蜂王浆新鲜度指标和评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期的科学研究和实践经验表明,蜂王浆的品质和保健功效易受其贮存条件的影响。若贮存温度过高或时间过长,蜂王浆的物理性状、化学组成会发生变化,保健功效降低甚至丧失。也就是说,蜂王浆的新鲜度与其品质密切相关,并具有一定的正相关性。但迄今为止,尚没有一个公认的蜂王浆新鲜度的控制指标,也没有一种适合的评价方法。缺少新鲜度指标及相应的评价方法是现行蜂王浆国家质量标准的一大缺陷,也使质量监管部门及加工、贸易企业无法在蜂王浆生产和流通过程中进行有效地监管和控制,难以对蜂王浆质量做出准确的评价。因此,探求并确立能如实反映蜂王浆新鲜度的指标及评价方法是蜂王浆研究的一项重要课题,也是完善现行蜂王浆质量标准,有效监控蜂王浆质量,进一步规范蜂王浆市场的关键所在。
     针对上述问题,本文利用液相色谱技术对不同贮存条件下的蜂王浆中6种糠醛和26种氨基酸进行了定量分析和比较,同时利用红外光谱技术对不同贮存条件下的蜂王浆进行了相关分析和蛋白质的二级结构鉴定,初步建立了蜂王浆新鲜度监控的方法。研究结果如下:
     1.选定有可能反映蜂王浆新鲜度的糠醛类物质为研究对象,建立了同时测定蜂王浆中5-羟甲基-2-糠醛(5-HMF)、5-甲基糠醛(5-MF)、2-糠醛(F)、2-糠酸(2-OIC)、3-糠酸(3-OIC)、5-羟甲基-2-糠酸(5-HMFacid)6种糠醛类物质含量的高效液相色谱分析方法。蜂王浆样品用去离子水提取,离心沉淀后,取上清液加入亚铁氰化钾溶液和乙酸锌溶液沉降蛋白,0.45μm滤膜过滤,用高效液相色谱仪在不同波长下测定。在测试范围内,6种糠醛类物质的浓度与相应的峰面积呈线性关系,相关系数(R2)不小于0.9993。方法定量和定性检出限分别在0.07-0.26μg/mL和0.02-0.08μg/mL之间,加标回收率为86.2%-99.7%,相对标准偏差小于2.40%。方法操作简单,灵敏度高,是一种适合蜂王浆中糠醛类化合物测定的方法。
     利用该方法定量测定了在不同温度下(-18℃,4℃,16℃和25℃)经过不同时间(1,3,6,9和12个月)贮存的蜂王浆中6种糠醛类物质的含量。结果表明,在新采收的蜂王浆中没有检出这6种化合物;而在经过不同时间贮存后,4个温度梯度的样品中均检出了5-HMF,其含量随着贮存时间增加和温度升高而增加;在12个月的试验期内,仅在25℃下贮存的蜂王浆中检出了F。根据5-HMF和F含量与贮存时间和温度的相关性,结合蜂王浆贮存的实践经验,本文提出以5-HMF和F作为评价蜂王浆新鲜度的指标,并初步确定5-HMF含量小于150μg/kg和F不得检出作为评判蜂王浆是否新鲜的标准。
     2.选定可能能代表蜂王浆新鲜度的26种氨基酸,探索了它们的提取过程以及利用超高效液相色谱(UPLC)分析的条件,建立了一种分析蜂王浆中26种氨基酸的UPLC分析方法。该方法采用6-氨基喹啉基-N-羟基琥珀酰亚氨基甲酸酯(AQC)柱前衍生,通过梯度洗脱,使用ACCQ·TagC18氨基酸分析柱在8 min以内同时分离并定量测定了蜂王浆中的26种氨基酸含量。在测试范围内,26种氨基酸的浓度与相应的峰面积呈线性关系,相关系数(R2)不小于0.9978。方法定量(LOQ)和定性检出限(LOD)分别在42.7-235.1 ng/mL和12.9-69.3 ng/mL之间,加标回收率为90.1%-100.9%,相对标准偏差小于2.8%。方法操作简单,耗时短,灵敏度高,是一种适合蜂王浆的氨基酸测定方法。
     利用该方法定量测定了在不同温度下(-18℃,4℃和25℃)经过不同时间(1,3,6和10个月)贮存的蜂王浆中游离氨基酸和总氨基酸含量。结果表明,新鲜蜂王浆的游离氨基酸和总氨基酸总量分别为9.21mg/g和111.27mmg/g;其中最主要的游离氨基酸为Pro、Gln、Lys和Glu,而含量最高的总氨基酸分别为Asp、Glu、Lys和Leu。尽管多数游离氨基酸和总氨基酸含量在蜂王浆的贮存过程中并没有发生明显的变化或变化无规律,但总Met和游离Gin在贮存过程中含量持续下降而且差异显著。因此,本文提出总Met和游离Gln有可能作为评价蜂王浆品质和新鲜度的指标。
     3.测定了在不同温度下经过不同时间贮存后蜂王浆的Fourier变换红外光谱,以新采收蜂王浆的红外谱图为参考标准谱,利用光谱比对软件进行了一系列的相关分析,同时比较了红外谱图中1647、1541、1409、1247和1054 cm-15个峰位的相对峰强。结果表明:不同贮存条件下的蜂王浆红外谱图之间存在着明显差异;红外光谱图中酰胺Ⅰ带(1700-1600cm-1)波段的相关系数随着蜂王浆贮存时间延长和温度升高而降低;相对峰强度I1647/I1541、I1647/I1409、I1647/I1247和I1647/I1054也随着蜂王浆贮存时间延长和温度升高而降低,且与贮存时间存在着良好的线性关系,变化幅度为28℃>16℃>4℃>-18℃。因此,初步选定红外光谱图中酰胺Ⅰ带特征波段的相关系数和4个相对峰强度(I1647/I1541、I1647/I1409、I1647/I1247和I1647/I1054)作为蜂王浆新鲜度的评价指标,相关系数的阈值设定为0.9100,4个相对峰强度的阈值分别设定为1.744、2.430、3.345和1.412。只要有1个或多个指标低于相应的阈值,可初步判定此蜂王浆是不新鲜的。该方法利用FTIR光谱法并结合计算机辅助解析技术能从宏观上和整体上快速地评价蜂王浆的新鲜度。
     4.测定了在不同温度下经过不同时间贮存后蜂王浆Fourier变换红外光谱图,应用去卷积和曲线拟合方法对蜂王浆的酰胺Ⅰ带进行了蛋白质的二级结构分析,半定量地分析了在不同储存条件下蛋白质二级结构的相对含量的变化规律。结果表明:经过不同条件贮存的蜂王浆蛋白质二级结构的相对含量存在显著差异。随着贮存时间增加和温度升高,蛋白质二级结构的a-螺旋相对含量显著减少,而p-折叠相对含量显著增加。其变化幅度为28℃>16℃>4℃>-18℃。因此,FTIR光谱法结合去卷积和曲线拟合技术可以对蜂王浆中蛋白质的二级结构进行宏观评价和进行半定量分析,也可以作为蜂王浆新鲜度评价的参考依据。
     综上所述,本文利用液相色谱法分析测定了不同条件下贮存的蜂王浆6种糠醛类物质和26种氨基酸的含量,选定了5-HMF、F、总Met和游离Gln作为蜂王浆新鲜度的评价指标,并设定了相应的阈值;同时利用红外光谱法并结合相关分析和曲线拟合技术分析了在不同贮存条件下蜂王浆红外谱图的相关性和蛋白质二级结构相对含量的变化规律。本文利用液相色谱和红外光谱技术,从微观到宏观,从定性、半定量到定量建立了多种评判蜂王浆新鲜度的简单易行方法,为进一步进行蜂王浆新鲜度和品质相关研究打下了基础,也为完善现行蜂王浆质量标准,如实评价和有效监控蜂王浆质量,进一步规范蜂王浆市场提供了理论依据。
Long-term research and practical experiences has shown that the quality of royal jelly (RJ) is related to its storage conditions. Physical properties and chemical compositions of RJ will alter with conditions of high temperature or long time, and its health function will reduce or even loss. Namely, the quality of RJ is positive correlated with its freshness significantly.
     But so far, there is no accepted indicator or suitable method for evaluating freshness of RJ. It results in a limitation of the existing RJ national quality standards and also brings problems to monitor and control the production and circulation processes of RJ by quality control departments and processors effectively. Therefore, to explore and establish indicators and evaluation methods that can reflect RJ freshness and quality accurately is an important topic of RJ research, and also a key to improve the existing quality standards, monitor quality effectively and further regulate the RJ market.
