氧化物催化剂结构与性能调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界经济的高速发展和人口数量的急剧增长带来了巨大的能源需求,是21世纪人类面临的重大挑战。传统的化石能源不仅储量有限,而且容易造成环境污染,不能满足新世纪发展的需求,因此开发利用洁净、无碳、可再生的新能源已成为世界能源可持续发展战略的重点。太阳能是一种洁净、无碳的自然资源,且取之不尽用之不竭,是一种非常具有潜力的新能源。利用光化学电池(PEC)分解水制氢不仅能对太阳能进行有效地转换和存储,也为构建无碳、洁净的新型能源体系提供了基础。一个合适的光电极材料需要具有廉价、无毒、光吸收效率高以及优异的表面反应活性等特点。但目前的研究中尚未发现任何材料能符合光电极材料的所有要求,这严重地制约了光化学电池分解水制氢的实际应用,因此各种针对性的材料改性成为光电极材料研究的重点。Ti、 Co、Ni等过渡金属氧化物因廉价、稳定、具有合适的能带结构、易于控制形貌等优势成为水分解催化剂的首选。本论文利用线性扫描伏安法(LSV)、循环伏安法(CV)和交流阻抗谱(EIS)等电化学方法,结合扫描电子显微镜、X射线衍射(XRD)、X射线光电子能谱(XPS)和同步辐射X射线吸收精细结构谱学(XAFS)等结构探测手段以及密度泛函理论方法(DFT),实验结果结合理论计算,从体相掺杂对材料光响应活性的调控、操纵表面原子结构对催化性能的调控,以及电解液环境对材料性能影响三个方面,由内而外研究了TiO2、Co3O4等过渡金属氧化物催化剂的电子结构、原子结构和性能的调控机制。
     本论文主要包括以下内容:
     1.P体相掺杂TiO2光吸收性能调控的研究
     运用密度泛函第一性原理计算方法,研究了P阳离子掺杂对锐钛矿相TiO2的原子结构和电子结构的影响。结合能的计算表明P倾向于占据TiO2品格中阳离子的位置。可见光最大吸收对应的P的最佳掺杂浓度为0.7%。在掺杂浓度为0.7%时,Ti02光吸收禁带宽度与本征禁带宽度相比降低了0.30eV。然而,当掺杂浓度高于0.7%时,禁带宽度降低的幅值反而减小。理论汁算的结果表明半导体可见光吸收效率依赖于杂质掺杂浓度,该结果解释了实验上观察到的掺杂之后导致吸收“红移”和“蓝移”的现象。该工作对指导非金属掺杂调控Ti02可见光吸收提供了理论指导。
     2. NixCo3-xO4表面结构和性能调控的影响
     采用氨蒸发法和水热法制备了不同浓度Ni掺杂的CO3O4纳米线阵列催化剂,利用电化学方法和同步辐射XAFS技术研究了NiXCo3_xO4产氧催化剂在不同电场激发下原子和电子结构调整和性能变化规律。循环伏安结果表明样品受电场激发后,催化性能明显提高。XAFS结果显示受激之前Ni主要占据C0304体相八面体的位置,受激之后Ni在电场的作用下向催化剂表面迁移并占据表面四面体的位置。XPS结果也证实受激之后表面Ni含量升高。第一性原理计算结果发现Ni在体相占据六配位的位置的结合能最低,而在表面占据四配位的结合能最低。该工作为进一步调控和构建高效稳定的C0304基催化剂提供了实验基础和理论依据。
     3.溶液环境对C0304产氧性能影响的研究
     采用氨蒸发诱导生长法和水热法等自生长方法制备了一维纳米线结构的尖晶石型C0304阵列。在不同pH值电解液中测试催化性能发现,pH<13时,催化电流密度急剧下降,并在0.8-1.2V电压区间出现电流平台。Tafel结果显示在低电流密度区C0304的反应机理一致,但在高电流密度时,反应的决速步由电荷转移步骤变为传质过程控制。交流阻抗谱的结果表明反应的最大电阻在于传质过程。向溶液中引入强对流,低pH时的电流平台消失并随着搅拌速度增加表现出电流密度增长。当搅拌速度为1000rpm时,pH=11的扩散层厚度被压缩为自然对流下的四分之一,电流密度也相应提高了4-5倍,表明C0304在近中性的环境下依然可以表现出好的催化性能。该工作为光化学电池在多种工作环境下维持分解水的高性能提供了定量支持。
     4.同步辐射XAFS技术在古陶瓷研究中的应用
     采用荧光测试模式采集了一系列古陶瓷样品的XANES谱来研究中国古陶瓷的呈色机制。分析宋代汝瓷发现,Fe是古代汝瓷的主要着色元素,瓷釉中Fe的价态与煅烧温度和瓷釉的颜色相关。研究了一系列以Fe为主着色元素的古陶瓷样品。结果表明不同瓷釉的釉色与着色元素Fe的化合价及Fe2+和Fe3’的比例相关。对汝瓷而言,Fe2+/Fe3+比例越高,瓷釉颜色偏青;Fe2+/Fe3+比例越低,瓷釉颜色偏黄。当釉中Fe3+含量非常高时,瓷釉呈棕褐色。该研究结果为研究古代陶瓷的烧制工艺提供了重要的参考依据。
The supply of secure, clean, sustainable energy is arguably the most important scientific and technical challenge facing humanity in the21st century. The utilization of solar energy to replace fossil fuels is a promising method for meeting the growing global energy demands and solving the current environmental problem, which is significant for the sustainable development of China's future economic strategy. The most attractive approach to solar energy conversion and storge is using photoelectrochemical cells (PEC) to split water into hydrogen and oxygen. TiO2was a proper candidate for photoelectrodes due to inexpensive, stable and nontoxic. However, the large intrinsic band gap of TiO2allows only the absorption of ultraviolet