桩端后注浆浆液扩散机理及残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过室内模型试验、现场试验、电子显微镜扫描及理论分析相结合的方法,针对桩端后注浆过程中,浆液的扩散机理和桩侧桩端的残余应力开展了一系列有益的研究,主要的工作和成果如下:
     (1)利用自行设计开发的注浆模拟装置对粘土中浆液的扩散方式进行研究。结果表明:在粘土中注浆,随着浆液水灰比的增大,浆泡的直径减小,浆脉的数量及长度增加,浆脉的宽度减小,浆液的扩散方式逐渐由以压密为主向以劈裂为主过渡。粘土中劈裂注浆可分为三个阶段:鼓泡压密阶段、第一劈裂面阶段、后续劈裂面阶段。
     (2)在粘土中水泥浆压滤效应理论模型的基础上,推导出压滤效应的理论公式,并通过室内模拟试验对其进行验证。室内模拟试验表明:水泥浆无法通过渗透作用穿过粘土;滤出水的流量与压滤压力正相关,与粘土厚度负相关;最终水灰比不受初始水灰比、水泥浆高度、粘土厚度及压滤压力的影响,在试验中基本为一常量;最终压滤量与水泥浆高度及初始水灰比呈线性正相关;压滤结束时间与水泥浆高度、粘土厚度及初始水灰比呈线性正相关,与压滤压力呈反比。原子吸收试验表明,在压滤作用下,Ca2+离子随着滤出水扩散到粘土中,与吸附在土颗粒上的Na+和K+离子交换,从而降低了土颗粒表面双电层的厚度,进而使土体颗粒更加紧密。
     (3)利用扫描式电子显微镜,对注浆前后粘土、压滤效应前后粘土及注浆前后泥皮土进行对比分析,结果表明:原状粘土的断面形态为松散的絮状结构;经过清水压密固结,粘土颗粒间的孔隙明显减小,呈密实絮状结构;压滤作用使粘土颗粒团聚成粘土团,使土体强度提高;而压力注浆,使粘土团进一步粘聚成一个整体,土体强度大幅提高。原状泥皮土为絮状结构,经过压力注浆,桩侧泥皮转变为紧密团粒结构,泥皮土强度得到提高。
     (4)在水泥浆流变特性的研究基础上,推导出不同流型浆液渗透注浆扩散半径的表达式。并通过利用水泥浆流变特性对其进行简化,给出了不同水灰比水泥浆渗透注浆球面及柱状扩散半径的显式计算公式。
     (5)引入有效应力比的概念,建立了考虑压滤效应的粘土中压密注浆球(柱)孔扩张的控制方程,给出了径向应力和径向位移的表达式,并与传统孔扩张理论进行对比。结果表明,浆液越稀,传统的孔扩张理论的误差越大。
     (6)以幂律流体的平板窄缝流动为假定,得到了桩端后注浆劈裂注浆过程中,浆液在桩底的扩散半径和沿桩侧的上返高度的计算公式。结果表明,劈裂注浆时,浆液在桩底的扩散半径与浆液在桩侧的上返高度随着水灰比、裂隙高度(桩侧泥皮厚度)、注浆压力的增大而增大。
     (7)通过工程实例,对桩侧冒浆的处理措施及处理效果进行研究。桩侧冒浆的主要原因为桩侧泥皮厚、成桩龄期短、持力层可注性差、桩底沉渣厚等。桩侧冒浆可以通过提高持力层可注性,降低浆液水灰比,减小桩侧泥皮和桩底沉渣厚度并提高泥皮强度,间歇注浆四方面加以预防及处理。发生冒浆并通过复注达到设计注浆量的桩,其极限承载力略高于普通注浆桩。
     (8)分析了桩端后注浆残余应力的产生和消散,及其对后注浆桩极限承载力、侧摩阻力和端阻力的影响。注浆结束后,注浆压力的消散,使持力层进入超固结状态,使相同桩端位移下可发挥的端阻力提高。桩端后注浆桩的残余应力,通过对桩端土的预加载作用,提高端阻的发挥比例。若不考虑桩端后注浆对桩残余应力的影响,会造成对桩侧摩阻力的高估和桩端阻力的低估。
Model test, field test, scanning electron microscopy, and theoretical analysis were carried out to study the spreading mechanism of grout and the bearing behavior of post grouted drilled shaft. The study has provided some key findings summarized as below.