     To address the above issues, a study was launched on freshness indicators and assessment methods of RJ. Results were as follows:
     1. A reversed-phase high performance liquid chromatographic method was described for determining 5-hydroxymethyl-2-furfural (5-HMF),5-methyl-2-furaldehyde (5-MF),2-furaldehyde (F), furan-2-carboxylic acid (2-OIC), furan-3-carboxylic acid (3-OIC) and 5-Hydroxymethyl-2-furancarboxylic acid (5-HMFacid) in RJ. Samples were extracted with purity water and proteins in them were removed by zinc acetate and potassium ferrocyanide solutions. Before injection, the solutions were passed through 0.45μm filters for determination by a liquid chromatography UV detection at different wavelengths. Within the test ranges,6 furfural compounds concentrations and their peak areas showed good linear correlations (R2>0.9993). The limits of quantitation and detection were 0.07-0.26μg/mL and 0.02-0.08μg/mL, respectively. The recoveries ranged from 86.2% to 99.7% and the overall relative standards were lower than 2.40%. The method was simple, sensitive and suitable for analyzing those furfural compounds in RJ.
     The method was applied to quantitatively determine 6 furfural compounds in RJ samples stored at different temperatures (-18℃,4℃,16℃and 25℃) for different time intervals (1,3,6,9 and 12 months). Results showed that no furfural compounds was detected in new collected RJ samples; 5-HMF was detected in most samples that stored for different periods, and its contents increased with the increase of storage time and temperature; F was only detected in the samples stored at 25℃in the 12-month trial period. On the basis of the correlations between the content of 5-HMF (or F) and storage time (or temperature), combined with storage experiences,5-HMF and F were selected as assessment indexes of RJ freshness, and their threshold values were set as 150μg/kg and not detected respectively.
     2. A rapid ultra-performance liquid chromatography (UPLC) method was developed for feasible separation and quantification of 26 amino acids in RJ. The analysis was performed on Acquity UPLC system with Acquity UPLC AccQ·Tag Ultra Column in 8 min. The correlation coefficient (R2>0.9978) values indicated good correlations between the investigated compounds concentrations and their peak areas within the test ranges. The limits of quantitation and detection of 26 amino acids were 42.7-235.1 ng/mL and 12.9-69.3 ng/mL respectively. The recoveries ranged from 90.1% to 100.9% and the overall relative standard deviations for intra-and inter-day were lower than 2.8%. The results showed that UPLC was a powerful tool for analysis of amino acids in RJ.
     The method was also applied to quantitatively determine free amino acid (FAA) and total amino acid (TAA) profiles in RJ samples stored at different temperatures (-18℃,4℃and 25℃) for different time intervals (1,3,6 and 10 months). Results showed that the average contents of FAA and TAA in fresh RJ were 9.21 mg/g and 111.27 mg/g, respectively; the major FAAs were Pro, Gin, Lys, Glu, and the most abundant TAAs were Asp, Glu, Lys and Leu. Although the concentrations of most FAAs and TAAs showed no significant difference during storage, contents of total Met and free Gln decreased constantly and obviously. So these might be a parameter to predict the quality of RJ.
     3. Fourier transformation infrared spectroscopy (FTIR) of RJ stored at different temperatures and after different storage periods were measured, a series of correlation analysis among the spectra was carried out by using the spectra of new-harvested RJ as a standard. Results showed that the correlation coefficient of amide band I and the relative intensity ratios of I1647/I1541, I1647/I1409, I1647/I1247, I1647/I1054 of RJ samples'spectra decreased with extension of storage time and temperature, and presented good linear correlations with the storage time, while the order of their change extent was 28℃>16℃>4℃>-18℃. According to the spectra change laws and practical experiences of RJ storage, the correlation coefficient of amide band I and four relative intensity ratios I1647/I1541, I1647/I1409, I1647/I1247 and I1647/I1054 were selected as assessment indexes of RJ freshness. The threshold value of correlation coefficient was set as 0.9100, and the threshold values of the four relative intensity ratios were set as 1.744,2.430,3.345 and 1.412 respectively. Once one or more indexes were lower than the corresponding threshold values, the RJ sample would be considered as a stale one. So, FT-IR spectroscopy combined with several data-processing methods would be an effective method for overall assessing the freshness of RJ.
     4. An effective method for analyzing the secondary structure of proteins in RJ using FT-IR spectroscopy combined with secondary derivative, deconvolution, and curve-fitting was established. FTIR spectroscopy of RJ samples were measured at different temperatures and storage periods, while compositions of the secondary structure of proteins were determined by curve-fitting analysis of the amide I bands in the FTIR spectra. Results showed that the compositions of the secondary structure of proteins appeared extremely different, and the rates of a-helix decreased and P-sheet increased dramatically with the increase of storage temperature and periods, the order of their change extent was 28℃>16℃>4℃>-18℃. These results have met the theory that RJ should be kept under lower temperature. So it is a new suitable way for evaluating the quality and freshness of RJ.
     In this paper, liquid chromatography methods were applied to quantitatively determine 6 furfural compounds and 26 amino acids in RJ samples stored under different conditions respectively.5-HMF, F, total Met and free Gln were selected as RJ freshness assessment indexes, and their corresponding threshold values were also set up. The correlation coefficients of amide band I among spectra and the secondary structure of proteins in RJ stored under different conditions were also analyzed using FT-IR spectroscopy combined with several data-processing methods, such as correlation analysis and curve-fitting.
     To sum up, several indexes as well as their relevant simple evaluation methods were established for evaluating RJ freshness and quality in this paper. The results have provided a theoretical basis for improving existing RJ quality standards, monitoring RJ's quality effectively, and further regulating the RJ market.
引文
Aeppler C W (1922) Tremendous growth force. Gleaning in Bee Culture,50:69-73.
    Barker S A, Foster A B, Lamb D C (1959) Identification of 10-hydroxy-2-decenoic acid in royal jelly. Nature,183:996-997.
    Bilikova K, Gusui W, Jozef S (2001) Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie,32:275-283.
    Cerutti P (1994) Oxy-radicals and cancer. Lancet,344:862-863.
    Charlesworth D (2004) Sex determination:balancing selection in the honeybee. Current Biology, 14(14):R568-R569.
    Emanuele B, Maria F, Anna G, et al. (2003) Determination and changes of free amino acids in royal jelly during storage. Apidologie,34:129-137.
    Emori Y, Oka H, Ohya O, et al. (1998a) The protective effect of royal jelly against the hemopoiesis dysfunction in X-irradiated mice. Biotherapy (Jpn),12:313-319.
    Emori Y, Oka H, Ohya O, et al. (1998b) The protective effect of royal jelly on cecal ligation and puncture-induced sepsis in X-irradiated mice. Biotherapy (Jpn),12:1143-1148.
    Emori Y, Oka H, Kobayashi N, et al. (1999) Protective effect of royal jelly on immune dysfunction in aged mice. Biotherapy (Jpn),13:281-287.
    Fujii A (1995) Pharmacological effect of royal jelly. Honeybee Science,16(1):97-104.
    Fujiwara S, Imai J, Yaeshima T, et al. (1990) A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. Journal of Biology Chemistry,265(19):11333-11337.
    Giulio S (2006) Determination of sugars in royal jelly by HPLC. Apidologie,37:84-90.
    Hanes J, Simuth J (1992) Identification and partial characterization of the major royal jelly protein of the honey bee(Apis. mellfera L.). Journal of Apicultural Resarch,31:22-26.
    Haydak M H (1970) Honey bee nutrition. Annual Review of Entomology,15:143-156.
    Howe S R, Dimick P S, Benton A W (1985) Composition of freshly harvested and commercial
    royal jelly. Journal ofApicultural Resarch,24(1):52-61.
    Husein M Q, Kridli R T, Humphrey W D (1999) Effect of royal jelly on estrus synchronization and pregnancy rate of ewes using fluorogestone acetate sponges. Journal of Experimental Animal Science,77. (Supplement.1, Abstract#431).
    Iwao O, Yoshifumi T (2003) Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sciences,73:2029-2045.
    Kamakura M, Mitant N, Fukuda T, et al. (2001) Antifatigue effect of fresh royal jelly in mice. Journal of Nutrition Science of Vitaminol (Tokyo),47(6):394-401.
    Karl J K, Cynthia N C (1982) Inorganic phosphate assay with malachite green:an improvement and evaluation. Journal of Biochemistry Biophys Methods,7:7-13.
    Katarina B, Gusui W, Jozef S (2001) Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie,32:275-283.
    Katsu T, Chie Y (2004) Effect on free radical scavenging system in Mice bearing ehrlich ascites carcinoma. Biological Pharmacology Bulletin,27:189-192.
    Kitaharaa T, Satoa N, Ohyaa Y, et al. (1995) The inhibitory effect of?-hydroxy acids in royal jelly extract on sebaceous gland lipogenesis. Journal of Dermatological Science,10:75-84.
    Lercker G, Capella P, Conte L S, et al. (1981) Components of royal jelly:Ⅰ. Identification of the organic acids. Lipids. Journal of Apicultural Reseach,16:912-919.
    Lercker G, Capella P, Conte L S, et al. (1982) Components of Royal Jelly:Ⅱ. The lipid fraction, hydrocarbons and sterols. Journal of Apicultural Reseach,21:178-184.