light but prohibits the effective absorption of visible light. Meanwhile, the electrochemical activities of conventional semiconductor photoelectrode materials are generally low, which seriously affect the energy conversion efficiency of the photo induced water splitting. This dissertation presents a comprehensive investigation of the relationship between electronic structure and photochemical/electrochemical properties of TiO2anode and Co3O4-based catalysts by using the density functional theory (DFT), linear sweep voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedanc spectroscopy (EIS), electron microscope, X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) analysis methods.
     The main content in this dissertation is as follows:
     1. Structural and Optical Absorption investigation on P-doped TiO2
     The efficient absorption of visible-light is crucial for improving the photocatalytic activity of foreign species doped TiO2With first-principles calculations, we explore the effects of phosphorous doping on mediating the photocatalytic activity of anatase. It is found that the P impurity tends to occupy the cation site in TiO2; more importantly, there exists a critical phosphorous concentration of about0.7%for maximizing the absorption of solar light. The optical energy gap is narrowed by~0.3eV at the low doping concentration of0.7%, while it increases with P concentration at the higher P concentrations region of0.7-3.1at.%. These results suggest that the dopant concentration dependence might be responsible for numerous seemingly controversies of optical absorption observed in experiments. This finding points to a possibility of tailoring the optical absorption of TiO2by varying the dopant content.
     2. Improvement of activity by manipulating surface structures of NixCo3-x04
     Controllable synthesis and modification is important for the construction of highly efficient and stable material. Here, we report a possible approach to manipulate ions distribution and local structure of spinel Co3-xNixO4in a long range by the moderate electric field driven. The continued increasing of oxidation and reduction peaks of CV along with XPS results exhibit surface enrichment process of Ni and XAFS measurement strongly suggests an occupation tendency from octahedral to tetrahedron is along with the migration. The transport of Ni is believed to carry out along the channels parallel with the tetrahedron ion sites and is based on the position exchange of Ni and Co ions whose balance is change when close to the surface. This discovery provides a guide for the future design and optimization of functional material and also reveals some new information in fundamental physics.
