浸没边界法的高效半隐式格式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在研究流体和弹性体结构相互作用的问题时,浸没边界法(Immersed BoundaryMethod)是一种非常重要而且常用的计算方法。在很多领域尤其是生物力学领域有着广泛的应用。但是浸没边界法本身也有一些局限,影响了其应用的范围,其中一个就是当使用显式格式时浸没边界法的数值刚性特别大,这就使得在计算时,时间步长必须取得非常小,那么如果想研究系统长时间的演化,计算量就会变得不可忍受,大大限制了浸没边界法的应用范围。为了克服这个困难,很多的半隐式和近似隐式格式被发展了出来,但是迄今为止还没有一种格式有令人满意的表现。在本文中,我们针对二维的定常Stokes流动,非定常Stokes流动以及Navier-Stokes流动,分别提出了几种高效的半隐式格式。这些半隐式格式具有非常好的数值稳定性,可以采用比显式格式大的多的时间步长,同时每一步的计算量与显式格式是相当的,这样在进行长时间的计算时,就可以大大的降低计算量。我们的半隐式格式的构造分为两步:第一步是找到一种无条件稳定的半隐式格式,这种半隐式格式稳定性非常好,但是单步计算量仍嫌太大,在实际计算中相对于显式格式并没有明显的优势。为了降低每一步的计算量,在第二步中我们对这种无条件稳定的半隐式格式进行小尺度分解(Small Scale Decomposition)。然后只对小尺度分解之后得到的首阶项使用隐式格式处理,经过一系列的简化,首阶项可以表示成卷积的形式,这样我们的半隐式格式就可以在傅立叶空间中显式求解,从而获得与显式格式相当的单步计算量。数值结果也证明了我们构造出的高效半隐式格式在大大改善数值稳定性的同时单步的计算量并没有很大的增加。在实际计算中,我们给出的高效半隐式格式是显式格式的一种非常好的替代方法。
The Immersed Boundary method is one of the most useful computational methods in studying fluid structure interaction. On the other hand, the Immersed Boundary method is also known to have some limitations to limit its application. One of them is that it require small time steps to maintain stability when solved with an explicit method. If we want to study the long time evolution, the computational cost will be too expensive to afford. In order to overcome this difficulty, many implicit or approximately implicit methods have been proposed in the literature to remove this severe time step stability constraint, but none of them give satisfactory performance. In this paper, we propose some efficient semi-implicit schemes to remove this stiffness from the Immersed Boundary method for the steady Stokes, unsteady Stokes and Navier-Stokes equations respectively. These semi-implicit schemes have much better stability than the explicit schemes and their computational costs of each step are comparable to those of the explicit schemes. The construction of our semi-implicit scheme consists of two steps. First, we obtain a semi-implicit discretization which is proved to be unconditionally stable. This unconditionally stable semi-implicit scheme is still quite expensive to implement in practice. Next, we apply the Small Scale Decomposition to the unconditionally stable semi-implicit scheme to construct our efficient semi-implicit scheme. Unlike other implicit or semi-implicit schemes proposed in the literature, our semi-implicit scheme can be solved explicitly in the spectral space. Thus the computational cost of our semi-implicit schemes is comparable to that of an explicit scheme. Our extensive numerical experiments show that our semi-implicit scheme has much better stability property than an explicit scheme. This offers a substantial computational saving in using the Immersed Boundary method.
引文
[1]Hou T Y.Numerical solutions to free boundary problems.Acta Numerica,1995,4:335-415.
    [2]Stockie J M,Wetton B R.Stability analysis for the immersed fiber problem.SIAM J.Appl.Math.,1995,55:1577-1591.
    [3]Stockie J M,Wetton B R.Analysis of stiffness in the Immersed Boundary method and implications for time-stepping schemes.J.Comput.Phys.,1999,154:41-64.
    [4]Berger M J.Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations[D].Stanford University,1982.
    [5]Howell L H,Bell J B.An adaptive-mesh projection method for viscous incompressible flow.SIAM J.Sci.Comput,1997,18:996-1013.
    [6]Roma A M.A Multiscale Self Adaptive Version of the Immersed Boundary Method[D].New York University,1996.
    [7]Ohring S,Lugt H J.Two counter-rotating vortices approaching a free surface in a viscous fluid.Technical report,Technical Report DTRC-89/013,David Taylor Research Center,Bethesda,MD,1989.