    Lercker G, Caboni M F, Vecchi M A, et al. (1992) Caratterizzazione dei principali costituenti della gelatina reale. Apicoltura,8:11-21.
    Masaki K (2002) Signal transduction mechanism leading to enhanced treated with royal jelly 57-Kda Protein. Bioehemistry,132:911-919.
    Matsui T, Yukiyoshi A, Doi S, et al. (2002) Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. The Journal of Nutritional Biochemistry,13(2):80-86.
    Mishref A, Afify A S (1989) Effect of feeding amino acids to honeybees on the chemical composition of royal jelly. Proceedings of the Fourth International Conference on Apicture in Tropical Climates, Cairo, Egypt,6-10 November 1988,74-79.
    Nagai T, Sakai M, Inoue R, et al. (2001) Antioxidative activities of some commercially honeys, royal jelly and propolis. Food Chemistry,75(2):237-240.
    Oka H, Emori Y, Kobayashi N (2001) Suppression of allergic reactions by royal jelly in association with the restoration of macrophage function and the improvement of Thl and Th2 cell responses. International Immunopharmacology,1:521-532.
    Okuda H, Kenji K, Morimoto C, et al. (1998) Studies on insulirr like substances and inhibitory substances toward angiotensirr converting enzyme in royal jelly. Honeybee Science,19(1): 9-14.
    Osamu S, Toshio K, Keizo K, et al. (2004) Characterization of royal jelly proteins in both
    Africanized and European honeybees (Apis mellifera) by two-dimensional gel electrophoresis. Journal of Agricultural and Food Chemistry,52:15-20.
    Palma M S (1992) Composition of freshly harvested Brazilian royal jelly; identification of carbohydrates from the sugar fraction. Journal of Apicultural Reseach,31:42-44.
    Schmidt J O, Buchmann S L (1992) Other products of the hive. In:The hive and the honeybee. J. M. Graham, ed. Dadant & Sons, Hamilton, Illinois, USA.927-988.
    Schmitzova J, Albert S, Schroder W, et al. (1998) A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell Molecular Life Science,54(9):1020-1030.
    Sver L, Orsolic N, Tadic Z, et al. (1996) A royal jelly as a new potential immunomodulator in rats and mice. Comparative Immunology, Microbiology and Infectious Diseases,19(1): 31-38.
    Takenaka T. (1982) Chemical composition of royal jelly. Honeybee Science,3:69-74.
    Takahashi M, Matsuo I, Ohkido M (1983) Contact dermatitis due to honeybee royal jelly. Contact Dermatitis,9:452-455.
    Takenaka T, Echigo T (1983) Proteins and peptides in royal jelly. Nippon Nogeikagaku Kaishi, 57:1203-1209.
    Takenaka T, Yatsunami K, Echigo T (1986) Changes in quality of royal jelly during storage. Nippon Shokuhin Kogyo Gakkaishi,33 (1):1-7.
    Takenaka T (1987) Nitrogen components and carboxylic acids of royal jelly. In Chemistry and Biology of Social Insects (edited by Eder, J., Rembold, H.). Munich, German Federal Republic, Verlag J. Papemy,162-163.
    Takeshi N, Mizuho S, Reiji I, et al. (2001) Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food Chemistry,75:237-240.
    Takeshi N, Reiji I (2004) Preparation and the functional properties of water extract and alkaline extract of royal jelly. Food Chemistry,84:181-186.
    Tamura T (1985) Royal jelly from the standpoint of clinical pharmacology. Honeybee Science, 6(1):117-124.
    Tamura T, Fujii A, Kuboyama N (1986) Effect of royal jelly on experimental transplantable tumors. Proceedings of the XXXth International Congress of Apicture, Nagoya, Japan.1985. 474-477.
    Tamura T, Fujii A, Kuboyama N (1987) Antitumor effects of royal jelly RJ. Journal of Japanese Pharmacology,89:73-80.
    Uno K, Kondo A (1995) A study of clinical significance of leukocyte migration inhibition test in drug-induced hypersensitivity pneumonitis. Arerugi,44(12):1401-1409.
    Vecchi M A, Sabatini A G, Grazia L, et al. (1988) Ⅱ contenuto in vitamine come possibile elemento di caratterizzazione della gelatina reale. Apicoltura,4:139-146.
    Vittek J, Slomiany B L (1984). Testosterone in royal jelly. Experientia,40:104-106.
    Vittek J (1995) Effect for royal jelly on serum lipids in experimental animals and human with atherosclerosis. Experientia,51(9210):927-935.
    Wang G Y, Lin Z B (1997) Effects of 10-hydroxy-2-decenoie acid on phagocytosis and cyktokines production of peritoneal macrophages in vitro. Acta Pharmacologica Sinica, 18(2):180-182.
    Willett W C (1994) Diet and health:what should we eat. Science,264:532-537.
    陈崇羔编著(1999)蜂产品加工学.福州:福建科学技术出版社,6-7.
    陈盛禄主编(2001)中国蜜蜂学.北京:中国农业出版社,728-729.
    方国祯,方建生,田树革(1994)蜂王浆成份及其分析方法研究进展.中国乳品工业,12(6):280-286.
    李伟兵,蔡明明,宋依霖,等(2000)冻干RJ胶囊对肿瘤患者的免疫调节作用:附30例临床报告.江苏中医21(2):9-10.
    倪辉,陈申如(2001)微量活性成分是蜂王浆的主要保健成分.养蜂科技 (1):7-9.
    沈新南,陆瑞芳,何更生,等(1995)RJ冻干粉对实验性高脂血症及血栓形成的影响.中华预防医学杂志,29(1):27-29.
    孙海东,邵亚群(2003)蜂王浆的营养保健功能.辽宁大学学报(自然科学版),30(2):191-194.
    王贻节主编(1991)蜜蜂产品学.北京:农业出版社,96-101.
    肖静伟,王戎疆,李绍文,等(1996)RJ中一种有抗菌活性的小肽.昆虫学报,39(2):133-140.
    张敬,戴秋萍,刘艺敏,等(2001)RJ冻干粉对小鼠肿瘤的抑制作用.同济大学学报医学版22(5):13-14.
    张复兴主编(1998)现代养蜂生产.北京:中国农业大学出版社,446-455.
    赵光,解黎明(2003)蜂王浆对大鼠力竭运动能力影响的实验研究.四川体育科学,(1):15-16.
    赵国华(1999)蜂王浆保健功能解析.蜜蜂杂志(4):18-19.
    周爱萍,余倩,裴晓方,等(2006)蜂王浆对小鼠免疫功能增强作用的研究.现代预防医学,33(1):23-25.
    Antinelli J F, Zeggane S, Davico R, et al. (2003) Evaluation of (E)-10-hydroxydec-2-enoic acid as a freshness parameter for royal jelly. Food Chemistry,80(1):85-89.
    Arieh E, Patrik B M, Semion B, et al. (1998) Superoxide dismutase (SOD) for mustard gas burn. Burns,24:114-119.
    Barker S A, Foster A B, Lamb D C (1959) Identification of 10-hydroxy-2-decenoic acid in royal jelly. Nature,183:996-997.
    Bloodworth BC, Harn C S, Hock C T, et al. (1995) Liquid chromatographic determination of trans-10-hydroxy-2-decenoic acid content of commercial products containing royal jelly. Journal of AOAC Int,78:1019-1023.
    Bogdanov S, Bieri K, Gremaud G, et al. (2004) Gelee Royale, in:Manuel suisse des denrees alimentaires, Chap.23C, [online] http://www.bag.admin.ch/slmb/online/d/SLMB/ Data%20SLMB MSDA/Version%20F/23C Gelee%20royale.pdf.(accessed on 21 October 2005).
    Chinshuh C, Soe-Yen C (1995) Changes in protein components and storage stability of royal jelly under various conditions. Food Chemistry,54:195-200.
    Codex Alimentarius (2001) Codex Standard 12, Revised Codex Standard for honey,-1981, Rev. 2,7 p., [online] http://www.codexalimentarius.net/download/standards/310/CXS 012e.pdf (accessed on 18 October 2005).
    Emanuele B, Maria F C, Anna G S, et al. (2003) Determination and changes of free amino acids in royal jelly during storage. Apidologie,34:129-137.
    Emanuele M, Maria F C, Maria C M, et al. (2002) Furosine:a suitable marker for assessing the freshness of royal jelly. Journal of Agricultural and Food Chemistry,50:2825-2829.
    European Commission (2002) Council Directive 2001/110/EC of 20 December 2001 concerning honey, Official J. Eur. Communities Jan.12th,2002, L10, pp.47-52 [online], http://europa. eu.int/eur-lex/pri/en/oj/dat/2002/1_010/1_01020020112-en00470052.pdf (accessed on 18 October 2005).
