,776-781.
    [3]冯玉军,徐卓,郑曙光等.反铁电爆电换能电源研究[J].西安交通大学学报.2002,36(6):584-587.
    [4]J I Fritz. Uniaxial-stress effects in a 95/5 lead zirconate titanate ceramic[J]. J Appl Phys.1978, 49(9):4922-4928.
    [5]H C Nie, X L Dong, N B Feng, et al. Quantitative dependence of the properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics on porosity[J]. Mater Res Bull. 2010,45:564-567.
    [6]R E Setchell. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3:micro-structural effects [J]. J Appl Phys,2007,101: 053525.
    [7]曾涛.多孔PZT压电和铁电陶瓷的制备与性能研究[D].上海:上海硅酸盐研究所.2007.
    [8]温殿英,林其文.冲击波压缩PZT95/5铁电陶瓷的电介质击穿[J].高压物理学报,1998,12(3):199-206.
    [9]F W Neilson. Ferroelectric and Ferromagnetic One2Shot Explosive Electric Transducer [J].Bull Am Phys Soc,1957,2(1):3022306.
    [10]C E Reynolds, G E Seay. Two-Wave Shock Structures in the Ferroelectric Ceramics Barium Titanate and Lead Zirconate Titanate[J]. J Appl Phys,1962,33(7):2234-2241.
    [11]L C Chhabildas. Dynamic shock study of PZT95/5 ferroelectric ceramic[R]. Sandia National Laboratories Report NO.84-1729,1984.
    [12]R E Setchell. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3:Hugoniot statesand constitutive mechanical properties[J]. J Appl Phys,2003,94(1):573-588.
    [13]刘高旻.高密度PZT95/5陶瓷的冲击相变及放电性能研究[D].绵阳:中国工程物理研究院,2009.
    [14]D H Zeuch, S T Montgomery, L W Carlson, et al. Failure surfaces and related mechanical properties for poled and unpoled PZT95/5-2Nb voltage bar ceramic[R]. Sandia National Laboratories Report NO.99-0635,1999.
    [15]C S Watson. Mechanical behavior, properties and reliability of Tin-modified lead zirconate titanate[R]. Sandia National Laboratories Report NO.2003-2422,2003.
    [16]MY Lee, S T Montgomery, J H Hofer,et al. Hydrostatic, uniaxial, and triaxial compression tests on unpoled "Chem-prep" PZT95/5-2Nb ceramic within temperature range of-55 to 75oC[R]. Sandia National Laboratories Report NO.2003-3651,2003.
    [17]MY Lee, S T Montgomery, J H Hofer. Phase transformation of "Chem-prep" PZT95/5-2Nb HF1035 ceramic under quasi-static loading conditions[R]. Sandia National Laboratories Report NO.2006-4387,2006.
    [18]F J Addessio, J N Johnson. A constitutive model for the dynamic response of brittle materials[J]. JApplPhys,1990,67(7):3275-3286.
    [19]A M Rajendran. Modeling the impact behavior of AD85 ceramic under mutiaxial loading[J]. International Journal of Impact Engineering,1994,15(6):749-768.
    [20]G R Johnson, T J Holmquist. An improved computation constitutive model for brittle materials[C].Shock Compression of Condensed Matter,1994:981-984.
    [21]G R Johnson and T J Holmquist. A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures. Shock wave and high-strain-rate phenomena in materials, edited by M A Meyers, L E Murr, and K P Staudhammer, Marcel Dekker Inc, New York, pp 1075-1081,1992.
    [22]H D Espinosa. On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation[J]. Int. J. Solids Structures,1995,32(21):3105-3128.
    [23]Q H Zuo, F L Addessio, J K Denes et al. A rate-dependent damage model for brittle materials based on the dominant crack[J]. Int. J. Solids Structures,2006,43:3350-3380.
    [24]J D Clyaton. A model for deformation and fragmentation in crushable brittle solids[J]. International Journal of Impact Engineering,2008,35:269-289.
    [25]张晓晴.Al2O3陶瓷材料应变率相关的动态本构关系研究[J].爆炸与冲击.2004,24(3):226-232.
    [26]任会兰,宁建国.强冲击载荷下氧化铝陶瓷的力学特性及本构模型[J].北京理工大学学报,2007,29(9):761-766.
    [27]S I Shkuratov, Jason Baird, E F. Talantsevt, et al. Pulsed charging of capacitor bank by compact explosive driven high voltage primary power source based on longitudinal shock wave[J]. IEEE,2005.
    [28]冯宁博,谷岩,刘雨生等.冲击波加载下孔隙率对PZT95铁电陶瓷去极化性能的影响[J].物理学报,2010,59(12):8897-8902.
    [29]P C Lysne. Dielectric breakdown of shock-loaded PZT65/35[J]. J Appl Phys,1973,44(2): 577-582.
    [30]P C Lysne. Prediction of dielectric breakdown in shock-loaded ferroelectric ceramics[J]. J Appl Phys,1975,46(1):230-232.
    [31]PC Lysne, L C Bartel. Electromechanical response of PZT65/35 subjected to axial shock loading[J]. J Appl Phys,1975,46(1):222-229.