     (1) Compaction grouting and fracture grouting were researched using a grouting simulation test device which was developed by the author. The results show that the diameter of grout ball and the width of grout fracture decrease with increasing grout water cement ratio, whereas the quantity and length of grout fractures increase with increasing grout water cement ratio. Under certain grouting pressure, the diffusion of grout will gradually turn from compaction grouting to fracture grouting as the water cement ratio increases. Fracture grouting in clay can be divided into three stages:(i) grout ball stage, (ii) first fracture surface stage, and (iii) following fracture surface stage.
     (2) Basd on the theoretical model of pressure filtration of cement grout in clay, the theoretical formulaof pressurefiltration was deduced, and then it was verified by 20 model tests. The test results show that cement grout can not penetrate into the clay without fractures. The flow of squeezed water has positive correlations with clay thickness and filtration pressure. The final water cement ratio is nearly a constant in these tests, it do not have correlations with initial water cement ratio, grout thickness, clay thickness and filtration pressure. The final squeezed water is linearly correlated with the grout thickness and the initial water cement ratio. The finish time is linearly correlated with grout thickness, clay thickness, and initial water cement ratio, and is in inverse proportion to filtration pressure. Atomic Absorption Spectrometry test shows that the Ca2+ ions from cement grout spread with the squeezed water into the clay, then the Ca2+ ions exchange with Na+ and K+ adsorbed in clay particles. This process reduces the thickness of the electri c I ayer so soi I particles become ti ghter.
     (3) Scanning electron microscope was used to analyze the effect of grouting and pressure filtration on clay and mudcake. The results show that the natural Xiaoshan clay is of flocculent structure. After consolidation, the porosity between the clay particles is significantly reduced. After pressure filtration, the separated clay particles become more close to each other and form clay agglomerates of diameter about 30μm. Pressure grouting will further improve the soil strength by making the clay agglomerates into a unit. The original mudcake is of flocculent structure, and after grouting, the porosity of the mudcake is significantly reduced.
     (4) The expression of permeation radius was derived from the spherical/cylindrical diffusion model theory and the rheological property of cement grout, and then it was simplified by utilizing the rheological property of cement grout.
     (5) The control equation of cavity expansion theory of compaction grouting in saturated clay was derived by introducing an effective stress ratio. In this control equation, the pressure filtration can be taken into account. Furthermore, equations of radial stress and radial deformation were derived. The comparisons between this present theory and the traditional cavity expansion theory show that traditional cavity expansion theory can not consider the impact of effective stress ratio and pressure filtration, so lower effective stress ratio will lead to larger error.
     (6) Basd on the assumption of exponential fluid and narrow plate model, formulas for calculating the penetration radius and the climb height in fracture grouting were deduced. It shows that the penetration radius and the climb height increase with increasing water cement ratio of grout, grouting pressure, and gap width (mudcake thickness).
     (7) Theoretical study and case study both indicate that thicker mudcake, shorter curing age, lower groutability of bearing layer, and thicker debris will lead to larger climb height and higher risk of overflow. The overflow of grout can be prevented by increasing the groutability of bearing layer, and reducing the water cement ratio of grout, the mudcake thickness, and the debris thickness. The overflow of grout can also be prevented by intermission grouting. In the same grouting quantity, the overflow shaft has higher bearing capacity than the ordinary shaft.