     3. Electracatalytic activity of Co3O4controlled by solution ambient
     The investigation of the relationship between the electrocatalytic performance and the electrolyte environment is significant for photoelectrochemical water splitting applications. A quantitative research of Co3O4nanowire arrays is performed to provide a function that describes the influences of solution pH values and reactant diffusion processes on the catalytic activity of water splitting. According to the linear sweep voltammetry and electrochemical impedance spectroscopy, the diffusion process is the major factor that hinders the catalytic current of Co3O4electrode when the solution pH is decreasing. Through improving convection such as stirring, the diffusion layer thickness can be markedly decreased, yielding four to five times enhancement of catalytic current density which indicated a possible way to extend the efficiency of Co3O4to near neutral environment. These results provide the quantitative theoretical supports for maintaining the activities of water splitting catalysts in the design of PEC.
     4. Roles of synchrotron radiation of XAFS on study of ancient ceramics
     The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed the intrinsic relationships among the chemical form of the iron, the firing conditions, and the colors of the ceramics. The results indicated that the coloration for different ceramics depends on the valence states of iron as the main color element in glaze and the proportion of Fe2+and Fe3+is attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.
引文
Asahi R, Morikawa T, Ohwaki T, et al.2001. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science,293:269.
    Batzill M, Morales EH, Diebold U.2006. Influence of Nitrogen Doping on the Defect Formation and Surface Properties of TiO2 Rutile and Anatase [J]. Phys. Rev. Lett.,96:026103.
    Brillet J, Gratzel M, Sivula K.2010. Decoupling Feature Size and Functionality in Solution Processed, Porous Hematite Electrodes for Solar Water Splitting [J]. Nano Lett.,10:4155.
    Butler MA, Ginley DS.1978 Pediction of flatband potentials at semiconductor electrolyte interfaces from atomic electronegativities [J]. J. Electrochem. Soc.,125:228.
    Chen XB, Burda C.2008. The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials [J]. J. Am. Chem. Soc.,130:5018.
    Chen XB, Liu L, Yu PY, Mao SS.2011. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J]. science,331:746.
    Choi WY, Termin A, Hoffmann MR.1994. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J]. J. Phys. Chem.,98:13669
    Duan LL, Fischer A, Xu YH, Sun LC.2009. Isolated Seven-Coordinate Ru(IV) Dimer Complex with [HOHOH]- Bridging Ligand as an Intermediate for Catalytic Water Oxidation [J]. J. Am. Chem. Soc.,131:10397.
    Gai YQ, Li JB, Li SS, Xia JB, Wei SH.2009. Design of Narrow-Gap TiO2:A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity [J]. Phys. Rev. Lett.102: 036402.
    Gratzel M.2001. Photoelectrochemical cells [J]. Nature,414:338.
    Jiao F. Frei H,2009. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts [J]. Angew. Chem. Int. Ed.,48:1841.
    Kanan MW, Nocera DG.2008. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co 2+[J]. Science,321:1072.
    Kay A, Cesar I, Gratzel M.2006. Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight:Nanostructure-Directing Effect of Si-Doping [J]. J. Am. Chem. Soc., 128:15714.
    Khan SUM. Al-Shahry M, Ingler WB.2002. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science.297:2243
    Lewis NS, Nocera DG.2006. Powering the planet:Chemical challenges in solar energy utilization [J]. PNAS.103:15729.
    Li YG, Hasin P, Wu YY.2010. NixCo3-xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution [J]. Adv. Mater,22:1926.
    Lin YJ, Yuan GB, Sheehan S, Zhou S, Wang DW.2011. Hematite-based solar water splitting: challenges and opportunities [J]. Energy Environ. Sci.,4:4862.
    Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y.2011. Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting [J]. Nano Lett.,11:2119.
    Mavroides JG, Kafalas JA, Kolesar DF.1976. Photoelectrolysis of water in cells with SrTiO3 anodes [J]. Appl. Phys. Lett.28:241.
    Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Home MD, Glasscock JA.1999. Efficiency of solar water splitting using semiconductor electrodes [J]. Int. J. Hydrogen Energy,31:2006.