    [8]Skalak R,Tozeren H.Finite elements in bio-fluid mechanics.In:Gallagher R H,(eds.).Finite Elements in Biomechanics.John Wiley & Sons,1982.23-39.
    [9]Osher S,Sethian J.Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations.J.Comput.Phys.,1988,79:12-49.
    [10]Peskin CS.Flow patters around heart valves:A numerical method.J.Comput.Phys.,1972,10:252-271.
    [11]Peskin C S.Numerical study of blood flow in the heart.J.Comput.Phys.,1977,25:220-252.
    [12]Peskin C S,McQueen D M.A three-dimensional computational method for blood flow in the heart:(Ⅰ)Immersed elastic fibers in a viscous incompressible fluid.J.Comput.Phys.,1989,81:372-405.
    [13]Peskin C S,McQueen D M.Cardiac fluid dynamics.Critical Reviews in Biomedical Engineering,1992,20:451-459.
    [14]McQueen D M,Peskin C S,Yellin E L.Fluid dynamics of the mitral valve:Physiological aspects of a mathematical model.Amer.J.Physiol,1982,242:H1095-H1110.
    [15]McQueen D M,Peskin C S.Computer assisted design of pivoting-disc prosthetic mitral valves.J.Thorac.Cardiovasc.Surg.,1983,86:126-135.
    [16]McQueen D M,Peskin C S.Computer assisted design of butterfly bileaflet valves for mitral position.Scand.J.Thorac.Cardiovasc.Surg.,1985,19:139-148.
    [17]McQueen D M,Peskin C S.A three-dimensional computational method for blood flow in the heart:(Ⅱ)Contractile fibers.J.Comput.Phys.,1989,82:289-297.
    [18]McQueen D M,Peskin C S.Heart simulation by an immersed boundary method with formal second order accuracy and reduced viscosity.Mechanics for a New Millenium,Proceedings of the International Conference on Theoretical and Applied mechanics(ICTAM),Kluwer Acaddemic Publishers,2000.
    [19]Fauci L,Peskin C S.A computational model of aquatic animal locomotion.J.Comput.Phys.,1988,77:85-108.
    [20]Fauci L J,Fogelson A L.Truncated Newton methods and the modeling of complex immersed elastic structures,commun.pure appl.math.,1993,46:787-818.
    [21]Fauci L J,McDonald A.Sperm motility in the presence of boundaries.Bulletin of Mathematical Biology,1995,57:679-699.
    [22]Fauci L J.computational modeling of the swimming of biflagellated algal cells.In:Cheer A Y,Dam C P,(eds.).Fluid Dynamics in Biology:Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Biofluiddynamics.American Mathematical Society,1993.91-102.
    [23]Fauci L J.Interaction of oscillating silaments-A computational study.J.Comput.Phys.,1990,86:294-313.
    [24]Hopkins M,Fauci L J.A computational model of the collective fluid dynamics of motile microorganisms.J.Fluid Mech.,2002,455:149-174.
    [25]Zhu L,Peskin C S.Simulation of a flexible flapping filament in a flowing soap film by the immersed boundary method.J.Comput.Phys.,2002,179:452-468.
    [26]Cortez R,Cowen N,Dillon R,et al.Simulation of swimming organisms:Coupling internal mechanics with external fluid dynamics.Comput.Sci.Eng.,2004,6:38-45.
    [27]Miller L A,Peskin C S.When vortices sitck:and aerodynamic transition in tiny insects.J.Exp.Biol,2004,207:3073-3088.
    [28]Miller L A,Peskin C S.A computational fluid dynamics of 'clap and fling' in small insects.J.Exp.Biol,2005,208:195-212.
    [29]Fofelson A L.A mathematical model and numerical methods for studying platelet adhesion and aggregation during blood clotting.J.Comput.Phys.,1984,56:111-134.
    [30]Wang N T,Fogelson A L.Computational methods or continuum models of platelet aggregation.J.Comput.Phys.,1999,151:649-675.
    [31]Beyer R P.A computational model of the cochlea using the immersed boundary method.J.Comput.Phys.,1992,98:145-162.
    [32]Givelberg E.Modeling elastic shells immersed in fluid[D].New York University,1997.