    Friedman M (1996) The impact of the Maillard reaction on the nutritional value of food proteins. In the Maillard Reaction:consequences for the Chemical and life Sciences, ed. R. Ihan, 105-128. Wiley and sons, New York.
    Hanes J, Simuth J (1992) Identification and partial characterization of the major royal jelly protein of the honey bee(Apis.mellfera L.). Journal ofApicultural Research,31:22-26.
    Hodge J E (1953) Chemistry of browning reactions in model system. Journal of Agriculture and Food Chemistry,1:928-943.
    Howe S R, Dimick P S, Benton A W (1985) Composition of freshly harvested and commercial royal jelly. Journal ofApicultural Research,24:52-61.
    IHC (2003) Minutes of the annual general meeting of International Honey Commission, Ljubljana 2003, [online], http://www.apis.admin.ch/english/host/pdf/honey/ljubljana.pdf (accessed on 18 October 2005).
    Jean Francois A, Sarah Z, Renee D, et al. (2002) Evaluation of (E)-10-hydroxydec-2-enoic acid as a freshness parameter for royal jelly. Food Chemistry,80:85-89.
    Kamakura M, Fukuda T, Fukushima M, et al. (2001) Storage-dependent degradation of 57-kDa protein in royal jelly:a possible marker for freshness. Bioscience, Biotechnology and Biochemistry,65(2):277-284.
    Kim G W, Lew N A, Copin J C, et al. (2001) The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience,105:1007-1018.
    Krell R (1996) Value-added products from beekeeping. Food and Agriculture Organization of the United Nations, Rome.
    Lercker G, Capella P, Conte L S, et al. (1981) Components of royal jelly:1. Identification of the organic acids. Lipids. Journal of Apicultural Research,16:912-919.
    Lercker G, Capella P, Conte L S, et al. (1982) Components of Royal Jelly:Ⅱ. The lipid fraction
    hydrocarbons and sterols. Journal of Apicultural Research,21:178-184.
    Lercker G (1986) Carbohydrate determination of royal jelly by high resolution gas chromatography (HRGC). Food Chemistry,19:255-264.
    Lercker G, Caboni M F, Vecchi M A, et al. (1993) Caratterizzazione dei principali costituenti delta gelatina reale. Apicoltura,8:27-37.
    Maria C M, Maria F C, Emanuele M (2005) Storage stability assessment of freeze-dried royal jelly by furosine determination. Journal of Agricultural and Food Chemistry,53: 4440-4443.
    Masaki K, Noriko S, Makoto F (2001) Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochemical and Biophysical Research Communications,282:865-874.
    Okada I, Sakai T, Matsuka M, et al. (1979) Changes in the electrophoretic patterns of royal jelly proteins cause by heating and storage. Chemistry Abstract,91. Article 34385.
    Palma M S (1992) Composition of freshly harvested Brazilian royal jelly; identification of carbohydrates from the sugar fraction. Journal of Apicultural Research,31:42-44.
    Piana L (1996) Royal jelly, in:Krell R. (Ed.), Value added products from beekeeping, FAO Agricultural Service Bullition.124:195-226.
    Serra B J (1992) Azucares, acidez y pH de la jalea real. Anales de Bromatologia,1:65-69.
    Takenaka T (1982) Chemical composition of royal jelly. Honeybee Science,3:69-74.
    Takenaka T, Echigo T (1983) Proteins and peptides in royal jelly. Nippon Shokvhin Kogyo Gakkaishi,57:1203-1209.
    Takenaka T, Yatsunami K, Echigo T (1986) Changes in quality of royal jelly during storage. Shokvhin Kogyo Gakkaishi,31:1-7.
    Thrasyvoulou A T, Collison C H, Benton A W (1983) Electrophoretic patterns of water-soluble proteins of honeybee larval food. Journal of Apicultural Research,22(3):142-145.
    Tomoda G, Matsuyama J, Matsuka M (1977) Studies on proteins in royal jelly.2, Fractionation on water-soluble protein by DEAE-cellulose chromatography, gel filtration and disc electrophoresis. Journal of Apicultural Research,16:125-130.
    Tourn M L, Lombard A, Belliardo F, et al. (1980) Quantitative analysis of carbohydrates and organic acids in honeydew, honey and royal jelly by enzymic methods. Journal of Apicultural Research,19(2):144-146.
    Van R R, Block J (1996) Furosine in consumption milk and milk powders. International Dairy Journal,6(4):371-382.
    Vitaly R, Tatyana B (2001) Superoxide dismutase inhibits lipid peroxidation in micelles. Chemistry and Physics of Lipids,111:87-91.
    William G M (1997) Superoxide dismutase partially restores impaired dilation of the basilar artery during diabetes mellitus. Brain Research,760:204-209.
    Yatsunami K (1988) Changes in quality of royal jelly. Honeybee Science,9:67-71.
    蔡妙颜,肖凯军,袁向华(2003)美拉德反应与食品工业.食品工业科技,7:90-93.
    何薇利,周婷(2001)蜂王浆生物活性质量测定探讨.蜜蜂杂志,(4):5-6.
    吉挺,陈晶,焦雅君(2006)蜂王浆中γ-球蛋白分子质量与贮存时间相关分析.扬州才学学报(农业与生命科学版),27(2):83-85.
    刘红云,童富淡,李宜梅,等(2003)贮存温度、时间对蜂王浆水溶性蛋白的影响.食品与发酵工业,29(6):1-4.
    闵丽娥,李佳,刘克武,等(2004)意蜂蜂王浆超氧化物歧化酶的分离纯化及部分性质.昆虫学报,47(2):171-177.
    史伯伦(1992)蜂王浆营养价值及保鲜.养蜂科技(4):21-23.
    唐朝忠,原有禄(1999)温度对蜂王浆超氧化物歧化酶活力的影响.中国养蜂,50(3):10-13.
    王加聪,陈坤,李晓栋,等.中国人民共和国国家发明专利:蜂王浆及冻干粉活性的生物测定方法.申请号:02138452.5;公开号:CN 1412566A.
    吴粹文,张复兴(1990)贮藏温度和时间对蜂王浆葡萄糖氧化酶(GOD)活性影响的研究.中国养蜂,(5):4-6.
    袁耀东,何薇利,陈黎红,等(1993)鲜王浆超氧化物歧化酶的初步研究.中国养蜂(5):3-5.
    张复兴,吴粹文(1990)蜂王浆贮运保鲜技术的研究.中国养蜂,(2):2-4.
    张映,姜玉锁,牛建华(1996)蜂王浆中超氧化物歧化酶的活性测定.山西农业大学学报16(3):267-268.
    中华人民共和国国家标准《蜂王浆》GB/T9697-2002.
    朱丹实,张慜(2005)不同温度、湿度条件对蜂王浆及蜂蜜贮藏的影响.食品与生物技术学报,24(2):79-84.
    Arrondo J L, Muga A, Castresana J, et al. (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Progress in Biophysics and Molecular Biology,59(1):23-56.
    Byler D M, Brouiliette J N, Susi H (1986) Quantitative studies of protein structure by FT-IR spectra deconvolution and curve-fitting. Spectroscopy,1(3):29-32.
    Byler D M, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Bioploymers,25(3):469-487.
    Crupi V, Doenico D D, Imterdonato S, et al. (2001) FT-IR spectroscopy study on cutaneous neoplasie. Journal of Molecular Structure,563-564:115-118.
    Elliott A, Ambrose E L (1950) Structure of synthetic polypeptides. Nature,4206:921-922.
    Heyes C D, Eisayed M A (2001) Effect of temperature, pH and metal ion binding on the secondary structure of bacteriorhodopsin:FT-IR study of the melting and premelting transition temperatures. Biochemistry,40(39):11819-11827.
    Kaiden K, Matsui T, Tanaka S (1987) A study of the amide Ⅱ by FT-IR spectrometry of the secondary structure of albumin, myoglobin and y-globulin. Applied Spectroscopy,41(2): 180-184.
    Krimm S, Bandekar J (1980) Vibrational analysis of peptides, polypeptides, and proteins. Ⅴ. Normal vibrations of beta-turns. Biopolymers,19(1):1-29.
    Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry,38:181-364.
    Lipkus A H, Lenk T J, Chittur K K, et al. (1988) Cluster analysis of protein Fourier transform infrared spectra. Biopolymers,27(11):1831-1839.
    Liu Y, Xie M, Kang J, et al. (2003) Studies on the interaction of total saponins of panax notogimeng and human serum albumin by Fourier transform infrared spectroscopy. Spectrochimiea Acta Part A:Molecular and Biomolecular Spectroscopy,59(12): 2747-2758.
    Mantsch H H, Yang P W Martin A, et al. (1988) Infrared spectroscopic studies of Acholeplasma laidlawaii B membranes. Comparison of the gel to liquid-crystal phase transition in intact cells and isolated membranes. European Journal of Biochemistry,178(2):335-341.
    Militello V, Casarino C, Emanuele A, et al. (2004) Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophysical Chemistry,107(2): 175-187.
