惯性测量系统误差标定及分离技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以提高惯性测量系统使用精度为目的,从惯性测量系统高精度标定与飞行试验误差分离两个方面开展了深入研究,得到许多有意义的结果。
     对于惯性测量系统地面标定试验,分析了惯性系统特别是平台式惯性系统的标定方法。对于多位置标定试验,深入讨论了平台框架轴误差与角度传感器误差对误差系数标定精度的影响,这两项误差主要影响陀螺仪安装误差以及所有加速度计误差系数的估计。提出了平台式系统连续翻滚自标定方法,详细分析了其物理机理并推导了数学模型,并对模型的可观测性、滤波方法、参数敏感性等进行了详细的讨论,为工程实现提供了理论基础。该方法标定时间短,估计精度高。针对惯性测量器件误差系数随温度变化发生漂移的情况,将交叉验证技术引入到误差系数温度漂移建模中,详细推导了基于交叉验证的温度漂移建模的准则,与传统的AIC准则、MDL准则相比,交叉验证技术建模的准确度更高,而且更适合小样本下的模型选择。
     无陀螺惯性系统是一种全新的惯性测量系统,其使用精度受构型安装误差影响较大。论文给出了六加速度计与九加速度计两种构型下构型安装误差的定义,同时提出了一种构型安装误差的标定方案与补偿方案,仿真结果表明方向安装误差标定相对误差优于3%,位置安装误差虽然受标定中转台角速度影响较大,但在较大的角速度下相对误差可小于8%。补偿方案计算过程简单,可以补偿85%以上的安装误差。
     空间陀螺仪系统是空间飞行器一种重要的姿态测量敏感器,论文研究了空间陀螺仪误差漂移模型的在轨标定方法,对比分析了显式标定方法与隐式标定方法的性能,结果表明,二者的精度基本相当,但显式标定方法受航天器姿态动力学建模精度的影响比较明显。针对常见的空间陀螺仪冗余配置,利用模型置换技术应用隐式标定方法分析了陀螺仪冗余配置情况下的标定方法,提高了标定精度。
     弹道导弹制导工具误差分离模型是实现工具误差分离的基础。讨论了平台式系统环境函数矩阵的精确计算问题,提出了利用外测数据与应用迭代技术精确计算环境函数矩阵的方法,仿真计算表明,这两种方法能够有效提高环境函数的计算精度。针对捷联惯性系统工具误差分离问题,建立了基于环境函数矩阵的捷联系统工具误差分离模型,并利用六自由度弹道仿真验证了模型的正确性。初始发射参数误差分离是机动发射导弹工具误差分离中出现的新问题。论文深入分析了初始发射参数误差对弹道遥测、外测数据的影响,推导了初始发射参数误差分离模型,结果表明,除少部分误差系数无法分离外,大部分工具误差系数与初始发射参数误差是可分离的,且分离模型是线性的。六自由度弹道仿真软件验证了模型的正确性。
     在制导工具误差分离中,由于环境函数矩阵存在严重的复共线性,该问题始终没有得到很好的解决。在分析传统方法的基础上,提出了衍生特征根方法、偏最小二乘方法以及支持向量机方法,衍生特征根方法是对传统主成份方法的改进,偏最小二乘方法与支持向量机方法则完全避免了病态矩阵的求逆问题。仿真算例和工程应用表明,这三种方法能够在一定程度上克服环境函数矩阵严重复共线性所造成的估值偏差较大的问题。
     论文的工作对于提高惯性测量系统使用精度、提高导弹作战效能具有重要意义。
The primary goal of the dissertation is to improve measurement accuracy of inertial measurement system. The problem is studed from two aspects which include the high accuracy self-calibration technology of the inertial system and separation method of guidance instrumentation systematic error for flight test of the missile.
     For multi-position calibration of inertial measurement system on static base, the calibration method of gimbaled inertial system is analyzed particularly. A thorough study is put into that how the fixed error of platform frame-axis and angle sensors error affect the error model and calibration accuracy. The result shows that two kinds of error have remarkable effect on the fixed error of the gyro and all errors of accelerometer, but has little effect on bias error, scaled factor error, quadratic coefficient error of the gyro. The integrated physical mechanism and mathematical model of the continuous calibration method on static base are brought forward, and the observability, filter method, and sensitive analysis are discussed thorouthly, which provides a foundation for engineering practice. The continuous calibration has a shorter process and higher accuracy than the multi-position calibration. Besides, the coefficients of instrumentation systematic error will drift when working temperature changes. The cross validation technology is introduced to select the temperature drift model of error coefficients, and the specific modeling criterion is deducted. The new criterion has a higher precision and is more applicable in small samples than the familiar AIC criterion and MDL criterion.
