考虑剪力滞效应的薄壁结构特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄壁结构在弯曲荷载作用下存在剪力滞效应。国内外对剪力滞效应已有很多研究,也取得了一些成果,解决了部分实际工程问题,但仍然有许多问题还没有完全得到解决。本文针对∏形截面主梁斜拉桥、普通混凝土箱梁、波形钢腹板组合箱梁等结构,研究了剪力滞效应对薄壁结构静动力特性的影响,主要进行了以下几方面的研究。
     (1)采用有限单元法建立模型,分析了一斜拉桥∏形截面主梁的剪力滞效应的分布规律,并将有限元结果同实桥的实测值进行了对比,验证了有限元模型的正确性。详细分析了斜拉桥兀形主梁的预应力、横坡、小纵梁等参数对剪力滞效应的影响,并分析了剪力滞效应对∏形主梁斜拉桥动力特性的影响。从分析结果可知∏形截面斜拉桥主梁根部截面的剪力滞效应比跨中截面更为显著;其主梁横截面轴向应力横向分布曲线存在多个拐点,剪力滞效应很难采用单个参数来描述;预应力对∏形截面斜拉桥主梁轴向应力的横向分布规律有明显影响,计算时不应忽略预应力束的影响;桥面横坡也是影响∏形截面主梁斜拉桥剪力滞效应的一个重要因素,尤其是对顶板中央处的纵向正应力影响较大;在桥面板沿纵向增设小纵梁是减小剪力滞效应的一种有效方法,高度较低的纵梁即可显著改善应力分布:首次分析了剪力滞效应对∏形截面主梁斜拉桥动力特性的影响,结果表明:考虑剪力滞效应后主梁的振动频率有所降低,且随着频率阶次的升高,降低越明显。
     (2)采用能量变分法推导了考虑剪力滞效应的简支箱梁自振基频解析解,算例表明该方法比一般梁理论计算精度有显著提高,且计算简单方便。在此基础上,又推导了简支箱梁同时考虑剪力滞效应以及剪切变形的各阶频率显式计算公式,进一步提高了计算精度;对影响箱梁自振频率的参数进行了详尽的分析,结果表明:考虑剪力滞效应以及考虑剪切变形均使简支箱梁的振动基频降低,且对于箱梁的高阶振动频率降低程度尤为明显,影响频率降低程度的参数主要有:箱梁的顶底板抗弯惯性矩占整个截面的抗弯惯性矩的比重(I_s/I)、箱梁的跨宽比(l/26)、箱形截面的剪切系数k以及跨高比(l/r)等参数,而其中箱梁的宽跨比是影响其降低程度的最重要因素。
     (3)推导了简支波形钢腹板组合箱梁的振动频率公式,得到了考虑剪切变形及剪力滞效应的波形钢腹板组合箱梁各阶自振频率的解析解;对一试验波形钢腹板组合箱梁进行了动力测试,得到了该试验波形钢腹板组合箱梁的实测自振频率,并与简单梁理论、本文理论公式以及三维有限元模型的计算频率进行对比。对比结果表明剪力滞效应及剪切变形对波形钢腹板组合箱梁的振动频率影响较大,考虑剪力滞及剪切变形影响后的波形钢腹板组合箱梁的振动频率有所降低,相对于普通混凝土箱梁降低程度更为明显,且降低程度随着计算频率的阶次的增加而迅速增加。而本文提出的理论公式可考虑剪力滞及剪切变形效应影响,且计算简单,精度较高。
     (4)为简支箱梁在简谐荷载作用下的强迫振动提出了一种实用计算方法,该方法可以考虑剪力滞效应的影响。在现有初等梁受迫振动理论的基础上,推导了考虑剪力滞效应的简支箱梁简谐振动荷载作用下跨中截面的动应力放大系数,并将其与实体有限元结果进行比较,验证了其计算精度;针对地震荷载作用下的箱梁动力响应,根据反应谱法以及时程分析法,首次提出了等效弹性模量法以考虑其影响,文中算例验证了等效弹性模量法的可行性。
     (5)采用能量变分法,推导了考虑剪力滞效应的悬臂箱梁稳定临界力的显式解,并通过算例将其与初等梁理论以及实体有限元算得的临界力进行比较,结果表明该公式精度较高,且公式形式简单,计算方便。考虑剪力滞效应后,悬臂矩形梁的稳定临界力有所降低,即初等梁理论计算的结果是偏于不安全,而本文的计算公式与初等梁理论一样简单,但计算的精度相对于初等梁理论有所提高。
There will be shear lag effect existing in the thin-walled structure when it is suffered from bending load. Many eyes are focused on shear lag effect and some achievements have been obtained. But there are still some engineering problems not solved wholly. Based onΠ-shaped cross section cable-stayed bridge, concrete box beam and composite box girder with corrugated steel webs, the effect of shear lag on the static and dynamic character of thin-walled structure were studied. The main achievements are as followings.