     (8) Theoretical analysis and field tests were carried out to study the generation and dissipation of residual stress on base grouted drilled shaft and their effects on ultimate bearing capacity. After grouting, the dissipation of shaft tip additional stress makes the bearing layer over consolidated, resulting in an increase in tip resistance at a given tip displacement. At the same time, by preloading the shaft tip soil, the residual stress improves the end bearing capacity, and thereby enhances the single shaft bearing capacity as well. If the residual stress is neglected, the skin friction will be underrated and the end bearing resistance will be overrated.
引文
Advani S. H., Lee T. S., Avasthi J. M.. Parametric sensitivity investigations for hydraulic fracture configuration optimization [J]. The 30th U.S. Symposium on Rock Mechanics. 1989, (5):451-457.
    Bezuijen A. Hydraulic fracturing experiments ant low stresses in sand [R]. Delft University of Technology TA/TG/02-03,2003.
    Bezuijen A., Sanders M. P.M., Hamer D. den, Tol A.F. van. Laboratory tests on compensation grouting, the influence of grout bleeding [J]. Proc 33rd ITA-AITES World Tunnel Congress, Prague,2007,395-399.
    Bolognesi, A. J. L., Moretto, O. Stage grouting preloading of large piles on sand [R]. In Proceedings of the Eighth International Conference on Soil Mechanics and Foundation Engineering, Moscow.1973.
    Bolton M. D., Mckinley J. D.. Geotechnical properties of fresh cement grout-pressure filtration and consolidation tests [J]. Geotechnique,1997,47(2):347-352.
    BruceD. A.. Enhancing the performance of large diameter piles by grouting [J]. Grouting Engineering,1985(5):9-15.
    Bruce D. A.. Enhancing the performance of large diameter piles by grouting[J]. Grouting Engineering,1985(6).
    Carter J. P., Randolph M. F. and Wroth C. P.. Stress and pore pressure changes in clay during and after the expansion of a cylindrical cavity [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1979(3):305-322.
    Carter J. P.. Cavity expansion in cohesive frictional soils [J]. Geotechnique,1986, 36(3):349-358.
    Chow Y. K., Teh C. I.. A theoretical study of pile heave [J]. Geotechnique,1990,40(1):1-14.
    Chu Eu Ho. Base Grouted Bored Pileon Weak Granite [J]. Proceeding of 3rd International Specialty Conference on Grouting and Ground Treatment, New Orleans, Louisiana, USA, 2003,716-727.
    Davis. R. F., Scott and Mullenger G.. Rapid expansion of a cylindrical cavity in a rate-type soil [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984(8):125-140.
    Fellenius B. H.. Determining the true distribution of load in piles [C]. Orlando:Geotechnical Special Publication,2002.
    Fleming W.G.K., Improvement of pile performance by base grouting. Proc Inst Civ Eng (1993), pp.88-93.
    Gafar K., Soga K. Fundamental Investigation of soil grout interaction in sandy soils[R]. University of Cambridge report,2006, August.
    Gouvenot, D., and Gabiax, F. D.1975. A new foundation technique using piles sealed by concrete under high pressure [J]. In Proceedings of the 7th Annual Offshore Technical Conference.
    Govier G W, Aziz K. The flow of complex mixtures in pipes [M]. New York:Litton Edu. Pub. Inc.,1972.
    Grotenhuiste, R. Fracture grouting in theory [D]. MSc thesis, Delft University of Technology, 2004.
    Hill R.. The mathematical theory of plasticity [M]. University of Nottingham Oxford at the Clarendon Press,1950.
    Khodaverdian M. and McElfresh P. Hydraulic fracturing simulation in poorly consolidated sand: Mechanism and consequences [J]. Proc. Conf. Soc. of Petroleum Engineers,2000, Dallas No.63233.
    Kleinlugtenbelt, R. Compensation grouting, laboratory experiments in sand [D]. MSc thesis, Delft Un. of Technology,2005.