    Nakagawa T, Bjorge NS, Murray RW.2009. Electrogenerated IrOx Nanoparticles as Dissolved Redox Catalysts for Water Oxidation [J]. J. Am. Chem. Soc.,131:15578.
    Nocera DG.2010. "Fast food" energy [J]. Energy Environ. Sci.,3:993
    Roy P, Berger S, Schmuki P.2011. TiO2 Nanotubes:Synthesis and Applications [J]. Angew. Chem. Int. Ed.,50:2904.
    Shankar K, Basham Jl, Allam NK, Varghese OK. Mor GK, Feng XJ, Paulose M, Seabold JA, Choi K.S, Grimes CA.2009. Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry [J]. J. Phys. Chem. C,113:6327.
    Shinar R, Kennedy JH.1982. Photoactivity of doped alpha-Fe2O3 electrodes [J]. Solar Energy Mater.,6:323.
    Shinar R, Kennedy JH.1983. Competition reactions at alpha-Fe2O3 photo-anodes [J]. J. Electrochem. Soc.,130:860.
    Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M.2010. Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach [J]. J. Am. Chem. Soc.,132:7436.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Hom Y.2011. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles [J]. Science, 334:1383.
    Vayssieres L. Sathe C, Butorin SM, Shun DK, Nordgren J, Guo JH.2005. One dimensional quantum-confinement effect in alpha-Fc2O3 ultrafine nanorod arrays [J]. Adv. Mater.,17: 2320.
    Wang GM, Wang HY, Ling, YC, Tang YC, Yang XY, Fitzmorris RC, Wang CC, Zhang JZ, Li Y. 2011. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting [J]. Nano Lett.,11:3026.
    Woodhouse M, Parkinson BA.2009. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis [J]. Chem. Soc. Rev.,38:197.
    Zhang P, Kleiman-Shwarsctein A, Hu YS, Lefton J, Sharma S, Forman AJ, McFarland E.2011. Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD [J]. Energy Environ. Sci.,4:1020.
    Zhu WG, Qiu XF, Iancu V, Chen XQ, Pan H, Wang W, Dimitrijevic NM, Rajh T, Meyer I11 HM, Paranthaman MP, Stocks GM, Weitering HH, Gu BH, Eres G, Zhang ZY.2009. Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity [J]. Phys. Rev. Lett.103:226401.
    Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M.1999. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy [J].27: 629.
    曹楚南.1985.腐蚀电化学原理[M].北京:化学工业出版社.
    陈栋梁.2004.半导体量子点、金属及金属氧化物纳米颗粒的X射线吸收谱学研究[D].合肥:中国科学技术大学.
    黄昆,韩汝琦.1988.固体物理学[M].北京:高等教育出版社.
    李震宇.2004.新材料物性的第一性原理研究[D].合肥:中国科学技术大学.
    马礼敦,杨福加.2001.同步辐射概论[M].上海:复旦大学出版社.
    潘志云.2006. Ge/Si TiN/Si3N4低维体系的表面和界面研究[D].合肥:中国科学技术大学.
    史同飞.2007.ZnO基稀磁半导体的结构与性能研究[D].合肥:中国科学技术大学.
    孙治湖,2003.Ⅳ-Ⅴ和Ⅳ-Ⅳ族半导体体系和Cr/Ti金属薄膜的X射线谱学研究[D].合肥:中国科学技术大学.
    王其武,刘文汉.1994.X射线吸收精细结构及其应用[M].北京:科学出版社.
    韦世强,孙治湖,潘志云.闫文盛,钟文杰,贺博,谢治,韦正.2007.XAFS在凝聚态物质研究中的应用[J].中国科学技术大学学报,37(4-5):426-440.
    向红军.2006.纳米材料的理论研究及线性标度电子结构方法的发展[D].合肥:中国科学技术大学.
    谢希德,陆栋.1998.固体能带理论[M].上海:复旦大学出版社.
    徐光宪,黎乐民,王德民.2001.量子化学[M].北京:科学出版社.