    [33]Arthurs K M.Flow regulation in the afferent arteriole:An application of the Immersed Boundary Method[D].Duke University,1996.
    [34]Vesier C C,Yoganathan A P.A computer method for simulation of cardiovascular flow fields:Validation of approach.J.Comput.Phys.,1992,99:271-287.
    [35]Rosar M E.A three dimensional model for fluid flow through a collapsible tube[D].New York University,1996.
    [36]Dillon R,Fauci L J,Gaver D.A microscale model of bacterial swimming,chemotaxis and substrate transport.J.Theoretical Biology,1995,177:325-340.
    [37]Dillon R,Fauci L J,Fogelson A L,et al.Modeling biofilm processes using the immersed boundary method.J.Comput.Phys.,1996,129:57-73.
    [38]Bottino D C.An Immersed Boundary Model of Ameboid Deformation and Locomotion[D].Tulane University,1996.
    [39]Sulsky D,Brackbill J U.A numerical method for suspension flow.J.Comput.Phys.,1991,96:339-368.
    [40]Fauci L,Peskin C S.A fast numerical method for solving the three-dimensional Stokes equations in the presence of suspended particles.J.Comput.Phys.,1988,79:50-69.
    [41]Stockie J M,Green S I.Simulating the motion of flexible pulp fibers using the immersed boundary method.J.Comput.Phys.,1998,147:147-165.
    [42]Yusof J M.Interaction of massive particles with turbulence[D].Cornell University,1996.
    [43]Lapenta G,Iinoya F,Brackbill J U.Particle-in-cell simulation of glow discharges in complex geometries.IEEE Transactions on Plasma Science,1995,23:769-779.
    [44]McQueen D M,Peskin C S.A heart valve prosthesis.European Patent Publication Number EP0211 576 B1,1990..
    [45]McQueen D M,Peskin C S.Curved butterfly bileaflet prosthetic cardiac valve.U.S.Patent Number 5026391,1991..
    [46]Leveque R J,Li Z.Immersed Interface methods for Stokes flow with ealstic boundaries or surface tension.SIAM J.Sci.Comput.,1997,18:709-735.
    [47]Beyer R P,LeVeque R J.Analysis of a one-dimensional model for the immersed boundary method.SIAM J.Numer.Anal,1992,29:332-363.
    [48]Leveque R J,Li Z.The immersed interface methods for elliptic equations with discontinuous coefficients and singular sources.SIAM J.Numer.Anal,1994,31:1019-1044.
    [49]Li Z.A note on immersed interface method for three dimensional elliptic equations.Computers Math.Appl,1996,31:9-17.
    [50]Li Z.Immersed interface method for moving interface problems.Numerical Algorithms,1997,14:269-293.
    [51]Li Z,Lai M.Immersed Interface Method for the Navier-Stokes Equations with Singular Forces.J.Comput.Phys.,2001,171:822-842.
    [52]Peskin C S,McQueen D M.Computational hiofluid dynamics.In:Cheer A Y,Dam C P,(eds.).Fluid Dynamics in Biology:Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Biofluiddynamics.American Mathematical Society,1993.161-185.
    [53]Peskin C S,McQueen D M.Heart throb.Technical report,Pittsburgh supercomputing Center,1993.
    [54]Tu C,Peskin C S.Stability and instability in the computation of flows with moving immersed boundaries:A comparion of three methods.SIAM J.Sci.Stat.Comput.,1992,13:1361-1376.
    [55]Mayo A A,Peskin C S.An implicit numerical method for fluid dynamics problems with immersed elastic boundaries.In:Cheer A Y,Dam C P,(eds.).Fluid Dynamics in Biology:Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Biofluiddynamics.American Mathematical Society,1993.261-277.
    [56]Newren E P,Fogelson A L,Guy R D,et al.Unconditionally stable discretizations of the immersed boundary equations.J.Comput.Phys.,2007,222:702-719.
    [57]Hou T Y,Shi Z.Removing the Stiffness of Elastic Force from the Immersed Boundary Method for the 2D Stokes Equations.J.Comput.Phys.,2008.doi:10.1016/j.jcp.2008.03.002.
    [58]Hou T Y,Shi Z.An Efficient Semi-implicit Discretization for the Immersed Boundary Method,submitted to J.Comput.Phys.,2008..