     (1) With the help of finite element method, the shear lag effect of aΠ-shaped cross section cable-stayed bridge was discussed. The credibility of the finite-element model was validated by comparison of its results with the test results of the bridge. A parametric study using finite element analysis was carried out, in which the parameters such as prestress, transverse slope of bridge deck and little longitudinal beams were considered. Also, the effect of shear lag on the dynamic character ofΠ-shaped cross section cable-stayed bridge was discussed. The results show that shear lag effect is more serious at the root of theΠ-shaped cross section girder than that at its mid-span. The axial stress distribution curve of all sections has several knee points and so it is difficult to describe the shear lag with one parameter. Presstress and transverse slope of the girder have much effect on the shear lag, and it should not be neglected during calculation. And transverse slope is another important factor that influencing the shear lag, especially for the longitudinal normal stress near the middle area of the deck. It also shows that longitudinal girders can improve the stress distribution obviously. The analysis of dynamic character indicates that the vibration frequencies will decrease due to shear lag effect. The decrease will be more obviously with the increasing of frequency order.
     (2) Based on energy variational principle, a new method to analyze the vibration of simply supported box girder was proposed, in which the effect of shear lag was considered, and the closed-form solutions of the fundamental frequency were derived. The example shows that the accuracy and effectiveness of this new method is much improved compared with the conventional beam theory. Furthermore, the frequency formula was extended to calculate all orders of frequencies of box girder, in which both the effect of shear lag and shear deformation were taken into consideration, and the accuracy was improved. The parameters affecting the vibration frequencies were discussed in detail. The parametric study shows that the natural frequencies of simply supported box girder will decrease when the effects of shear lag or shear deformation is taken into account, especially for the high order frequencies' calculation. The main parameters that affect the frequencies decrease include inertia moment ratio(I_s/I), the width span ratio(l/2b), shear factor(k) and span high ratio(l/r), in which the width span ratio is the most important parameter.
     (3) An analytic formula of the natural frequencies of simply supported box girder with corrugated steel webs was deduced, in which both the effects of shear lag and shear deformation were taken into consideration. The natural frequencies of a composite box girder model with corrugated steel webs were tested and compared with the results of the elementary beam theory, formula of this dissertation and the 3D finite element model. The results show that the effects of shear lag and shear deformation on vibration are so pronounced that it should not be neglected in the frequencies calculation. The frequencies of composite box girder with corrugated steel webs will decrease when the effect of shear lag and shear deformation are taken into consideration. Compared with the concrete box girder, the effect on composite box girder is more pronounced. And the effects increase sharply with the increase of the frequency order. The formula proposed in this dissertation can take the effects of shear lag and shear deformation into consideration; furthermore, it is simple and accurate.
     (4) A practical method was proposed to calculate the forced vibration of simply supported box girder bridge, and the effect of shear lag is included in this method. Based on the forced vibration theory of elementary beam, the dynamic stress amplification factor of a simply supported box girder under harmonic load was deduced, in which the effect of shear lag was considered. The comparison of it with the results of solid finite element model shows the method of this dissertation is feasible. As for the earthquake calculation, equivalent elastic modulus method was proposed to analyze the effect of shear lag according to response spectrum method and time history method. Example shows that the equivalent elastic modulus method is feasible.