     The configuration fixed error of the gyro-free inertial system affects seriously the navigation accuracy. The thesis presents respectively the definitions of the configuration fixed error for a six-accelerometer configuration and a nine-accelerometer configuration, and a new calibration scheme and compensation scheme are put forward. The simulation results show that the relative calibration accuracy of orientation fixed error is less than 3 percent, and the relative accuracy of location fixed error is less than 8 percent with a large angular velocity although the accuracy of location fixed error is seriously affected by the angular velocity of calibration.
     The spacecraft gyro system is an important kind of attitude sensor. The on-line calibration methods are researched for the drift error of gyros, and the performance of the explicit and the implicit calibration scheme is compared. The result shows that two calibration methods have a same calibration precision, but the precision of the explicit calibration method is affected by the modeling precision of spacecraft attitude dynamic. For the redundant gyro measurement unit in a spacecraft, the implicit calibration with the model replacement technique is used to analyze the drift. The simulation result shows that the model replacement technique can improve the calibration precision in the implicit calibration for redundant gyro system.
     The separation model of guidance instrumentation systematic error is a foundation to implementing error separation. How to calculate precisely the circumstance function matrix for the gimbaled system is lucubrated. The method of using exterior data and the method of calculating iteratively are put forward. The simulation result shows that two methods can increase the calculating accuracy of the circumstance function matrix. For the separation of guidance instrumentation systematic error of the strapdown system, the thesis set up the separation model based on the circumstance function matrix. The six-freedom trajectory simulation verified the correctness of the model. The separation of the initial launched parameters error of the maneuvering launched missile is a new problem, the mechanism how the initial launched parameters error acts on the telemetry and exterior data is lucubrated, and the separation model of is deducted. The result shows that the majority of coefficients including the guidance instrumentation systematic error and the initial launched parameter error are detachable except several coefficients. The six-freedom trajectory simulator has verified the correctness of the model.
     Because the circumstance function matrix is correlative approximately, present methods can not completely resolve the separation problem. After analyzing traditional methods, the derived characteristic root method, the partial least square method and the support vectors machine method are presented to separating and converting the guidance instrumentation systematic error. The derived characteristic root method revises traditional principal components method, and the partial least square method and the support vectors machine method can avoid to calculating inversion of the diseased matrix. The simulation result shows the new methods have a better performance than the traditional methods.
     In summing up it may be stated that the research work has contributed to improve using accuracy of the inertial system, and enhance fighting efficiency for strategic missile.
引文
[1]董绪荣,张守信,华仲春.GPS/INS组合导航定位及其应用,国防科技大学出版社,1998年
    [2]钟万登等.液浮惯性器件(导弹与航天丛书-固体弹道导弹系列),宇航出版社,1994年
    [3]万德钧.国外惯性技术新进展述评,中国惯性技术学报,第3卷第3期,1995年,58-62
    [4]王雷,冯强,齐玉祥译,原俊安校.激光和光纤陀螺仪的现状与发展趋势,导航与控制·译文集,2004年第1期,81-95
    [5]张宗美等.民兵洲际弹道导弹(Minuteman InterContinental Ballistic Missile),宇航出版社,1997年2月
    [6]J.Wayne Shattuck.Technology and the PeaceKeeper,AIAA1992-1326
    [7]秦之瑾,张宗美.俄罗斯的白杨-M洲际弹道导弹,导弹与航天运载技术,2001年第1期,55-62
    [8]IEEE Standard Specification Format Guide and Test Procedure for Single-Degree-of-Freedom Rate-Integrating Gyros,IEEE Std517-1974,IEEE Standards Board,Approved December 13,1973
    [9]IEEE Standard Specification Format Guide and Test Procedure for Linear,Single-Axis,Pendulous,Analog Torque Balance Accelerometer,IEEE Std337-1972,IEEE Standards Committee,New York,1971
    [10]IEEE Standard Specification Format Guide and Test Procedure for Linear,Single-Axis,Non-gyroscope Accelerometers,IEEE Std1293-1998,IEEE Standards Committee,New York,1999
    [11]IEEE Specification Format Guide and Test Procedure for Two-Degree-of-Freedom Dynamically Tuned Gyros,ANSI/IEEE Std813-1988.American National Standards Institute,Approved May 4,1989
    [12]Andrew A.Thompson.Calibration of Inertial Sensors,AD20001121-025,Oct.2000
    [13]刘西河,宋有山.任意初始位置平台误差模型自标定,中国惯性技术学报,第2卷第1期,1994年,30-34
    [14]吴成迈,王跃钢,刘斌.自适应滤波在平台自标定数据处理中的应用,测试技术学报,vol.16,No.3,2002,175-178
    [15]Eduardo Nebot,Hugh Durrant-Whyte.Initial calibration and alignment of Low cost Inertial Navigation Units for land vehicle applications,Journal of Robotics Systems,Vol.16,No.2,February 1999,81-92.