    Kleinlugtenbelt, R., Bezuijen, A. and Tol A.F. van. Model tests on compensation grouting [J]. Proc. ITA 2006, Seoul.
    Lombardi G.. The Roleof the Cohesion in Cement Grouting of Rock [J].15th Congress de Grande Barrages. Lausanne.1985,235-260.
    Mabsout M. E., TasoulasJ . L.. A finitelement model for the simulation of pile driving [J]. Int J. Numer. Meth. Engng.,1994,37:257-278.
    Mullins, G. Winters, D.2004. Post grouting drilled shaft tips-Phase Ⅱ [R], Final Report to the Florida Department of Transportation.
    Mullins, G., Winters, D. and Steven D.. Predicting End Bearing Capacity of Post-Grouted Drilled Shaft in Cohesionless Soils [J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(4):478-487.
    Mullins, G., Dapp, S., Fredrerick, E., and Wagner, R. Pressure grouting drilled shaft tips-Phase I final report [R]. Final rep. Submitted Florida Department of transportation, Fla,2001.
    Murdoch L.C.. Hydraulic fracturing of soil during laboratory experiments-Part 1 Methods and observations [J]. Geotechnique,1992,43(2):255-265.
    Murdoch L.C.. Hydraulic fracturing of soil during laboratory experiments-Part 2 Propagation [J]. Geotechnique,1993,43(2):267-276.
    Murdoch L. C.. Hydraulic fracturing of soil during laboratory experiments-Part 3 Theoretical analysis [J]. Geotechnique,1993,43(2):277-287.
    Mori, A., Tamura, M.. Hydrofracturing pressure of cohesi ve soils [J]. Soils and Foundations 1987,27(1):14-22.
    Nonveillev E.. Grouting Theory and Practice [D]. Elsevier Science Publisher B. V.. The Netherlands,1989.
    Osamu Kusakabe, Masaaki Kakurai, Katsutoshi Ueno, and Yoshinao Kurachi. Structural
    capacity of precast piles with grouted base [J]. International Journal of Geotechnical
    Engineering,1994,120(8):1289-1306.
    Panah, A.K., Yanagisawa, E.. Laboratory studies on hydraulic fracturing criteria in soil [J]. Soils and Foundations,1989,29(4):14-22.
    Raffle, J. F. and Greenwood, D. A. The relation between therheological characteristics of grouts and their capacity to permeate soil [J]. Proc.5th Int. Conf. Soil Mech. Found. Engng,1961, Paris,789-795.
    Randolph M. F., Carter J. P., Wroth C. P.. Driven pile in clay the effect of installation and subsequent consolidation [J]. Geotechnique,1979,29(4):361-393.
    PoulosH. G., Davis E. H.. Rlefoundation analysis and design [M]. New York:Wiley,1980.
    Rutger TeGrotenhuis. Fracture grouting in theory [D]. PhD thesis,2004.
    Sagaseta C., Houlsby G. T., Norbury J., Wheeler A. A.. Quasi-static undrained expansion of a cylindrical cavity in clay in the presence of shaft friction and anisotropic initial stresses [C]. Report, Department of Engineering Science, University of Oxford,1984.
    Shirlaw J. N. Ground treatment by injection in Hong Kong with special reference to the construction of the Hong Kong mass transit railway [D]. MSc thesis, University of Bristol, 1990.
    Silwinski, Z. J., and Fleming, W. G. K.. Theintegrity and performance of bored piles. International Conference on Advances in Piling and Ground Treatment for Foundations, London, UK, Institution of Civil Engineers,1984.
    Steven D., Muchard M., Brown D. A.. Experiences with base grouted drilled shafts in the southeastern United States [J].10th International Conference on Piling and Deep Foundations, Amsterdam 2006.