     (5) Based on energy variational principle, the closed-form formula of stability critical force of cantilever box girder was deduced, in which the effect of shear lag was included. A cantilever box section pier was taken as example, and the comparison between elementary beam theory and solid finite element model shows that the formula is more simple and accurate. The critical force will decrease when shear lag is taken into consideration, so elementary beam theory would lead to non-conservative result. The formula introduced in this dissertation can improve the accuracy while the formula is as simple as elementary beam theory's.
引文
[1]张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应[M].北京:人民交通出版社,1998.
    [2]Shushkewich K W.Negative shear lag explained[J].Journal of Structural Engineering,ASCE,1991,117(11):3543-3546.
    [3]Lee S C,Yoo,C H,Yoon D Y.Analysis of shear lag anomaly in box girders[J].Journal of Structural Engineering,ASCE,2002,128(11):1379-1386.
    [4]罗旗帜.变截面箱梁翼缘有效分布宽度计算[J].公路,1999,(7):12-16.
    [5]Lee J A N.Effective width of Tee-beams[J].The Structural Engineer,1962,40(1):21-27.
    [6]祝明桥.混凝土薄壁箱梁受力性能的试验研究与分析[D].长沙:湖南大学,2005.
    [7]罗旗帜,吴幼明.薄壁箱梁剪力滞理论的评述和展望[J].佛山科学技术学院学报(自然科学版),2001,19(3):29-35.
    [8]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [9]Song Q,Scordelis A C.Shear lag analysis of of T-,I-,and box beams[J].Journal of Structural Engineering,ASCE,1990a,116(5):1290-1305.
    [10]Song Q,Scordelis A C.Formulas for shear lag effect T-,I-,and box beams[J].Journal of Structural Engineering,ASCE,1990b,116(5):1306-1318.
    [11]Kristek V,Evans H R,Ahmad M K H.Shear lag analysis for composite box girders[J].Journal of Constructional Steel Research,1990,16(1):1-21
    [12]Evans H R,Ahmad M K H,Kristek V.Shear lag in composite box girders of complex cross section [J].Journal of Constructional Steel Research,1993,24(3):183-204
    [13]Kristek V,Studnicka J.Negative shear lag in flanges of plated structures[J].Journal of Structural Engineering,ASCE,1991,117(12):3553-3569
    [14]Tahan N,Pavlovic M N,Kotsovos M D.Single Fourier series solutions for rectangular plates under in-plane forces,with particular reference to the basic problem of colinear compression.Part 1:Closed-form solution and convergence study[J].Thin-Walled Structures,1993,(15):291-303
    [15]Tahan N,Pavlovic M N,Kotsovos M D.Single Fourier series solutions for rectangular plates under in-plane forces,with particular reference to the basic problem of colinear compression.Part 2:Stress distribution[J].Thin-Walled Structures,1993,(17):1-26
    [16]Than N,Pavlovic M N,Kotsovos M D.Shear lag revisited:the use of single Fourier series for determining the effective breadth in plated structure[J].Computers and Structures,1997,63(4):759-767
    [17]Haji-Kazemi H,Company M.Exact method of analysis of shear lag in framed tube structures[J]. The Structural Design of Tall Buildings,2002,(11):375-388
    [18]Reissner E.On the problem of stress distribution in wide flanged box beam[J].Journal Aero Sci.1938,(5):295-299.
    [19]Hildbrand F B.The exact solution of shear lag problems in fiat panels and box beams assumed rigid in the transverse direction[R].NACA,1943,(TN894).
    [20]ABDEL-SAYED G.Effective width of steel deck plate in bridge[J].Jorunal of the Structural Division,ASCE,1969,95(ST7):1459-1474.
    [21]MALCOLM D J,REDWOOD R G.Shear lag in stiffened box girders[J].Jorunal of the Structural Division,ASCE,1970,96(ST7):1403-1415.
    [22]Goldberg J E,Leve H L.Theory of prismatic folded plate structures.International Assoc.for Bridge and Structural Engineering Publications[J].1957,(17):59-86.