    闫文盛.2003.机械合金化Fe-Cu体系和高温熔体的EXAFS研究[D].合肥:中国科学技术大学.
    曾谨言.2007.量了力学[M].第4版.北京:科学出版社.
    赵成大.2003.固体量子化学[M].第二版.北京:高等教育出版社.
    Ankudinov AL, Ravel B, Rehr JJ, Conradson SD.1998. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J]. Phys. Rev. B, 58:7565.
    Cao C.1996. Corrosion Science [M].38:2073
    Dreizler RM, Gross EKU.1990. Density functional theory:and approach to the quantum many-body problem [M]., Beijing:World Publishing Co.
    Hohenberg P and Kohn W.1964. Inhomogeneous Electron Gas[J]. Phys. Rev.,136:B864-871.
    Kohn W, Sham LJ.1965. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev.,140:A1133.
    Lee PA, Pendry JB.1975. Theory of the extended x-ray absorption fine structure[J]. Phys. Rev. B, 11:2795.
    Newville M.1995. Local thermodynamic measurements of dilute binary alloys using XAFS[D]. Washington:University of Washington.
    Perdew JP, Wang Y.1992. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B,45:13244.
    Ravel B.1997. Ferroelectric Phase Transitions in Oxide Perovskites Studied by XAFS[D]. Washington:University of Washington.
    Rehr JJ, Stem EA, Mattin RL, et al.1978. Extended x-ray-absorption fine-structure amplitudes—Wave-function relaxation and chemical effects[J]. Phys. Rev. B,17:560.
    Schrodinger E.1926. Quantisierung als Eigenwertproblem. Dritte Mitteilung:Storungstheorie, mit Anwendung auf den Starkeffekt der Balmerlinien [j]. Ann. der. Phys.79:36.
    Stem EA, Bunker BA, Heald SM.1980. Many-body effects on extended x-ray absorption fine structure amplitudes[J]. Phys. Rev. B,21:5521.
    Wang Y, Perdew JP.1991. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling[J]. Phys. Rev. B,44:13298.
    Zabinsky SI, Rehr JJ, Ankudinov AL, Alberse RC, Eller MJ.1995. Multiple-scattering calculations of x-ray-absorption spectra[J]. Phys. Rev. B,52:2995.
    Asahi R, Morikawa T, Ohwaki T, et al.2001. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science,293(5528):269-271.
    Bard AJ, Fox MA.1995. Artificial Photosynthesis:Solar Splitting of Water to Hydrogen and Oxygen[J]. Accounts of Chemical Research,28(3):141-145.
    Bechstein R, Kitta M, Schutte J, et al.2009. Evidence for Vacancy Creation by Chromium Doping of Rutile Titanium Dioxide (110)[J], The Journal of Physical Chemistry C,113(8): 3277-3280.
    Chen X, Mao SS.2007. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chemical Reviews,107(7):2891-2959.
    Choi W, Termin A, Hoffmann MR.1994. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics[J]. The Journal of Physical Chemistry,98(51):13669-13679.
    Di Valentin C, Pacchioni G. Selloni A.2004. Origin of the different photoactivity of N-doped anatase and rutile TiO_{2}[J]. Physical Review B,70(8):085116.
    Di Valentin C, Pacchioni G, Selloni A.2006. Electronic Structure of Defect States in Hydroxylated and Reduced Rutile TiO_{2}(110) Surfaces[J]. Physical Review Letters, 97(16):166803.
    Fox MA, Dulay MT.1993. Heterogeneous photocatalysis[J]. Chemical Reviews,93(1):341-357.
    Fujishima A, Honda K.1972. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,238(5358):37-38.
    Gai Y, Li J, Li S-S, et al.2009. Design of Narrow-Gap TiO_{2}:A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity[J]. Physical Review Letters,102(3): 036402.
    Gaylord TK., Linxwiler JJN.1976. A method for calculating Fermi energy and carrier concentrations in semiconductors[J]. American Journal of Physics,44(4):353-355.