    [16]肖正林,钱培贤,徐军辉.三轴平台快速自标定与自对准方法探讨(J),宇 航学报,第27卷第2期,2006年3月,222-226
    [17]杨立溪.惯性平台误差快速自标定技术(J),中国惯性技术学报,第8卷第4期,2000年12月,1-4
    [18]Grewal M.S.,Henderson V.D.and Miyasako R.S.Application of Kalman Filtering to the Calibration and Alignment of Inertial Navigation Systems,Proc.of the 29th Conference on Decision and Control,Honolulu,Hawaii,Dec.1990,3325-3334
    [19]杨华波,蔡洪,张士峰.高精度惯性平台误差自标定方法,上海航天,第23卷第2期,2006年4月,33-36
    [20]杨常松,徐晓苏.捷联惯导系统加速度计标度因素和安装误差的试验标定,测控技术,第24卷第12期,2005,57-59
    [21]华冰,刘建业,熊智,李荣冰.捷联惯性传感器多余度配置的误差标定技术研究,传感器技术,第24卷第5期,2005,31-33
    [22]卿立,李海强.一种中低精度捷联惯测装置的不开箱标定方法研究,中国惯性技术学报,第12卷第4期,2004年8月,16-19
    [23]Anthony Kim,M.F.Golnaraghi.Initial Calibration of an Inertial Measurement Unit Using an Optical Position Tracking System,Position Location and Navigation Symposium,PLANS 2004,96-101
    [24]Goshen-Meskin D.and Bar-Itzhack I.Y..Unified approach to inertial navigation system error modeling,Journal of Guidance Control and Dyanmics,Vol.15,No.3,1992,648-653
    [25]Weinreb,A.and Bar-Itzhack I.Y..The Psi-angle Error Equation in Strapdown Inertial Navigation Systems,IEEE Transactions on Aerospace and Electronic Systems,AES-14,3,May.1978,539-542
    [26]Yu Myeong-Jong,Lee Jang Gyu and Park Heung-Won.Comparison of SDINS In-Flight Alignment Using Equivalent Error Models,IEEE Transactions on Aerospace and Electronic Systems,Vol.35,No.3,July 1999,1046-1054
    [27]Robert Rogers.Comparison of Inertial Navigation System Error Models in Application to IMU Transfer Alignment,AIAA- 1997-3599,686-695
    [28]Chen Chi-Tsong.Linear System Theory and Design,The third Edition,Oxford University Press,1999
    [29]Chung Dohyoung,Park Chan Gook and Lee Jang Gyu.Observability Analysis of Strapdown Inertial Navigation System Using Lyapunov Transformation,Proc.of the 35th conference on Decision and Control,Janan,Dec.1996,23-28
    [30]王丹力,张洪钺.几种可观测性分析方法及在惯导中的应用(J),北京航空航天大学学报,1999年6月,第25卷第3期,342-346
    [31]Goshen-Meskin and Bar-Itzhack I.Y.Observability Analysis of Piece-Wise Constant Systems with Application to Inertial Navigation,Proc.of the 29th Conference on Decision and Control,Honolulu,Hawaii,Dec.1990,821-826
    [32]Goshen-Meskin and Bar-itzhack I.Y.Observability Analysis of Piece-Wise Constant Systems-Part Ⅱ:Application to Inertial Navigation In-Flight Alignment,IEEE Trans on Aerospace and Electronic Systems,Vol.28,NO.4 Oct.1992,1068-1075
    [33]Isidori A.Nonlinear Control Systems,Springer-Verlage,London,3rd ed.,1995.