    [23]Defries-Skene A,Scordelis A C.Direct stiffenss solution for folded plates[J].Jorunal of the Structural Division,ASCE,1964,90(4):15-47.
    [24]Chu K H,Pinjarkar S G.Multiple folded plate structures[J].Jorunal of the Structural Division,ASCE,1966,92(2):297-321.
    [25]Chu K H,Dudnik E.Concrete box girder bridges analyzed as folded plates[J].Concrete Bridge Design ACI,1969,(23):221-246.
    [26]Van-Dalen K,Narasimham S V.Shear lag in shallow wide-flanged box girder[J].Jorunal of the Structural Division,ASCE,1976,102(10):1969-1979.
    [27]Yoshimura J,Nirasawa N.On the stress distributions and effective width of curved girder bridges by the folded plate theory[C].Proceedings of the Japan Society of Civil Engineers,Tokyo,1975,No.233.
    [28]Kristek V,Studnicka J,Skaloud M.Shear lag in wide flanges of steel bridges[J].Acta Technica CSAV,1981,26(4):464-488.
    [29]Kristek V,Skaloud M.Role of initial imperfections in the shear lag behaviour of wide flanges[J].Acta Technica CSAV,1983,28(6):735-753.
    [30]蔡松柏,李存权.箱形梁桥剪力滞效应的精确分析[J].中南公路工程,1989,(3):33-41
    [31]李家宝,李存权,蔡松柏.高层框筒结构剪力滞[J].湖南大学学报,1991,18(2):1-4
    [32]蔡松柏,程翔云,邵旭东.Π型梁剪力滞效应的解析解[J].工程力学,2003,20(5):82-86
    [33]Kristek V.Folded plate approach to analysis of shear wall systems and frame structures[J].Proceedings of the Institution of Civil Engineers,Part 2,1979,(67):1065-1075
    [34]Shushkewich K W.Negative shear lag explained[J].Journal of Structural Engineering,1991,117(11),3543-3546
    [35]Kristek V,Studnicka.Negative shear lag in flanges of plated structures[J].Journal of Structural Engineering,1991,117(12),3553-3569.
    [36]Fafitis A,Rong A Y.Analysis of thin-walled box girders by parallel processing[J].Thin-Walled Structures,1995,(21):233-240
    [37]程海根.薄壁箱梁剪力滞效应理论分析与试验研究[D].成都:西南交通大学,2004.
    [38]Taherian A R,Evans H R.The bar simulation method for the calculation of shear lag in multi-cell and continuous box girder[J].Proc Instn Civ Engrs,Part 2,1977,(63):881-897.
    [39]程翔云,汤康恩.计算箱形梁桥剪力滞效应的比拟杆法[J].中南公路工程,1984,(1):65-73.
    [40]张启伟,张士铎.单索面斜拉桥箱梁恒载剪力滞效应分析[J].中国公路学报,1997,(2):39-43.
    [41]郭健,孙炳楠.斜拉桥主塔在施工过程中的剪力滞效应分析[J].中国市政工程,2004,10(1):33-35.67.
    [42]Reissner E.Analysis of shear lag in box beam by principle of minimum potential energy[J].Quarterly of Applied Mathematics,1946,5(3):268-278.
    [43]Kuzmanovic B O,Graham H J.Shear lag in box girders[J].Jorunal of the Structural Division,ASCE,1981,107(9):1701-1712.
    [44]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析[J].土木工程学报,1983,16(1):1-13.
    [45]程翔云.梁桥理论与计算[M].北京:人民交通出版社,1990.
    [46]倪元增.槽型宽梁的剪力滞问题[J].土木工程学报,1986,19(4):32-40.
    [47]程翔云,罗旗帜.箱梁在压弯荷载共同作用下的剪力滞[J].土木工程学报,1991,24(1):52-64.
    [48]Chang S T.Prestress influence on shear lag effect in continuous box girder bridge[J].Journal of Structural Engineering,ASCE,1992,118(11):3113-3121.