    Stocker, M. F. The influence of post grouting on theload bearing capacity of bored piles [J]. In Proceedings of the 8th European Conference on Soil Mechanics and Foundations Engineering, Helsinki,1983,167-170.
    Vesic A.S.. Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division. ASCE 98 (SM3),265 (1972).
    Yu H. S., Carter J. P.. Rigorous similarity solution for cavity expansion in cohesive-frictional soil [J]. The international journal of geomechanics,2002,2(2):233-258.
    Yu H.S., Houlsby G. T.. Finite cavity expansion in dilatant soils:loading analysis[J]. Geotechnique,1991,41 (2):173-183.
    Zebovitz S., Krizek R. J., and Atmatzidis D. K.. Injection of fine sands with very fine cement grout [J]. Journal of Geotechnical Engineering,1989,115(12):1717-1733.
    白云,侯学渊.软土地基劈裂注浆加固的机理和应用[J].岩土工程学报,1991,13(2):89-93.
    高文生.后压浆灌注桩单群桩承载性状的研究[D].博士研究生论文,1997.
    葛家良,陆士良.注浆模拟试验及其应用研究[J],岩土工程学报,1997,19(3):28-33.
    龚晓南.土塑性力学[M].杭州:浙江大学出版社,1997.
    龚晓南.土力学[M].北京:中国建筑工业出版社,2002.
    黄生根.大直径超长桩压浆后承载性能的试验研究及有限元分析[J].岩土力学,2007,28(2):297-301.
    黄生根,龚维明.超长大直径桩压浆后的承载性能研究[J].岩土工程学报,2006,28(1):113-117.
    黄生根,龚维明.苏通大桥一期超长大直径试桩承载特性分析[J].岩石力学与工程学报,2004,23(19):3370-3375.
    韩式方.非牛顿流体本构方程和计算解析理论[M].北京:科学出版社,2000.
    郝哲,王来贵,刘斌.岩体注浆理论与应用[M].北京:地质出版社,2006.
    郝哲,王介强,刘斌.岩体渗透注浆的理论研究[J].岩石力学与工程学报,2001,20(4):492-496.
    何修仁.注浆加固与堵水[M].沈阳:东北工学院出版社,1990.
    胡春林,李向东,吴朝辉.后压浆钻孔灌注桩单桩竖向承载力特性研究[J].岩石力学与工程学报,2001,20(4):546-550
    胡士兵,朱向荣.三折线线性软化土体中球孔扩张问题解答[J].科技通报,2007,23(6):848-852.
    胡士兵,王金昌,朱向荣.线性软化土体中球孔扩张问题的解析解[J].浙江大学学报(工学版),2007,41(9):1503-1507.
    蒋明镜,沈珠江.考虑剪胀的弹脆塑性软化柱形孔扩张问题[J].河海大学学报,1996, 24(4):65-72.
    孔祥言,陈峰磊,陈国权.非牛顿流体渗流的特性参数及数学模型[J].中国科学技术大学学报,1999,29(2):141-147.
    刘利民,李增选.残余应力及其对桩承载性状的影响[J].特种结构,2000,17(4):16-18.
    刘金砺,祝经成.泥浆护壁灌注桩后注浆技术及其应用[J].建筑科学,1996(2):13-18.
    潘志强,张彬.均匀砂层渗透注浆计算方法的研究[J].岩士工程界,2004,7(5):34-37.
    齐添,谢康和,胡安峰,张智卿.萧山粘土非达西渗流性状的试验研究[J].浙江大学学报(工学版),2007,41(6):1023-1028.
    阙云,刘强华,李丹,孙远,梁永富.渗透注浆扩散理论探讨[J].重庆交通学院学报,2006,25(5):105-108.
    冉启全,李士伦.流固祸合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65.
    阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报,2005,27(1):69-73.
    沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989.
    唐智伟,赵成刚.注浆抬升地层的机制、解析解及数值模拟分析[J].岩土力学,2008,29(6):1512-1516.