    [34]Taur Der-Ren and Hsu Hai-Tao.A Composite Guidance Strategy for SAAMM with Side Jet Controls,AIAA Guidance,Navigation,and Control Conference and Exhibit,Aug.2001,Montreal Canada,AIAA-2001-4427,pp1-13
    [35]Zhu Guchuan and Saydy Lahcen.An Extended Luenberger-Like Observer and its Application to Target Tracking,AIAA2005-6134
    [36]Jackson A.D.Continuous Calibration and Alignment Techniques for an All-attitude Inertial Platform,AIAA 1973-865
    [37]杨华波,张士峰,蔡洪.高精度惯性平台连续自标定自对准技术,宇航学报,第27卷第4期,2006年7月,600-604
    [38]Frahan A.Faruqi,Kenneth J.Turner and Michael Pichering.Integrated GPS/INS for Aerospace Application,SPIE Vol.2466,154-162.
    [39]Glenn C.Hernaddez.An Integrated INS/GPS Navigation System for Small AUVs Using an Aynchronous Kalman Filter,AD351512,June 1998.
    [40]王世练,路军,张尔扬.基于星间无线电测距的卫星自主定轨与导航,宇航学报,第23卷第1期,2002年1月,69-72
    [41]Mark L.Psiaki.Satellite Orbit Determination Using a Single-Channel Global Positioning System Receiver,AIAA2000-3934,30-41
    [42]Stephen Paul Linder and Bahram Shafa.Improving Track Maintenance of Crossing and Maneuvering Targets.AIAA-99-4291.1752-1760
    [43]蔡洪.线性预报误差时变方差补偿与语音增强,系统工程与电子技术,第26卷第7期,2004年7月,870-872
    [44]张金槐,蔡洪.飞行器试验统计学(M),国防科技大学出版社,1995年
    [45]Cipra B.Engineers Look to Kalman Filtering for Guidance,SIAM News,Vol.26,No.5,1993.
    [46]王丹力,张洪钺.惯导系统初始对准的非线性滤波算法,中国惯性技术学报,第7卷第3期,1999年9月,17-21
    [47]Kadirkamanathan V.,Li P.and Kirubarajan T.Sequential Monte Carlo Filtering vs.the IMM Estimator for Fault Detection and Isolation in Nonlinear Systems,SPIE Vol.4389,2001,263-274
    [48]蔡洪.自适应Kalman滤波及其应用研究,博士论文,国防科技大学研究生院,1996年9月
    [49]Jason Ford.Non-Linear and Robust Filtering from the Kalman Filter to the Particle Filter,ada403921
    [50]Francois LeGland and Nadia Oudjane.A Robustication Approach to Stability and to Uniform Particle Approximation of Nonlinear Filters:the Example of Pseudo-mixing Signals,Stochastic Processes and their Applications 106(2003) 279-316
    [51]Olivier Brun,Vincent Teuliere and Jean-Made Garcia.Parallel Particle Filtering,Journal of Parallel and Distributed Computing Vol.62,1186 - 1202(2002)
    [52]Ozan Tekinalp and Murat Ozemre.Artificial Neural Networks for Transfer Aligment and Calibration of Inertial Navigation Systems,AIAA2001-4406
    [53]Farid Amoozegar and Malur Sundarehan.Adaptive Kalman Filter Implementation by a Neural Network Scheme for Tracking Maneuvering Targets,SPIE Vol.2485,129-139,1995
    [54]Julier S.J.Uhlmann,Durran-Whyte.A New Approach for the Nonlinear Transformation of Means and Covariance in Linear Filters,IEEE Transactions on Automatic Control,1996
    [55]张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法,航空学报,第25卷第6期,2004年11月,598-601
    [56]蔡洪.Unscented Kalman滤波用于再入飞行器跟踪,飞行器测控学报,第22卷第3期,003年9月,12-16
    [57]徐丽娜,邓正隆,张广莹等.陀螺仪温度试验与建模研究,宇航学报,第20卷第2期,1999年4月,99-103
    [58]张广莹,邓正隆,傅振宪.陀螺仪温度建模研究,系统仿真学报,VOL.15,No.3,Mar.2003,369-371
    [59]段晓君.制导武器系统的小子样试验评估理论,博士论文,国防科技大学研究生院,2003年10月
    [60]Dirk H.Hoekman.Speckle Ensemble Statistics of Logarithmically Scaled Data,IEEE Trans on Geoscience and Remote Sensing,Vol.29,No.1,Jan.1991,180-182
    [61]Rissanen J.Modeling by Shortest Data Description,Automatic,Vol.14,1978,465-471
    [62]Thuan Q.Huynh and Rudy Setiono.Effective Neural Network Priming Using Cross-Validation,Proceedings of International Joint Conference on Neural Networks,Montreal,Canada,July 31-August 4,2005,972-977
    [63]Nhat Nguyen,Peyman Milanfar and Gene Golub.Efficient Generalized Cross-Validation with Applications to Parametric Image Restoration and Resolution Enhancement,IEEE Trans on Image Processing,Vol.10,NO.9,Sep.2001,1299-1308
    [64]Maiza Bekara and Gilles Fleury.Estimation of Polynomial Order via Cross Validation Bayesian Predictive Densities,WISP 2003,Budapest,Hungary,Sep.2003,133-136
    [65]杨华波,蔡洪,张士峰.基于交叉验证的陀螺仪温度漂移建模方法,宇航 学报,2007年5月,第三期,589-593
    [66]Schuler A R.Measuring Rotational Motion with Linear Accelerometers,IEEE Trans on AES,1967,3:456-471
    [67]Chen Jeng-Heng,Lee Sou-Chen and Daniel B.DeBra.Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers,Journal of Guidance,Control and Dynamics,Vol.17,No.2:286-290,March-April 1994.