    [49]Foutch D A,Chang P C.A shear lag anomaly[J].Journal of Structural Engineering,ASCE,1982,108(7):1653-1658.
    [50]Chang S D,Zheng F Z.Negative shear lag in cantilever box girder with constant depth[J].Journal of Structural Engineering,ASCE,1987,113(1):20-35.
    [51]程翔云.悬臂薄壁箱梁的负剪力滞[J].上海力学,1987,(2):52-62.
    [52]罗旗帜,余建立.变截面箱梁的负剪力滞[J].重庆交通学院学报,1997,(3):18-25.
    [53]张士铎,王文州.荷载横向作用位置对箱型梁剪力滞效应的影响[J].湖南大学学报,1995,(2):109-115.
    [54]罗旗帜.薄壁曲箱梁桥剪滞效应分析[J].铁道学报,1999,21(5):88-93.
    [55]杨允表.曲线箱梁考虑曲率及剪力滞影响的力学分析[J].土木工程学报,1999,32(1):43-49.
    [56]韦成龙,刘小燕.曲箱梁桥考虑翘曲和剪滞效应的弯扭耦合变形分析[J].华东公路,2000,(3):3-6.
    [57]Luo Q Z,Li Q S.Shear lag of thin-walled curved box girder brigeds[J].Joural of Engineering Mechanics,ASCE,2000,126(10):1111-1114.
    [58]吴亚平.复合材料薄壁箱梁的剪滞剪切效应分析[J].兰州铁道学院学报,1992,11(2):36-48.
    [59]吴亚平.多室箱梁剪滞效应的变分法分析[J].土木工程学报,1996,29(4):31-38.
    [60]韦成龙,曾庆元,刘小燕.薄壁箱梁剪力滞分析的多参数翘曲位移函数及其有限元法[J].铁道学报,2000,22(5):60-64.
    [61]Singh Y,Nagpai A K.Negative shear lag in framed-tube buildings[J].Journal of Structural Engineering,ASCE,1994,120(11):3105-3121.
    [62]刘世忠等,变截面薄壁箱梁剪力滞剪切变形效应分析[J].中国公路学报,2002,15(3):61-63,67.
    [63]Moffatt K R,Dowling P J.Shear lag in steel box girder bridges[J].Structural Engineering,1975,53(10):439-448.
    [64]黄剑源,杨元忠.钱塘江二桥变截面箱形连续梁桥剪滞效应的有限元分析[J].桥梁建设,1994,(1):70-76.
    [65]魏丽娜,方放,余天庆等.变截面箱形梁桥剪滞效应的近似计算方法[J].土木工程学报,1997,30(1):64-72.
    [66]彭大文,王忠.连续弯箱梁剪滞效应分析和实用计算方法研究[J].中国公路学报,1998,11(3):41-49.
    [67]王忠,彭大文.预应力对箱梁剪滞效应的影响分析[J].工程力学,1998(增刊):449-453.
    [68]Kwan A K H.Shear lag in shear/core walls[J].Journal of Structrual Engineering,ASCE,1996,114(10):2280-2292.
    [69]Lee S C,Yoo C H,Yoon D Y.Analysis of shear lag anomaly in box girders[J].Journal of Structrual Engineering,ASCE,2002,128(11):1379-1386.
    [70]Hiroshi N,Yoneyoshi T,Ohta S.Analytical and experimental studies on shear lag in multi-cellular box girders[J].Memoirs of the Faculty of Engineering,1983,24(11):235-254.
    [71]Wang X,Rammerstorfer F G.Determination of effective breadth and effective width of stiffened plates by finite strip analyses[J].Thin-Walled Structures,1996,26(4):261-286.
    [72]罗旗帜.曲线箱梁有限条法计算程序[J].佛山大学学报,1993,11(4):33-41.
    [73]杨允表,黄剑源.广义有限条法分析多室箱梁的剪力滞效应[J].桥梁建设,1995,(4):40-46.
    [74]凌云,王建国.一种分析箱梁剪滞效应的广义杂交有限条法[J].合肥工业大学学报(自然科学版),2005,28(1):60-63.