    Mushayakarara E C, Wong p T, Mantsch H H (1986) Detection by high pressure infrared spectrometry of hydrogen-bonding between water and triacetyl glycerol. Biochemical and Biophysical Research Communications,134(1):140-145.
    Qi X, Holt C, Mcnulty D, et al (1997) Effect of temperature on the secondary structure of b-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy:A test of the molten globule hypothesis. Biochemical Journal,324:341-346.
    Schultz C P, Liu K-Z, Salamon E A, et al (1999) Application of FT-IR microspectroscopy in diagnosing thyroid neoplasms. Journal of Molecular Structure,480-481:369-377.
    Strioloa A, Favaroa A, Elvassore N, et al (2003) Evidence of conformational changes for protein films exposed to high-pressure CO2 by FT-IR spectroscopy. Journal of Supercritical Fluids,27(3):83-295.
    Sule-suso J, Zholobenk O V, Stone N, et al (2003) 30 effects of chemotherapy on lung cancer cel lines measured with Fourier Transform Infrared Spectroscopy. Lung Cancer,41: 281-286.
    Sun W, Fang J, Cheng M, et al (1997) Secondary structure dependent on metal ions of copper, zinc superoxide dismutase investigated by Fourier transform IR spectroscopy. Biopolymers, 42(3):297-303.
    Surewicz W K, Mantsch H H, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy:a critical assessment. Biochemistry,32(2): 389-94.
    Susi H (1969) In structure and stability of biological macromolecules (Timasheff, S. N.& Fasman, G. D., Ed.) 575-663, Dekker, New York.
    Susi H, Byler D M (1986) Resolution-enhanced Fourier transformation infrared spectroscopy of enzymes. Methods Enzymol,130:290-311.
    Zuo L, Sun S, Tang J (2001) Real-time monitoring thermal stability of the Chinese traditional injection by in situ Fourier-Transform Infrared Spectroscopy. Analytical Sciences,17 (Suppl.):a447-a450.
    阿依古丽·塔西,周群,董晓鸥,等(2006)甘草真伪品的FTIR光谱法鉴别研究.光谱学与光谱分析26(7):1238-1241.
    卞为东,孙素琴,黄岳顺(1998)FT-IR光谱法研究天花粉蛋白溶液的二级结构.现代仪器使用与维修(6):15-17.
    卞为东,孙素琴,黄岳顺,等(2000)FTIR光谱法研究天花粉蛋白的热去折叠过程.光谱学与光谱分析24(4):471-473.
    陈新,邵正中,Knight DP,等(2002)时间分辨红外光谱对丝蛋白膜构象转变动力学的研究:不同碱金属离子对蜘蛛丝蛋白膜构象转变的影响.化学学报,60(12):2203-2208.
    董彬,孙素琴,周红涛,等(2002)红外指纹图谱和聚类分析法无损快速鉴别赤芍.光谱学与光谱分析,22(2):232-234.
    高体玉,李俊,慈云祥(2000)乳腺癌组织中蛋白质二级结构的Fourier变换红外光谱研究.分析科学学报,16(5):353-357.
    庚照学,姚志彬(2000)傅立叶变换红外光谱法定量研究抗氧化剂对p-淀粉样蛋白1-40老化过程中二级结构变化的影响.中国病是生理杂志.16(6):540-544.
    红枫,王夔,李荣昌,等(2003)稀土离子对BEL-7402细胞蛋白质构象变化的影响.首都医科大学学报,24(3):225-227.
    姜厚理,刘昌玲,宋占军,等(1996)过氧化氢酶催化梭曼水解机理的FTIR研究.生物物理学报12(2):200-206.
    蒋俊光,王振新,刘长伟,等(2001)红外光谱和圆二色光谱法研究氰根配位的辣根过氧化物酶(HRP)的热伸展过程.高等学校化学学报22(7):1131-1133.
    刘嫒,谢孟峡,康娟(2003)三七总皂甙对牛血清白蛋白溶液构象的影响.化学学报,61(8):1305-1310.
    芦锰,樊克峰,白雁,等(2004)红外光谱技术在中药整体质量评价中的应用.河南中医,11:78-79.
    卢雁,张玮玮,王公柯(2008)FTIR用于变性蛋白质二级结构的研究进展.光学学与光谱分析28(1):88-93.
    陆卫,徐春和,李荣,等(2002)Ps Ⅱ中蛋白二级结构中p聚合效应的红外光谱研究.光谱学与光谱分析,22(5):749-751.
    马斌睿(2004)红外光谱在中药检验中的应用-访国家药典委员会委员王健.中国科技信,息,15:17.
    秦身钧,申金山,李艳廷,等(2004)稀土金属离子及pH诱导牛血清白蛋白构象变化的同步荧光光谱研究.中国稀土学报,22(3):393-397.
    秦竹,陈德朴,孙素琴(2007)二维相关红外分析在食品中药中的应用和荧光标记物合成.清华大学博士学位论文.
    宋苑苑,李晓峰,王立波,等(1999)稀土离子Eu3+,Tb3+对钙调素二级结构的影响.无机化学学报,15(4):509-512.
    孙素琴,高鸿锦,关元红,等(1994)FTIR法研究核糖核酸酶(RNase A)二级结构随温度的变化.光谱学与光谱分析14(6):53-56.
    孙素琴,卢为琴,胡鑫尧,等(1995)计算机辅助解析FTIR光谱法研究稀土离子与钙调蛋
    白的相互作用.计算机与应用化学12(4):270-273.
    孙素琴,赵树兵,卢为琴,等(1996)PS ⅡRC光抑制过程中蛋白质二级结构变化的FTIR光谱法研究.光谱学民光谱分分析16(4):25-27.
    孙素琴,周群,梁曦云,等(2002)七种花旗参茶包的FT-IR光谱法无损鉴别.光谱学与光谱分析,22(4):600-602.
    孙素琴,汤俊明,袁子民,等(2003)道地山药红外指纹图谱和聚类分析的鉴别研究.光谱学与光谱分析,23(2):258-261.
    童义平,李伟,林燕文(1999)傅立叶红外光谱研究血清白蛋白构象.光谱学与光谱分析,19(5):704-706.
    王立群,李英明,张丽萍,等(2006)生态技术栽培黄连的红外指纹图谱分析与表征.光谱学与光谱分析,26(6):1061-1066.
    王永刚,吴忠,魏凤环,等(2003)中药指纹图谱研究的现状与未来.中药材,26(11):820-825.
    魏晓芳,丁西明,刘会洲(2000)pH诱导牛血清白蛋白芳香氨基酸残綦微环境变化的光谱分析.光谱笋与光谱分析,20(4):556-559.
    吴斌(1994)酶活性部位柔性.中国科学院生物物理研究所博士学位论文.
    吴瑾光(1994)近代傅里变换红外光谱技术及应用.北京:科学技术文献出版社.
    谢安建,沈玉华,茆建强(1998)傅里叶变换显微红外光谱法研究羟自由基与红细胞膜脂和膜蛋白二级结构的作用机制.光谱学与光谱分析,18(2):162-166.
    谢安建,沈玉华,茆建强(2001)碳酸钙对牛血清白蛋白微结构的影响.光谱学与光谱分析,21(3):347-349.
    谢孟峡,刘嫒(2003)红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究.高等学校化学学报24(2):226-231.
    徐永群,黄昊,周群,等(2003)红外指纹图谱和聚类分析法在赤芍产域分类鉴别中的应用.分析化学,31(1):5-9.
    余振喜,白雁,陈志红,等(2006)红外光谱技术检测贮藏过程中牛膝药材稳定性的快捷方法.中药材,29(2):111-115.
    张极震,粱圻(1995)水在稳定肌红蛋白天然结构中的作用.生物物理学报,11(1):5-10.
    左林(2002)基于二维相关红外光谱的中药注射剂量标准研究.清华大学硕士学位论文.
    Albala-Hurtado S, Veciana-Nogues M T, Marine-Font A, et al. (1998) Changes in furfural compounds during storage of infant milks. Journal of Agricultural and Food Chemistry,46: 2998-3003.
    Anam O O, Dart R K (1995) Influence of metal ions on hydroxymethylfurfural formation in honey. Analytical Proceedings including Analytical Communications,32(12):515-517.
    Berg H E, Boekel M A J S (1994) Degradation of lactose during heating of milk. Ⅰ. Reaction pathways. Netherlands Milk and Dairy Journal,48:157-175.
    Caldeira I, Climaco M C, Bruno de Sousa R, et al. (2006) Volatile composition of oak and chestnut woods used in brandy ageing:Modification induced by heat treatment. Journal of Food Engineering,76(2):202-211.
    Castellari M, Sartini E, Spinabelli U, et al. (2001) Determination of carboxylic acids, carbohydrates, glycerol, ethanol, and 5-HMF in beer by high-performance liquid chromatography and UV-RI double detection. Journal of Chromatographic Science,39: 235-239.