    [59]Hou T Y,Lowengrub J,Shelley M.Removing the stiffness from interfacial flows with surface tension.J.Comput.Phys.,1994,114:312-338.
    [60]Jung E N,Peskin C S.Two-dimensional simulations of valveless pumping using the immersed boundary method.SIAM J.Sci.Comput.,2001,23:19-45.
    [61]Rosar M E,Peskin C S.Fluid flow in collapsible elastic tubes:a three-dimensional numerical model.New York J.Math.,2001,7:281-302.
    [62]Peskin C S.The immersed boundary method.Acta Numerica,2002,11:479-517.
    [63]Chorin A J.Numerical solution of the Navier-Stokes equations.Mathematics of Computation,1968,22:745-762.
    [64]Lai M C,Peskin C S.An immersed boundary method with formal second order accuracy and reduced numerical viscosity.J.Comput.Phys.,2000,160:705-719.
    [65]Stockie J M.Analysis and Computation of Immersed Boundarys with Application to Pulp Fibers[D].University of British Columbia,1997.
    [66]Pozrikidis C.Boundary Integral and Singularity Methods for Linearized Viscous Flow.1th ed.,Cambridge University Press,1992.
    [67]Abramowitz M,Stegun I A.Modified Bessel Functions I and K.9th ed.,New York:Dover,1972.
    [68]Mori Y,Peskin C S.Implicit second order Immersed Boundary method with boundary mass.Comput.Methods Appl.Mech.Engrg.,2007.doi:10.1016/j.cma.2007.05.028..
    [69]Peyret R,Taylor T D.Computational Methods for Fluid Flow.New York:Springer-Verlag,1983.
    [70]Moore W.The spontaneous appearance of a singularity in the shape of an evolving vortex sheet.Proc.R.Soc.London,Ser.A,1979,365:105-119.
    [71]Caflisch R,Orellana O.Singular solutions and ill-posedness of the evolution of vortex sheets.SIAM J.Math.Anal,1989,20:293-307.
    [72]Krasny R.A study of singularity formation in a vortex sheet by the point vortex approximation.J.Fluid Mech.,1986,167:65-93.
    [73]Meiron D I,Baker G R,Orszag S A.Analytic structure of vortex sheet dynamics.Part 1.Kelvin-Helmholtz instability.J.Fluid Mech.,1982,114:283-298.
    [74]Shelley M J.A study of singularity formation in vortex sheet motion by a spectrally accurate vortex method.J.Fluid Mech.,1992,244:493-526.
    [75]Nie Q,Baker G R.Application of adaptive quadrature to axisymmetric vortex-sheet motion.J.Comput.Phys.,1999,143:49-69.
    [76]Nitsche M.Singularity formation in a cylindrical and spherical vortex sheet.J.Comput.Phys.,2002,173:208-230.
    [77]Sakajo T.Formation of curvature singularity along vortex line in axisymmetric,swirling vortex sheet.Phys.Fluids,2002,14:2886-2897.
    [78]Cowley S,Baker G R,Tanveer S.On the formation of Moore curvature singularities in vortex sheet.J.Fluid Mech.,1999,378:233-267.
    [79]Hou T Y,Hu G,Zhang P.Singularity formation in 3D vortex sheets.Phys.Fluid,2003,15:147-172.
    [80]Hou T Y,Lowengrub J,Shelley M.The long-time motion of vortex sheets with surface tension.Phys.Fluid,1997,9:1933-1954.
    [81]Hou T Y,Lowengrub J,Shelley M.Boundary Integral Methods for Multi-Phase Problems in Fluid Dynamics and Materials Science.J.Comput.Phys.,2001,169:302-362.
    [82]Tauber W,Unverdi S O,Tryggvason G.The nonlinear behavior of a sheared immiscible fluid interface.Phys.Fluid,2002,14:2871-2885.
    [83]Ceniceros H D,Roma A M.Study of the long-time dynamics of viscous vortex sheet with a fully adaptive nonstiff method.Phys.Fluid,2004,16:4285-4318.
    [84]Chang Y C,Hou T Y,Merriman B,et al.A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows.J.Comput.Phys.,1996,124:449-464.
    [85]Brown D L,RXortex,Minion M.Accurate projection methods for the incompressible Navier-Stokes equations.J.Comput.Phys.,2001,168:464-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700