    [75]Chang S T,Yun D.Shear lag effect in box girder with varying depth[J].Journal of Structural Engineering,ASCE,1988,122(9):1097-1104.
    [76]王修信,黄剑源.变截面多跨梯形箱梁桥剪滞效应差分解[J].桥梁建设,1993,(2):58-64.
    [77]方放,魏丽娜.变截面箱形桥剪力滞的差分解[J].湖北工学院学报,1996,11(1):4-9.
    [78]陈海根,强士中.变截面悬臂箱梁剪滞效应分析[J].公路,2003,(3):54-56.
    [79]罗旗帜.薄壁箱形梁剪力滞计算的梁段有限元法[J].湖南大学学报,1991,18(2):33-39.
    [80]罗旗帜.简支箱梁的负剪力滞[J].佛山大学学报,1995,13(4):40-46.
    [81]Luo Q Z,Tang J,Li Q S.Finte segment method for shear lag analysis of cable-stayed bridges[J].Joural of Structure Engineering,ASCE,2002,128(12):1617-1622.
    [82]罗旗帜.变截面多跨箱梁桥剪滞效应分析[J].中国公路学报,1998,11(1):63-70.
    [83]Luo Q Z,Li Q S,Tang J.Shear lag in box girder bridges[J].Joural of bridge Engineering,ASCE,2002,7(5):308-313.
    [84]Luo Q Z,Tang J,Li Q S.Negative shear lag effect in box girders with varying depth[J].Joural of Structure Engineering,ASCE,2001,127(10):1237-1239.
    [85]韦成龙,曾庆元,刘小燕.薄壁曲线箱梁桥剪滞效应分析的一维有限单元法[J].中国公路学报,2000,13(1):65-72.
    [86]魏丽娜,方放,余天庆,等.变截面箱梁桥剪滞效应中翼板纵向位移函数的选择[J].桥梁建设,1996,(3):28-31,36.
    [87]方志,曹国辉,王济川.钢筋混凝土连续箱梁剪力滞效应试验研究[J].桥梁建设,2000,(4):1-3.
    [88]刘山洪,何广汉,杨永贤.部分预应力混凝土箱梁节段模型剪滞效应的试验研究[J].桥梁建设,2000,(3):5-7.
    [89]田仲初,颜东煌.轴向力偏心距对Π形宽翼缘梁剪滞效应的影响[J].长沙交通学院学报,1998,14(1):54-58.
    [90]李乔,唐亮,黄道全,等.斜拉桥Π形截面PC主梁剪力滞模型试验研究[J].桥梁建设,2004,(5):7-10.
    [91]万臻,李乔,毛学明.Π型截面主梁斜拉桥剪力滞效应试验研究[J].西南交通大学学报,2004,39(5):623-327.
    [92]吴文清,叶见曙,万水,等.波形钢腹板组合箱梁在对称加载作用下剪力滞效应的试验研究[J].中国公路学报,2003,16(2):48-51.
    [93]刘小燕,韦成龙.槽型宽翼压弯构件的剪力滞效应分析[J].长沙电力学院学报(自然科学版),1999,14(2):167-170.
    [94]罗许国,戴公连.大悬臂桥面板钢脊骨梁结构模型剪力滞效应有限元分析[J].长沙铁道学院学报,2002,20(1):50-55,84.
    [95]刘永健,周绪红,颜东煌,等.单边索斜塔钢-混凝土结合梁斜拉桥塔梁根部应力分析[J].中国公路学报,2003,16(2):65-69.
    [96]蔺鹏臻,黄卫东,吴荔青.部分斜拉桥箱梁横向应力分析[J].兰州铁道学院学报(自然科学版),2002,21(4):46-49.
    [97]甘亚南,吴亚平,王根会.剪力滞效应对简支箱梁自振特性的影响研究[J].兰州铁道学院学报(自然科学版),2002,21(3):23-25.
    [98]甘亚南,王根会,吴亚平.剪力滞效应对连续箱梁自振特性影响的研究[J].兰州铁道学院学报(自然科学版),2003,22(1):40-43.