    王广国,杜明芳.压密注浆机理研究及效果检验[J].岩石力学与工程学报,2000,19(6):670-673.
    汪鹏程.软化剪胀士中孔扩张理论及沉桩挤土性状研究[D].博士学位论文,2005.
    汪鹏程,朱向荣,方鹏飞.考虑土应变软化及剪胀特性的大应变球孔扩张的问题[J].水利学报,2004(9):78-82.
    王旭.桩底灌浆钻孔灌注桩竖向承载特性研究及工程应用[D].博士研究生论文,1999.
    徐润.粘土水泥浆结石体研究[J].煤炭科学技术,2004,32(4):55-57.
    杨米加,陈明雄,贺永年.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001,20(6):839-841.
    杨米加,贺永年,陈明雄.裂隙岩体网络注浆渗流规律[J].水利学报,2001(7):41-46
    杨坪.砂卵(砾)石层模拟注浆试验及渗透注浆机理研究[D].博士学位论文,2005.
    杨坪,唐益群,彭振斌,陈安.砂卵(砾)石层中注浆模拟试验研究[J],岩土工程学报,2006,28(2):2134-2138.
    杨秀竹.静动力作用下浆液扩散理论与试验研究[M].博士学位论文,2005.
    杨秀竹,雷金山,夏力农,王星华.幂律型浆液扩散半径研究[J].岩土力学,2005, 26(11):1803-1806.
    杨秀竹,王星华,雷金山.宾汉体浆液扩散半径的研究及应用[J].水利学报,2004,(6):75-79.
    《岩土注浆理论与工程实例》协作组.岩土注浆理论与工程实例[M],科学出版社,2001.
    印长俊,王星华,马石城.灌注桩残余应变的产生机理分析[J].工程力学,2009,26(7):125-133.
    曾国熙,叶政青,冯国栋.桩基工程手册[M].北京:中国建筑工业出版社,1997:139-222.
    张晓炜,黄根生.钻孔灌注桩后压浆技术理论与应用[M].武汉:地质大学出版社,2007.
    张忠苗.软土地基大直径桩受力性状与桩端注浆新技术[M].浙江大学出版社,2001.
    张忠苗.桩基工程[M].中国建筑工业出版社,2007.
    张忠苗.灌注桩后注浆技术及工程应用[M].北京:中国建筑工业出版社,2009.
    张忠苗,包风,陈云敏.考虑材料应变软化的球(柱)扩张理论在桩底注浆中的研究[J].岩土工程学报,2000,22(5):243-247.
    张忠苗,唐朝文.关于钻孔桩桩底后注浆的技术要点[J].岩石力学与工程学报,2002,21(11):1740-1743.
    张忠苗,吴世明,包风.钻孔灌注桩桩底后注浆机理与应用研究[J].岩土工程学报,1999,21(6):681-687.
    张忠苗,张广兴,吴庆勇,辛公锋.钻孔桩泥皮土与桩间土性状试验研究[J].岩土工程学报,2006(6):695-699.
    张忠苗,邹健.桩底劈裂注浆扩散半径和注浆压力研究[J].岩土工程学报,2008,30(2):181-184.
    张忠苗,邹健,贺静漪,王华强.粘土中压密注浆及劈裂注浆室内模拟试验分析[J].岩土工程学报,2009,31(12):1818-1824.
    中华人民共和国行业标准编写组.JGJ 94-2008建筑桩基技术规范[S].北京:中国建筑工业出版社,1995.
    卓越.饱水砂层渗透注浆加固理论探讨[J].岩土工程技术,2002,(5):284-289.
    邹金锋,李亮,杨小礼.劈裂注浆扩散半径及压力衰减分析[J].水利学报,2006,37(3):314-319.
    邹金峰,徐望国,罗强,李亮,杨小礼.饱和土中劈裂灌浆压力研究[J].岩土力学,2008,29(7):1082-1086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700