    [32]P C Lysne C M Percival. Electric Energy Generation by Shock Compression of Ferroelectric Ceramics:Normal-Mode Response of PZT95/5[J]. J Appl Phys,1975,46(4):1519-1525.
    [33]P C Lysne. Dielectric properties of shock-wave-compressed PZT95/5[J]. J Appl Phys,1977, 48(3):1020-1023.
    [34]W J Mock, W H Holt. Pulse charging of nanofarad capacitors from the shock depoling of PZT56/44 and PZT95/5 ferroelectric ceramics [J]. J Appl Phys,1978,49(12):5846-5854.
    [35]温殿英,林其文.冲击波压缩PZT95/5铁电陶瓷的电介质击穿[J].高压物理学报,1998,12(3):199-206.
    [36]R E Setchell. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.0203:depolingcurrents [J]. J Appl Phys,2005,97:013507.
    [37]Dongdong Jiang, Jinmei Du, Yan Gu,et al. Self-generated electric field suppressing the ferroelectric to antiferroelectric phase transition in ferroelectric ceramics under shock wave compression[J]. J Appl Phys,2012, 111(2):024103.
    [38]Dongdong Jiang, Jinmei Du, Yan Gu,et al. Shock wave compression and self-generated electric field repolarization in ferroelectric ceramics Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04] 0.98Nb0.02O3[J]. J. Phys. D:Appl. Phys.2012,45:115401.
    [39]J A Mazzie. Simplified model of ferroelectric energy generation by shock compression [J]. J Appl Phys,1977,48(3):1368-1369.
    [40]贺元吉.爆电能源高功率超宽带脉冲发生器研究[D].长沙:国防科学技术大学,2001.
    [41]D W Bolyard, A A Neuber, J T Krile, et al. Simulation of Compact Explosively Driven ferroelectric generators[J]. IEEE Transactions on Plasma Science,2010,38(4):1008-1014.
    [42]D D Jiang, J M Du, Y Gu, et al. Phenomenological description of depoling current in Pb0.99Nb0.02(Zr0.95Ti0.05)O3 ferroelectric ceramics under shock wave compression: Relaxation model [J]. J Appl Phys,2012,111:104102.
    [43]郭伟国,李玉龙,索涛.应力波基础简明教程[M].西安:西北工业大学出版社,2007.
    [44]王礼立.应力波基础[M].北京:国防工业出版社,1985.
    [45]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992.
    [46]李平.陶瓷材料的动态力学响应及其抗长杆弹侵彻机理[D].北京:北京理工大学,2002.
    [47]G R Johnson and T J Holmquist, in Proceedings of EXPLOMET Conference, San Diego, August,1990.
    [48]J R Johnson, W H Cook. Fracture characteristics of three metals subjected to various strainst strain rates, tern——peratures and pressures [J]. Engineering Fracture Mechanics, 1985,21(1):31—48.
    [49]G R Johnson, T J Holmquist. An improved computational constitutive model for brittle materials. In:S C Schmidt, J W Shaner, G A Samara and M Ross, editors. High Pressure Science and Technology-1993. New York:AIP Press,1994.
    [50]常敬臻.冲击压缩下氧化铝陶瓷动态力学行为数值分析[D].重庆:重庆大学,2006.
    [51]T J Holmquist, D W Templeton, K D Bishnoi. Constitutive modeling of aluminum nitride for large strain, high strain rate, and high pressure applications [J]. International Journal of Impact Engineering,2001,25:211-231.
    [52]M D Furnish, R E Setchell, L C Chhabilds, S Montgomery. Gas gun impact testing of PZT95/5 PartI:unpoled state[R]. Sandia National Laboratories Report NO.99-1630,1999.
    [53]P Yang, C DiAntonio, G R Burns et al. Thermal properties of PZT95/5(1.8Nb) and PSZT Ceramics[R]. Report No. SAND2006-5437, Sandia National Laboratories,2006.
    [54]G R Johnson, T J Holmquist. Response of boron carbide subjected to large strains high strain rates and high pressures[J]. JAppl Phys,1999,85(12):8060-8073.
    [55]杨震琦,庞宝君,王立闻,迟润强.JH-2模型及其在A1203陶瓷低速撞击数值模拟中的应用[J].爆炸与冲击,2010,30(5):463-471.
    [56]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
    [57]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [58]Y G Sindeyev. Electrical breakdown in ferroelectric ceramics (a review)[J], Ferroelectrics,1990,110:193-218
    [59]R.科埃略.电介质材料及其介电性能[M].北京:科学出版社,2000.
    [60]经福谦.实验物态方程导引(第二版)[M].北京:科学出版社,1999.
    [61]C E Reynolds, G E Seay. Two-Wave shock structures in the ferroelectric ceramics barium titanate and lead zirconate titanate[J].JAppl.Phys,1962,33 (7):2234-2241.
    [62]R E Setchell. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3:depolingcurrents [J]. J Appl Phys,2005,97:013507.
    [63]P Yang, D A Payne. The effect of external field symmetry on the antiferroelectric-ferroelectric phase transformation[J]. J Appl Phys,1996,80(7):4001-4005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700