    [99]甘亚南,李庆华.剪力滞后效应对固支及悬臂箱梁自振特性影响的研究[J].焦作工学院学报(自然科学版),2003,23(1):55-58.
    [100]王根会,甘亚南.连续箱梁动力特性的理论分析研究[J].兰州交通大学学报(自然科学版),2004,23(4):1-4.
    [101]王全凤,李华煜.剪力滞后对开口薄壁杆件侧向稳定的影响[J].华侨大学学报(自然科学版),1997,18(1):46-51.
    [102]梁启智,陈加猛.高层框筒结构的整体稳定和二阶分析[J].华南理工大学学报(自然科学版),1997,25(11):37-43.
    [103]王书纯,辛克贵.受偏压作用薄壁结构的稳定分析[J].工程力学,1999(增刊):527-537.
    [104]贺志高.支架现浇斜拉桥主梁剪力滞效应分析[D].西安:长安大学,2006.
    [105]韦成龙,曾庆元,刘小燕.肋板结构受压构件的剪力滞效应分析[J].力学与实践,2001,23(2):41-43.
    [106]蔡松柏,程翔云,邵旭东.Π形梁剪力滞效应的解析解[J].工程力学,2003,20(5):82-86.
    [107]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [108]陈宝春,黄卿维.波形钢腹板PC箱梁桥应用综述[J].公路,2005,(7):45-53.
    [109]蔡千典,冉一元.波形钢腹板预应力结合梁结构特点的探讨[J].桥梁建设,1994,24(1):26-30.
    [110]李宏江,叶见曙,万水,等.,波形钢腹板预应力混凝土箱梁的试验研究[J].中国公路学报,2004,17(4):31-36.
    [111]Combault J.The maupre viaduct near charolles[C].Proc.,1988 National Steel Construction Conf.,1988.American Institute of Steel Construction,Chicago.
    [112]刘磊,钱冬生.波纹钢腹板预应力组合梁桥[J].国外公路,1999,19(1):26-30.
    [113]刘海燕.日本修建的波形钢腹板PC箱梁一览表[J].国外桥梁,2002,30(1):58-59.
    [114]ElgaalyM,SeshadriA,Hamilton RM.Bending strength of steel beamswith corrugated webs[J].Journal of Structural Engineering,ASCE,1997,123(6):772-782.
    [115]Johnson R P,Cafolla J.Corrugated webs in p late girders for bridges[J].Structures and Buildings,1997,123(5):157-164.
    [116]ElgaalyM,Seshadri A.Girders with corrugated webs under partial comp ressive edge loading[J].Journal of Structural Engineering,ASCE,1997,123(6):783-791.
    [117]ElgaalyM,Hamilton R M,Seshadri A.Shear strength of beamswith corrugated webs[J].Journal of Structural Engineering,ASCE,1996,122(4):390-398.
    [118]Ariyawardena N,Ghali A.Prestressing with unbonded internal or external tendons:Analysis and computer mode[J].Journal of Structural Engineering,ASCE,2002,128(12):1493-1501.
    [119]Tan K,Ng C.Effects of deviator and tendon configuration on behaviour of externally prestressed beams[J].ACI Struct.,1997,99:13-22.
    [120]Rosignoli M.Prestressed concrete box girder bridges with folded steel plate webs[J].Proceedings of the Institution of Civil Engineers,Structures and Buildings,1999,134(1):77-85.
    [121]吴文清,万水,叶见曙等.波形钢腹板组合箱梁剪力滞效应的空间有限元分析[J].土木工程学报,2004,37(9):31-36.
    [122]李宏江,叶见曙,万水等.剪切变形对波形钢腹板箱梁挠度的影响[J].交通运输工程学报,2002,2(4):171-20.
    [123]吴高峰.人跨度箱形梁结构剪力滞效应及非线性抗震性能研究[D].北京:北京化工大学,2005.
    [124]宋一凡.公路桥梁动力学[M].北京:人民交通出版社,2000.
    [125]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [126]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [127]JTJ 004-89.公路工程抗震设计规范[S].
    [128]龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,2000.
    [129]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700