    Chavez-Servin J L, Castellote A I, Lopez-Sabater M C (2005) Analysis of potential and free furfural compounds in milk-based formulae by high-performance liquid chromatography, Evolution during storage. Journal of Chromatography A,1076:133-140.
    Chih-Yu L, Shiming L, Yu W, et al. (2008) Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chemistry,107(3):1099-1105.
    Cocchi M, Ferrari G, Manzini D, et al. (2007) Study of the monosaccharides and furfurals evolution during the preparation of cooked grape musts for Aceto Balsamico Tradizionale production. Journal of Food Engineering,79(4):1438-1444.
    Coco F L, Valentini C, Novelli V, et al. (1995) Liquid chromatographic determination of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde in beer. Analytica Chimica Acta,306: 57-64.
    Espinosa M A, Salinas F, Nevado J J B (1992) Differential determination of furfural and hydroxymethylfurfural by derivative spectrophotometry. Journal of AOAC International, 75:678-684.
    Ferrer E, Alegria A, Courtois G, et al. (2000a) High-performance liquid chromatographic determination of Maillard compounds in store-brand and name-brand ultra-high-temperature-treated cows'milk. Journal of Chromatography A,881:599-606.
    Ferrer E, Alegria A, Farre R, et al. (2000b) Effects of thermal processing and storage on available lysine and furfural compounds contents of infant formulas. Journal of Agricultural and Food Chemistry,48:1817-1822.
    Ferrer E, Alegria A, Farre R, et al. (2002) High-performance liquid chromatographic determination of furfural compounds in infant formulas:Changes during heat treatment and storage. Journal of Chromatography A,947:85-95.
    Foster R T, Samp E J, Patino H (2001) Multivariate modeling of sensory and chemical data to understand staling in light beer. Journal of American Society of Brewing Chemists,59: 201-210.
    Francesca M, Fabio C, Gian C, et al. (2005) A study of the relationships among acidity, sugar and furanic compound concentrations in set of casks for Aceto Balsamico Tradizionale of Reggio Emilia by multivariate techniques. Food Chemistry,92(4):673-679.
    Friedman M (1996) Food browning and its prevention:an overview mendel friedman. Journal of Agricultural and Food Chemistry,44:631-653.
    Fuleki T, Pelayo E (1993) Sugars, alcohols, and hydroxymethylfurfural in authentic varietal and commercial grape juices. Journal of AOAC International,76:59-66.
    Gokmen V, Senyuva H Z (2006) Improved method for the determination of hydroxymethylfurfural in baby foods using liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry,5554:2845-2849.
    Horvath K, Molnar-Perlerl I (1998) Simultaneous GC-MS quantitation of o-phosphoric, aliphatic and aromatic carboxylic acids, proline, hydroxymethylfurfurol and sugars as their TMS derivatives:In honeys. Chromatographia,48:120-126.
    Jeuring H J, Kuppers F J E M (1980) High performance liquid chromatography of furfural and hydroxymethylfurfural in spirits and honey. Journal of AOAC International,63: 1215-1218.
    Lamia A A, Odile M, Valerie L, et al. (2007) Comparison of the effects of sucrose and hexose on furfural formation and browning in cookies baked at different temperatures. Food Chemistry,101(4):1407-1416.
    Marcy J E, Rouseff R L (1984) High-performance liquid chromatographic determination of furfural in orange juice. Journal of Agricultural and Food Chemistry,32:979-981.
    Maria J N, Jose L B, Laura T, et al. (2001) High-performance liquid chromatographic determination of methyl anthranilate, hydroxymethylfurfural and related compounds in honey. Journal of Chromatography A,917:95-103.
    Monlnar-Perl I, Vasanits A, Horvath K (1998) Simultaneous GC-MS quantitation of phosphoric, aliphatic and aromatic carboxylic acids, proline and hydroxymethylfurfurol as their trimethylsilyl derivatives:In model solutions Ⅱ, Chromatographia,48:111-119.
    Morales F J, Romero C, Jimenez-Perez S (1997) A kinetic study on 5-hydroxymethylfurfural formation in Spanish UHT milk stored at different temperatures. Journal of Food Science and Technology-Mysore,34(1):28-32.
    Nadia S, Marco C, Ignazio F, et al. (2008) Chemical characterization of a traditional honey-based Sardinian product:Abbamele. Food Chemistry,108(1):81-85.
    Nozal J, Bernal J L, Toribio L, et al. (2001) High-performance liquid chromatographic
    determination of methyl anthranilate, hydroxymethylfurfural and related compounds in honey. Journal of Chromatography A,917:95-103.
    Official Methods of Analysis (1995) 980.23, HMF in honey. Association of Official Analytical Chemists (AOAC) International, MD, USA.,44.
    Omura H, Jahan N, Shinohara K, et al. (1983) The maillard reaction in foods and nutrition. American Chemical Society, Washington, DC.537.
    Porreta S (1992) Chromatographic analysis of Maillard reaction products. Journal of Chromatography A,624:211-219.
    Ramirez-Jimenez A, Guerra-Hernandez E, Garcia-Villanova B (2003) Evolution of non-enzymatic browning during storage of infant rice cereal. Food Chemistry,83:219-225.
    Ricardo F A M, Carlos A B D M, Marcia P, et al. (2007) Chemical changes in the non-volatile fraction of Brazilian honeys during storage under tropical conditions. Food Chemistry, 104(3):1236-1241.
    Rufian-Henares J A, Delgado-Andrade C, Morales F J (2006) Application of a fast high-performance liquid chromatography method for simultaneous determination of furanic compounds and glucosylisomaltol in breakfast cereals. Journal of AOAC International,89: 161-169.
    Shimizu C, Nakamura Y, Miyai K, et al. (2001) Factors affecting 5-hydroximethyl furfural formation and stale flavor formation in beer. Journal of American Society of Brewing Chemists,59:51-58.
    Spillman P J, Pollnitz A P, Liacopoulos D, et al. (1998) Formation and degradation of furfuryl alcohol,4-methylfurfuryl alcohol, and their ethyl ethers in barrel-aged wines. Journal of Agricultural and Food Chemistry,46:657-663.
    Teixid E, Santos F J, Puignou L, et al. (2006) Analysis of 5-hydroxymethylfurfural in foods by gas chromatography-mass spectrometry. Journal of Chromatography A,1135:85-90.
    Teixido E, Moyano E, Javier Santos F, et al. (2008) Liquid chromatography multi-stage mass spectrometry for the analysis of 5-hydroxymethylfurfural in foods. Journal of Chromatography A,1185(1):102-108.
    Tomlinson A J, Landers J P, Lewis I A S, et al. (1993) Buffer conditions affecting the separation of Maillard reaction products by capillary electrophoresis. Journal of Chromatography A, 652:171-177.
    Tu D, Xue S, Meng C, et al. (1992) Simultaneous determination of 2-furfuraldehyde and 5-(hydroxymethyl)-2-furfuraldehyde by derivative spectrophotometry. Journal of Agricultural and Food Chemistry,40:1022-1025.
    Winkler O (1955) Beitrag zum nachweis und zur bestimmung von. oxymethylfurfurol in honig und kunsthonig. Lebensm Unters Forsch,102:161-171.
    Zappala M, Fallico B, Arena E, et al. (2005) Methods for the determination of HMF in honey:a comparison. Food Control,16:273-277.
    中华人民共和国国家标准.GB/T9697-2002蜂王浆.
    Ana M G, Alfonso G B, Carlos C M, et al. (2006) HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chemistry,95:148-156.
    Bauza T, Blaise A, Daumas F, et al. (1995) Determination of biogenic amines and their precursor amino acids in wines of the Vallee du Rhone by high-performance liquid chromatography with precolumn derivatization and fluorimetric detection. Journal of Chromatography A,707: 373-379.
    Bertacco G, Boschelle O, Lercker G (1992) Gas chromatographic determination of free amino acids in cheese. Milchwissenschaft,47:348-350.
    Buck K, Ferger B (2008) Intrastriatal inhibition of aromatic amino acid decarboxylase prevents L-DOPA-induced dyskinesia:A bilateral reverse in vivo microdialysis study in 6-hydroxydopamine lesioned rats. Neurobiology of Disease,29(2):210-220.
    Chen C, Chen S (1995) Changes in protein components and storage stability of Royal Jelly under various conditions. Food Chemistry,54:195-200.
    Cohen S A, Deantonis K M, Michaud D P, et al. (1993) Techniques in protein chemistry Ⅳ. San Diego, CA:Academic Press,289.
    Cometto P M, Faye P F, Di Paola Naranjo R, et al. (2003) Comparison of free amino acids profile in honey from three Argentinian regions. Journal of Agricultural and Food Chemistry,51: 5079-5087.
    Conte L S, Miorini M, Giomo A, et al. (1998) Evaluation of some fixed components for unifloral honey characterization. Journal of Agricultural and Food Chemistry,46:1844-1849.