    [68]Tan Chin-Woo,Park Sungsu and Kirill Mostov etc.Design of Gyroscope-Free Navigation Systems,IEEE Intelligent Transportation Systems Conference Proceedings,Oakland,Aug.2001,286-291
    [69]Tan Chin-Woo and Park Sungsu.Design of Accelerometer-Based Inertial Navigation Systems,IEEE Trans on Instrumentation and Measurement,Vol.54,No.6,Dec.,2005,2520-2530
    [70]Ryan Hanson and Meir Pachter.Optimal Gyro-Free IMU Geometry,AIAA2005-6151
    [71]Choi Eun-Seok,Chang Wook and Bang Won-Chul,etc.Development of the Gyro-free Handwriting Input Device Based on Inertial Navigation System Theory,SICE Annual Conference in Sapporo,Aug.2004,Japan,1176-1181
    [72]马澍田,陈世友,李艳梅等.无陀螺捷联惯导系统[J],航空学报,1997,18(4),484-488
    [73]尹德进,王宏力,刘光斌.捷联惯导系统六加速度计配置方案研究(J),中国惯性技术学报,第11卷第2期,2003,48-51
    [74]肖伟光,杜祖良,王祁等.九加速度计NGMIMU实用设计方案(J),宇航学报,第27卷,第3期,2006年5月,478-482
    [75]汪小娜,王树宗,朱华兵.无陀螺捷联惯导系统模型研究,兵工学报,vol.27,No.2,Mar.2006,288-292
    [76]迟晓珠,王劲松,金鸿章等.加速度计的动态特性对无陀螺微惯性测量组合性能影响的研究(J),兵工学报,vol.25,No.3,May,2004,304-307
    [77]丁明理,王祁.提高NGIMU性能的加速度计动态补偿器的研究,传感技术学报,第18卷,第2期,2005年6月,292-295
    [78]赵龙,陈哲.提高无陀螺捷联惯导系统角速度解散精度的新方法,系统仿真学报,vol.15,No.4,April 2003,579-581
    [79]王劲松,王祁,孙圣和.无陀螺微惯性测量组合的优化算法研究,哈尔滨工业大学学报,第34卷,第5期,2002年10月,632-635
    [80]丁明理,王祁,杜祖良.基于灰色预测理论的NGIMU角速度误差补偿方法,电子学报,vol.34,No.4,April,2006,642-646
    [81]杨华波,张士峰,蔡洪.无陀螺仪惯性系统构型中安装误差分析与标定(J),中国惯性技术学报,2007年第一期,39-43
    [82]曹金霞,丁士民.国外航天发射场的发展趋势,飞行器测控学报,vol.25,No.5, Oct.2006.1-8
    [83]林玉荣.基于星敏感器确定卫星姿态的滤波算法研究,哈尔滨工业大学博士学位论文,2002年4月
    [84]Pittelkau Mark E.Everything is Relative in System Alignment Calibration,AIAA2000-4246
    [85]Pittelkau Mark E.RIMU Misalignment Vector Decomposition,AIAA2004-4856
    [86]Harish K.Joglekar and A.Venkateswarlu,Gyro Scale-factor Error and Misalignment Estimation for a Spacecraft,AIAA2004-4860
    [87]Ken Stewart.Qualification of the International Space Station Rate Gyro Assembly,AIAA-98-4326
    [88]Bar-Itzhack Itzhack.Implicit and Explicit Spacecraft Gyro Calibration,AIAA2004-5343
    [89]Donald B.Reid.Calibration of the Milstar Attitude Determination System,Proceedings of the American Control Conference,Albuquerque,New Mexico,June 1997,557-563
    [90]Quang M.Lain,Teresa Hunt,Paul Sanneman and Stanley Underwood.Analysis and Design of a Fifteen State Stellar Inertial Attitude Determination System,AIAA2003-5483
    [91]Pandiyan R.and Solaiappan A.A One Step Batch Filter for Estimating Gyroscope Calibration Parameters Using Star Vectors,AIAA2004-4858
    [92]Lai Kok-Lam and John L.Crassidis.Real-Time Attitude-Independent Gyro Calibration form Three-Axis Magnetometer Measurements,AIAA2004-4835
    [93]刘一武.惯性敏感器与星敏感器之间的在轨自主标定比较研究,航天控制,vol.23,No.2,Apr.2005,59-63
    [94]陈雪芹,耿云海.一种利用星敏感器对陀螺进行在轨标定的算法,系统工程与电子技术,vol.27,No.12,Nov.2005,2112-2116
    [95]Wahba G.A Least Squares Estimate of Spacecraft Attitude,SIAM Review,Vol.7,No.3,July 1965,409-415
    [96]Choukroun D.,Bar-Itzhack I.Y.and Oshman Y.Optimal Request Algorithm for Attitude Determination,AIAA Guidance,Navigation and Control Conference and Exhibit,August 2001,Montreal Canada.AIAA2001-4153
    [97]Bar-Itzhack Itzhack.'Request'- A Recursive Quest Algorithm for Sequential Attitude Determination,AIAA- 1996-3617-CP
    [98]Bar-Itzhack Itzhack Y.and Richard Harman.Optimized TRIAD Algorithm for Attitude Determination,AIAA- 1996-3616-CP
    [99]Pittelkau Mark E..Square Root Quatemion Estimation,AIAA2002-4914
    [100]Richard Harman and Itzhack Y.Bar-Itzhack.The Use of Pseudo-Linear and Sdare Filtering for Satellite Agular-Rate Estimation,AIAA1998-4312
    [101]Pittelkau Mark E..Calibration and Attitude Determination with Redundant Inertial Measurement Units,Journal of Guidance,Control and Dynamics,Vol.28, No.4,July-August 2005,p743-752
    [102]Pittelkau Mark E..Everything is Relative in System Alignment Calibration,AIAA-2000-4246
    [103]于延波,房建成.基于UKF的航天器最小参数姿态矩阵估计方法,宇航学报,第27卷第1期,2006年1月,12-15
    [104]Bar-Itzhack Itzhack and Harman Richard.In-Space Calibration of a Gyro Quadruplet,AIAA2001-4152
    [105]Cho Seong Yun and Park Chan Gook.Calibration of a Redundant IMU,AIAA2004-5123
    [106]IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros,IEEE Std 647-1995.IEEE,New York,1996
    [107]Ford J.and Evans M.On-line Estimation of Allan Variance Parameters,File No.J9505-15-50,Weapons Systems Division,Defence Science Technology Organization,Australia
    [108]张金槐.远程火箭精度分析与评估,国防科技大学出版社,1995年5月
    [109]王养柱.动态环境下捷联惯性导航系统设计与研究,北京航空航天大学博士学位论文,北京航空航天大学研究生院,2001年2月
    [110]禹维绩.速率捷联系统误差分离技术,战略导弹精度分析论文集,航空航天工业部科学技术司,1990年,25-32
    [111]Joos D.K.and Krogmann U.,文有桂译.用于惯性系统误差补偿的捷联式惯性传感器参数的估计,战略导弹精度分析译文集(上),航空航天工业部科学技术司,1989年5月,268-291
    [112]杨萍,刘国良,杜之明.捷联式惯导系统工具误差环境函数计算模型,飞行器测控学报,第20卷第3期,2001年9月,74-80
    [113]朱华统,徐正扬,艾贵斌等.弹道导弹阵地控制测量,北京:解放军出版社,1993
    [114]张超,郑勇,李长会.用任意星进行天文定向的研究,测绘科学,vol.30.No.4,30-32,2005
    [115]刘朝山,马瑞萍,肖称贵等.基于星图匹配的导弹初始定位定向方法研究,系统工程与电子技术,第27卷第8期,2005年
    [116]游振东,张文刚.利用GPS快速标定发射阵地的应用研究,全球定位系统,No.4,20-24,2004
    [117]帅平,陈定昌,李延兴等.基于GPS+GLONASS观测的高精度、快速定位与定向试验,现代防御技术,vol.30,No.33-39.2002
    [118]郑冲.双星/道路组合定位技术及基于双星定位系统的快速定向技术研究,国防科技大学研究生院博士论文,2005
    [119]高明坤.潜地导弹瞄准系统不相关特性的研究,系统工程与电子技术,1993 年第7期,71-74
    [120]高明坤.潜地导弹瞄准精度试验误差模型的研究,系统工程与电子技术,1989年第9期,49-55
    [121]王悦勇,潘哲,郭喜庆.基于外测岸标的海上导弹瞄准精度鉴定方法,舰船科学技术,第24卷增刊,2002年,22-25
    [122]Gore R.C.The Effect of Geophysical and Geodetic Uncertainties at Launch Area on Ballistic Missile Impact Accuracy,AD602214
    [123]杨辉耀.大地测量误差对导弹精度的影响与修正,飞行力学,1998,16(1):43-49