    Crane E (1990) Bees and beekeping-Science, practice and world resources, Heinemann Newnes: Oxford, UK.
    Davies A M C, Harris R G (1982) Free amino acids analysis of honeys from England and Wales: application to the determination of the geographical origin. Journal of Apicultural Research, 21:168-173.
    Diaz J, Lliberia J L, Comellas L, et al. (1996) Amino acid and amino sugar determination by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate followed by high-performance liquid chromatography and fluorescence detection. Journal of Chromatography A,719(1):171-179.
    Dorresteijn R C, Berwald L G, Zomer G (1996) Determination of amino acids using o-phthalaldehyde-2-mercaptoethanol derivatization effect of reaction conditions. Journal of Chromatography A,724:159-167.
    Emanuele B, Maria F C, Anna G S, et al. (2003) Determination and changes of free amino acids in royal jelly during storage. Apidologie,34:129-137.
    Englmann M, Fekete A, Kuttler C (2007) The hydrolysis of unsubstituted N-acylhomoserine lactones to their homoserine metabolites:Analytical approaches using ultra performance liquid chromatography. Journal of Chromatography A,1160(1-2):184-193.
    European Norm 12742 (1992) Fruit and vegetable juices, Determination of the free amino acids content, liquid chromatographic method. European Committee for Standardization (CEN), Bruxelles.
    Guillarme D, Nguyen D T T, Rudaz S (2007) Recent developments in liquid chromatography-Impact on qualitative and quantitative performance. Journal of Chromatography A,1149(1): 20-29.
    Henrik S, Nielsen B R, Skibsted L H (1997) Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk powder. Internationa. Diary Journal,7: 331-339.
    Hermosin I, Chicon R M, Cabezudo M D (2003) Free amino acid composition and botanical origin of honey. Food Chemistry,83:263-268.
    Howe S R, Dimick P S, Benton A W (1985) Composition of freshly harvested and commercial royal jelly. Journal ofApicultural Research,24:52-61.
    Jiaoyan R, Mourning Z, John S, et al. (2008) Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry,108(2):727-736.
    Komarova N V, Kamentsev J S, Solomonova A P, et al. (2004) Determination of amino acids in fodders and raw materials using capillary zone electrophoresis. Journal of Chromatography B,800:135-143.
    Li H, Wang H, Chen J H, et al. (2003) Determination of amino acid neurotransmitters in cerebral cortex of rats administered with baicalin prior to cerebral ischemia by capillary electrophoresis-laser-induced fluorescence detection. Journal of Chromatography B,788: 93-101.
    Li X, Fekete A, Englmann M, et al. (2006) Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. Journal of Chromatography A,1134(1-2):186-193.
    Lucie N, Ludmila M, Petr S (2006) Advantages of application of UPLC in pharmaceutical analysis. Talanta,3(1):908-918.
    MacKenzie S L, Tenaschuk D (1994) Gas-liquid chromatography of N-heptafluorobutyryl isobutyl esters of amino acids. Journal of Chromatography,97:19-24.
    Masaki K, Toshiyuki F, Makoto F, et al. (2001) Storage-dependent degradation of 57-kDa protein in royal jelly:a possible marker for freshness. Bioscience, Biotechnology, and Biochemistry, 65(2):277-284.
    Matloubi H, Aflaki F, Hadjiezadegan M (2004) Effect of g-irradiation on amino acids content of baby food proteins. Journal of Food Composition and Analysis,17:133-139.
    Mohabbat T, Drew B (2008) Simultaneous determination of 33 amino acids and dipeptides in
    spent cell culture media by gas chromatography-flame ionization detection following liquid and solid phase extraction. Journal of Chromatography B,862(1-2):86-92.
    Novakova L, Matysova L, Solich P (2006) Advantages of application of UPLC in pharmaceutical analysis. Talanta,68:908-918.
    Okada I, Sakai T, Matsuka M (1997) Changes in the electrophoretic patterns of royal jelly proteins caused by heating and storage. Chemistry Abstract,91:Article 34385y.
    Olsovsks J, Jelinkova M, Man P, et al (2007) High-throughput quantification of lincomycin traces in fermentation broth of genetically modified Streptomyces spp.:Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography with UV detection. Journal of Chromatography A,1139(2):214-220.
    Palma M S (1992) Composition of freshly harvested Brazilian royal jelly:Identification of carbohydrates from the sugar fraction. Journal ofApicultural Research,31:42-44.
    Pirini A, Conte L S, Francioso O, et al. (1992) Capillary gas chromatographic determination of free amino acids in honey as a means discrimination between different botanical sources. Journal of High Resolution Chromatography,15:165-170.
    Plassmeier J, Barsch A, Persicke M, et al. (2007) Investigation of central carbon metabolism and the 2-methylcitrate cycle in Corynebacterium glutamicum by metabolic profiling using gas chromatography-mass spectrometry. Journal of Biotechnology,130(4):354-363.
    Shama N, Wook Bai S, Chul Chung B (2008) Quantitative Analysis of 17 Amino Acids in the Connective Tissue of Patients with Pelvic Organ Prolapse Using Capillary Electrophoresis-Tandem Mass Spectrometry. Journal of Chromatography B,865(1-2):18-24.
    Shen Z J,Sun Z M, Wu L,et al (2002) Rapid method for the determination of amino acids in serum by capillary electrophoresis. Journal of Chromatography A,979:227-232.
    Stephen A C W, Pierre T (2006) Use of ultra-performance liquid chromatography in pharmaceutical development. Journal of Chromatography A,1119(1-2):140-146.
    Stephen A C W (2005) Peak capacity in gradient ultra performance liquid chromatography (UPLC). Journal of Pharmaceutical and Biomedical Analysis,38(2):337-343.
    Stocker A, Schramel P, Kettrup A, et al (2005) Trace and mineral elements in royal jelly and homeostatic effects. Journal of Trace Elements in Medicine and Biology,19(2-3):183-189.
    Swartz M E (2005) UPLCTM:An introduction and review. Journal of Liquid Chromatography & Related Technologies,28:1253-1263.
    Ummadi M, Weimer B C (2002) Use of capillary electrophoresis and laser-induced fluorescence for attomole detection of amino acids. Journal of Chromatography A,964:243-253.
    Vaijanath G D, Pravin P K, Pilla P R, et al. (2008) Development and validation of UPLC method for determination of primaquine phosphate and its impurities. Journal of Pharmaceutical and Biomedical Analysis,46(2):236-242.
    Versari A, Parpinello G P, Mattioli A U, et al. (2008) Characterisation of Italian commercial apricot juices by high-performance liquid chromatography analysis and multivariate analysis. Food Chemistry,108(1):334-340.
    Villiers A D, Lestremau F, Szucs S (2006) Evaluation of ultra performance liquid chromatography: Part Ⅰ. Possibilities and limitations. Journal of Chromatography A,1127(1-2):60-69.
    Wang D, von Sonntag C (1991) Radiation industrial oxidation of phenylalanine. In:Leonardi M, Raffi J, Belliardo J J (Eds.), Proceedings of the workshop on recent advances on detection of irradiated food, BCR Information, Chemical Analysis. Report EUR 13331 En, Commission of the European Communities, Brussels,212-217.
    Warren C R (2008) Rapid and sensitive quantification of amino acids in soil extracts by capillary electrophoresis with laser-induced fluorescence. Soil Biology and Biochemistry,40(4): 916-923.
    Woo K L (2001) Determination of amino acids in foods by reversed-phase high-performance liquid chromatography in:Cooper C, Packer N, Williams K (Eds.), Amino Acid Analysis Protocols. Humana Press, Totowa, NJ,141.
    Yang F Q, Guan J, Li S P (2007) Fast simultaneous determination of 14 nucleosides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography. Talanta,173(2):269-273.
    陈盛禄主编(2002)中国蜜蜂学北京:中国农业出版社,728-729.
    瞿其曙,汤晓庆,胡效亚,等(2006)柱前衍生法在氨基酸分析测定中的应用.化学进展18(6):789-793.
    李梅,杨朝霞,解彬,等(2007)AQC柱前衍生高效液相色谱法测定啤酒中21种游离氨基酸.色谱25(6):939-941.
    吕守民,方芳(1999)贝克曼6300氨基酸分析仪17种水解氨基酸分析程序的改进与应用.氨基酸和生物资源21(3):47-48.
    任红波(2003)氨基酸分析仪快速测定糙米中的Y-氨基丁酸.杂粮作物23(4):246-247.
    王贻节主编.(1991)蜜蜂产品学.北京:农业出版社,96-101.
    闫淑莲,赵光,刘永利(2003)反相高效液相色谱-丹酰氯柱前衍生法的氨基酸分析测定.首都医科大学学报,24(3):338-339.
    张琳,尤进茂,单亦初,等(2002)氨基酸的咔唑-9-乙基氯甲酸酯柱前衍生高效液相色谱分析.分析测试学报,21(5):16-19.
    Chen Y, Inbar Y, Hadar Y (1989) Chemical properties and solid-state CAMAS 13C-NMR of composted orginac matter. Science of the Total Environment,82:201-208.
    Chinshuh C, Soe-Yen C (1995) Changes in protein components and storage stability of royal jelly under various conditions. Food Chemistry,54:195-200.
    Cristina M, Fiorenza M, Emanuele M (2005) Storage stability assessment of freeze-dried royal
    jelly by furosine determination. Journal of Agricultural and Food Chemistry,53(11): 4440-4443.
    Durig D T, Esterle J S, Dickson T J, et al. (1988) An investigation of the chemical variability of woody peat by FT-IR spectroscopy. Applied Spectroscopy,42(7):1239-1244.
    Inbar Y, Chen Y, Hadar Y (1991) Carbon-13 CPMAS NMR and FTIR spectroscopic analysis of organic matter transformations during decomposition of solid wastes from wineries. Soil Science,152:272-282
    Jean F, Ois A, Sarah Z, et al. (2003) Evaluation of (E)-10-hydroxydec-2-enoic acid as a freshness parameter for royal jelly. Food Chemistry,80(1):85-89.
    Jozef S (2001) Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidologie,32(1):69-80.
    Kamakura M, Fukuda T, Fukushima M, et al. (2001) Storage-dependent degradation of 57-kDa protein in royal jelly:a possible marker for freshness. Bioscience, Biotechnology and Biochemistry,65(2):277-284.
    Nakanshi K, Solomon P H著,王绪明译(1984)红外光谱分析100例.北京:科学出版社,8-45.
    Stocker A, Rossmann A, Kettrup A, et al. (2006) Detection of royal jelly adulteration using carbon and nitrogen stable isotope ratio analysis. Rapid Communications in Mass Spectrometry,20 (2):181-184.
    Yoshifumi T, Keizo K, Shinichiro I, et al. (2003) Oral administration of royal jelly inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice. International Immunopharmacology,3 (9):1313-1324.
    Zuo L, Sun S, Zhou Q, et al (2003) 2D-IR correlation analysis of deteriorative process of traditional Chinese medicine'Qing Kai Ling'injection. Journal of Pharmaeeutieal and Biomedical Analysis,30(5):1491-1498.
    陈建波,周群,孙素琴,等(2007)红参类中药注射剂红外光谱法宏观质量控制标准的研究.光谱学与光谱分析,27(8):1493-1496.
    凌晓锋,徐智,徐怡庄,等(2005)傅里叶变换红外光谱应用于乳腺癌临床诊断的探索.光谱学与光谱分析,25(2):198-200.
    孙素琴,周群,张宣,等(2000)傅里叶变换拉曼光谱法无损鉴别植物生药材.分析化学,28(2):211-214.
    王凡,凌晓峰,杨展澜,等(2003)直肠癌和直肠正常组织的傅里叶变换红外光谱研究.光谱学与光谱分析,23(3):498-501.
    王加聪,陈坤,李晓栋,等.中国人民共和国国家发明专利:蜂王浆及冻干粉活性的生物测定方法.申请号:02138452.5;公开号:CN 1412566 A.
    吴瑾光(1994)近代傅里叶变换红外光谱技术及应用.北京:科学技术文献出版社.
    吴景贵,曾广斌,汪冬梅,等(1997)玉米叶片残体腐解过程的傅里叶变换红外光谱研究.分析化学,25(12):1395-1400.
    吴婧,孙素琴,周群,等(2007)丹参配方颗粒红外无损快速分析研究.光谱学与光谱分析,27(8):1535-1538.
    詹达琦,张晓明,孙素琴(2007)基于小波变换的二维红外相关光谱鉴别人参的生长年限.光谱学与光谱分析,27(8):1497-1501.
    Arrondo J L, Muga A, Castresana J, et al. (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Progress in Biophysics & Molecular Biology,59(1):23-56.
    Byler D M, Brouiliette J N, Susi H (1986) Quantitative studies of protein structure by FT-IR spectra deconvolution and curve-fitting. Spectroscopy,1(3):29-39.
    Byler D M, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Bioploymers,25(3):469-487.
    Cabrera-Vera T M, Vanhauwe J, Thomas T O, et al. (2003) Insights into G protein structure, function, and regulation. Endocrine Reviews,24 (6):765-781.
    Chen C, Chen S (1995) Changes in protein components and storage stability of Royal Jelly under various conditions. Food Chemistry,54:195-200.
    Crupi V, Doenico D D, Imterdonato S, et al. (2001) FT-IR spectroscopy study on cutaneous
    neoplasie. Journal of Molecular Structure,563-564:115-118.
    Delaunay D, Rabiller-Baudry M, Gozalvez-Zafrilla J (2007) Mapping of protein fouling by FTIR-ATR as experimental tool to study membrane fouling and fluid velocity profile in various geometries and validation by CFD simulation. Chemical Engineering and Processing:Process Intensification, In Press, Accepted Manuscript, Available online 25 December 2007.
    Fink A L (1998) Protein aggregation:folding aggregates inclusion bodies and amyloid. Folding and Design,3(1):R9-15.
    Haris P I, Lee D C, Chapman D (1986) A Fourier transform infrared investigation of the structural differences between ribonuclease A and ribonuclease S. Biochimica et Biophysica Acta,874(3):255-265.
    Heyes C D, Eisayed M A (2001) Effect of temperature, pH and metal ion binding on the secondary structure of bacteriorhodopsin:FT-IR study of the melting and premelting transition temperatures. Biochemistry,40(39):11819-11827.
    Kamakura M, Fukuda T, Fukushima M, et al. (2001) Storage-dependent degradation of 57-kDa protein in royal jelly:a possible marker for freshness. Bioscience, Biotechnology and Biochemistry,65(2):277-284.
    Masaki K, Toshiyuki F, Makoto F, et al. (2001) Storage-dependent degradation of 57-kDa protein in royal jelly:a possible marker for freshness. Bioscience, Biotechnology, and Biochemistry,65(2):277-284.
    Mozhaev V, Heremans K, Frank J, et al. (1996) High pressure effects on protein structure and function. Proteins Structure Function and Genetics,24(1):81-91.
    Okada I, Sakai T, Matsuka M (1997) Changes in the electrophoretic patterns of royal jelly proteins caused by heating and storage. Chemistry Abstract,91:Article 34385y.
    Olinger J M, Hill D M, Jakobsen R J, et al. (1986) Fourier transform infrared studies of ribonuclease in H2O and H2O2 solutions. Biochimica et Biophysica Acta,869(1):89-98.
    Sule-suso J, Zholobenk O V, Stone N, et al. (2003) 30 efects of chemotherapy on lung cancer eel lines measured with Fourier Transform Infrared Spectroscopy. Lung Cancer,41:281-286.
    Sun W, Fang J, Cheng M, et al. (1997) Secondary structure dependent on metal ions of copper, zinc superoxide dismutase investigated by Fourier transform IR spectroscopy. Biopolymers, 42(3):297-303.
    Surewicz W K, Mantsch H H, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy:a critical assessment. Biochemistry,32(2): 389-94.
    Susi H, Byler D M (1986) Resolution-enhanced Fourier transformation infrared spectroscopy of enzymes. Methods Enzymol,130:290-311.
    Takenaka T, Yatsunami K, Echigo T (1986) Changes in quality of royal jelly during storage. Nippon Shokuhin Kogyo Gakkaishi,33:1-7.
    Zhao X, Chen F, Xue W, et al. (2008) FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocolloids,22(4):568-575.
    卞为东,孙素琴,黄岳顺(1998)FT-IR光谱法研究天花粉蛋白溶液的二级结构.现代仪器使用与维修,(6):15-17.
    慈云祥,高体玉,冯军,等(1998)乳腺癌变组织的Fourier变换红外光谱研究.科学通报,43(24):2627-2632.
    吉挺,陈晶,焦雅君(2006)蜂王浆中γ-球蛋白分子质量与贮存时间相关分析.扬州大学学报(农业与生命科学版),27(2):83-85.
    凌晓锋,徐智,徐怡庄,等(2005)傅里叶变换红外光谱应用于乳腺癌临床诊断的探索.光谱笋与光谱分析,25(2):198-200.
    刘红云,童富淡,李宜梅,等(2003)贮存温度、时间对蜂王浆水溶性蛋白的影响.食品与发酵工业,29(6):1-4.
    孙素琴,赵树兵,卢为琴,等(1996)PS ⅡRC光抑制过程中蛋白质二级结构变化的FTIR光谱法研究.光谱学与光谱分析,16(4):25-27.
    吴斌(1994)酶活性部位柔性.中国科学院生物物理研究所,博士学位论文.
    谢孟峡,刘媛(2003)红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究.高等学校化学学报24(2):226-231.
    张极震,粱圻(1995)水在稳定肌红蛋白天然结构中的作用.生物物理学报,11(1):5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700