    [124]郑伟.地球物理摄动因素对远程弹道导弹命中精度的影响分析及补偿方法研究,国防科技大学研究生院,2006年10月
    [125]杨华波,郑伟,张士峰等.定位、定向误差对弹道导弹落点的影响分析,中国2004年航天测控技术研讨会,福建厦门,2004年10月
    [126]姚静,段晓君,周海银.海态制导工具系统误差建模与参数估计,弹道学报,第17卷第1期,2005年3月,33-39
    [127]杨华波,张士峰,蔡洪.考虑初始误差的制导工具误差分离建模与估计,宇航学报,第28卷第6期,2007年11月,229-233
    [128]杨华波,张士峰,胡正东.海基导弹初始误差分离建模与参数估计,系统工程与电子技术,第29卷第6期,2007年6月,931-933
    [129]程光显.适合制导系统工具误差分离设计的试验弹道,战略导弹精度分析论文集,航空航天工业部科学技术司,1990年,77-85
    [130]张金槐.线性模型参数估计及其改进,国防科技大学出版社,1999年3月第二版
    [131]Anil K.Aggarwal,汤勇强译.最小二乘参数估计的数值方法,战略导弹精度分析译文集,航空航天工业部科学技术司,1989年5月
    [132]谢全根.最小二乘估计在导弹制导系统工具误差分离中的应用,战略导弹精度分析论文集,航空航天工业部科学技术司,1990年,25-32
    [133]A.I.Khuri and Raymond Myers,武虎林译.改进岭回归分析,战略导弹精度分析译文集,航空航天工业部科学技术司,1989年5月
    [134]沙钰,王正明等.主成份估计的发展和完善及其在制导工具误差分离中的作用,战略导弹精度分析译文集,航空航天工业部科学技术司,1990年,158-169
    [135]张湘平,邹逢兴,李大琪.战略导弹制导系统精度评估方法及其应用研究,国防科技大学学报,第19卷第4期,32-37
    [136]王正明,周海银.制导工具系统误差估计的新方法,中国科学(E辑),第28卷,第2期,1998年4月,160-167
    [137]Wold S.,Trugg J.and Berglund.Some Recent Development in PLS Modeling, Chemometrics and Intelligent Laboratory System,2001,58:131-150
    [138]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999
    [139]Barros A.S.and Rutledge D.N.Genetic Algorithm Applied to the Selection of Principal Components,Chemometrics and Intelligent Laboratory Systems,40(1998165-81
    [140]Yao Haibo and Tian Lei.A Genetic-Algorithm-Based Selective Principal Component Analysis(GA-SPCA) Method for High-Dimensional Data Feature Extraction,IEEE Trans on Geoscience and Remote Sensing,Vol.41,No.6,June 2003,1469-1478
    [141]Vapnik V.N.The Nature of Statistical Learning Theory,NY:Springer-Verlag,1995
    [142]张学工.关于统计学习理论与支持向量机,自动化学报,第26卷第1期,2000年1月,32-42
    [143]张恒喜,郭基联,朱家元等.小样本多元数据分析方法及应用,西安:西北工业大学出版社,2002年9月
    [144]刘强,尹力.一种简化递推偏最小二乘建模算法及其应用,北京航空航天大学学报,第29卷第7期,2003年7月,640-643
    [145]Yakov Oshman and Ilan Shaviv.Optimal Tuning of a Kalman Filter Using Genetic Algorithms,AIAA-2000-4558
    [146]Lin Ching-Fang,Bao Ping-An and Brasch Sarah.Genetic Algorithm Based Parameter Optimization of a Fuzzy Logic Controller,AIAA- 1999-4152
    [147]Kim Daijin and Kim Chulhyun.Forecasting Time Series with Genetic Fuzzy Predictor Ensemble,IEEE Trans on Fuzzy Systems,Vol.5,No.4,November 1997,523-535
    [148]de Lacerda E.,de Carvalho A.and Ludermir T.A Study of Cross validation and Bootstrap as Objective Functions for Genetic Algorithms,Proceedings of the ⅦBrazilian Symposium on Neural Networks(SBRN'2002),2002,1-6
    [149]夏青,杨华波,张士峰等.基于遗传算法的工具误差分离与弹道折合,系统仿真学报,第19卷第18期,2007年9月,4130-4133
    [150]Burges C.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998 2(2)
    [151]郝英,孙健国,杨国庆,白杰.基于支持向量机的民航发动机故障检测研究,航空学报,第26卷第4期,2005年7月,434-438
    [152]徐启华,师军.应用SVM的发动机故障诊断若干问题研究,航空学报,第26卷第6期,2005年11月,686-690
    [153]Palaniswami M.and Shilon A.Adaptive Support Vector Machines for Regression,Proceedings of the 9th International Conference on Neural Information Processing(ICONIP'02),Vol.2,1043-1049
    [154]Cho Kyung-Rae,Seok Jul-Ki and Lee Dong-Choon.Mechanical Parameter Identification of Servo Systems Using Robust Support Vector Regression,35th Annual IEEE Power Electronics Specialists Conference,Aachen Germany,2004,3425-3430
    [155]Vladimir Cherkassky and Yunqian Ma.Multiple Model Regression Estimation,IEEE Trans on Neural Networks,Vol.16,No.4,July 2005,785-798
    [156]Duncan McKay and Colin Fyfe.Probability Prediction Using Support Vector Machines,4th International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technology,Sept.2000,Brighton UK.,189-192
    [157]Hearst M.,Scholkopf B.and Dumais S.etc.Trends and Controversies-Support Vector Machines,IEEE Intelligent Systems,18(4),1998,18-28
    [158]Li Shen and Eng Chong Tan.Dimension Reduction-Based Penalized Logistic Regression for Cancer Classification Using Microarray Data,IEEE/ACM Trans on Computational Biology and Bioinformatics,Vol.2,NO.2,April-June,2005,166-175
    [159]杨华波,张士峰,蔡洪.惯导工具误差分离与折合的支持向量机方法,系统仿真学报,第19卷第10期,2007年5月,2177-2180
    [160]Tony Van Gestel,Johan A.K.Suykens and Dirk-Emma Baestaens,etc.Financial Time Series Prediction Using Least Squares Support Vector Machines Within the Evidence Framework,IEEE Trans on Neural Networks,Vol.12,NO.4,July 2001,809-821
    [161]Cortes C.and Vapnik V.,Support-Vector Networks,Machine Learning,1995,20:273-297
    [162]Hu W.J.and Song Q.An Accelerated Decomposition Algorithm for Robust Support Vector Machines,IEEE Trans on Circuits and Systems-Ⅱ:Express Briefs,Vol.51,No.5,May 2004,234-240
    [163]Wei Chu,Sathiya Keerthi S.,and Chong Jin Ong.Bayesian Support Vector Regression Using a Unified Loss Function,IEEE Trans on Neural Network,Vol.15,No.1,January,2004,29-44
    [164]Wahba Grace,Lin Yi and Zhang Hao.Margin-Like Quantities and Generalized Approximate Cross Validation for Support Vector Machines,Neural Network for Signal Processing Ⅸ,1999,12-20
    [165]Davide Anguita,Sandro Ridella and Fabio Rivieccio.K-Fold Generalization Capability Assessment for Support Vector Classifiers,Proceedings of International Joint Conference on Neural Networks,Montreal Canada,August,2005,855-858
    [166]Ingo Steinwart.On the Optimal Parameter Choice for μ-Support Vector Machines,IEEE Trans on Pattern Analysis and Machine Intelligence,Vol.25,NO.10,October 2003,1274-1284
    [167]Gavin C.Cawley.Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs,Proceedings of the International Joint Conference on Neural Networks(IJCNN-2006),274-284
    [168]熊洪允,曾绍标,毛云英.应用数学基础(第四版上册),天津大学出版社,2004年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700