    Hadjiivanov KI, Klissurski DG.1996. Surface chemistry of titania (anatase) and titania-supported catalysts[J]. Chemical Society Reviews,25(1):61-69.
    He J, Liu Q, Sun Z, et al.2010. High Photocatalytic Activity of Rutile TiO2 Induced by Iodine Doping[J]. The Journal of Physical Chemistry C,114(13):6035-6038.
    Heller A.1995. Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films[J]. Accounts of Chemical Research,28(12):503-508.
    Hoffmann MR, Martin ST, Choi W, et al.1995. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews,95(1):69-96.
    Howard CJ, Sabine TM, Dickson F.1991. Structural and thermal parameters for rutile and anatase[J]. Acta Crystallographies Section B,47(4):462-468.
    Ikeda T, Nomoto T, Eda K, et al.2008. Photoinduced Dynamics of TiO2 Doped with Cr and Sb[J]. The Journal of Physical Chemistry C,112(4):1167-1173.
    In S. Orlov A, Berg R, et al.2007. Effective Visible Light-Activated B-Doped and B,N-Codoped TiO2 Photocatalysts[J]. Journal of the American Chemical Society,129(45):13790-13791.
    Irie H, Watanabe Y. Hashimoto K.2003. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders[J]. The Journal of Physical Chemistry B,107(23): 5483-5486.
    Korosi L, Papp S, Bertoti I, et al.2007. Surface and Bulk Composition, Structure, and Photocatalytic Activity of Phosphate-Modified TiO2[J]. Chemistry of Materials,19(19): 4811-4819.
    Khan SUM, Al-Shahry M. Ingler WB.2002. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J]. Science,297(5590):2243-2245.
    King W J, Tseung ACC.1974. The reduction of oxygen on nickel-cobalt oxides—1:The influence of composition and preparation method on the activity of nickel-cobalt oxides[J]. Electrochimica Acta,19(8):485-491.
    Knop OR, K.I.G.:Sutarno, R.;Nakagawa, Y.1968. Canadian Journal of Chemistry 46:3463-3476.
    Korosi L, Dekany I.2006. Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,280(1-3):146-154.
    Kresse G, Furthmuller J.1996. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science,6(1): 15-50.
    Kresse G, Furthmuller J.1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B,54(16):11169-11186.
    Li D, Haneda H, Hishita S, et al.2005. Visible-Light-Driven N-F-Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization[J]. Chemistry of Materials, 17(10):2588-2595.
    Li F. Jiang Y, Xia M. et al.2009. Effect of the P/Ti Ratio on the Visible-Light Photocatalytic Activity of P-Doped TiO2[J]. The Journal of Physical Chemistry C,113(42):18134-18141.
    Lin L, Lin W, Zhu Y, et al.2005. Phosphor-doped Titania & mdash;a Novel Photocatalyst Active in Visible Light[J]. Chemistry Letters,34(3):284-285.
    Lin L,Zheng RY, Xie JL, et al.2007. Synthesis and characterization of phosphor and nitrogen co-doped titania[J]. Applied Catalysis B:Environmental,76(1-2):196-202.
    Linsebigler AL, Lu G. Yates JT.1995. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results[J]. Chemical Reviews,95(3):735-758.
    Liu Q,He J, Mai C, et al.2009. A charge-passivated codoping approach for enhancing ferromagnetism and electron transport on rutile TiO[sub 2](110) surface[J]. Applied Physics Letters,95(5):052508-052503.
    Long R, English NJ.2009. Energetic and Electronic Properties of P Doping at the Rutile TiO2 (110) Surface from First Principles[J]. The Journal of Physical Chemistry C,113(21): 9423-9430.
    Matsumoto Y,Murakami M,Shono T, et al.2001. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide[J]. Science,291(5505):854-856.
    Pearson GL, Bardeen J.1949. Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus[J]. Physical Review,75(5):865-883.
    Perdew JP, Chevary JA,Vosko SH, et al.1992. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B,46(11):6671-6687.
    Raj KJA. Ramaswamy AV, Viswanathan B.2009. Surface Area, Pore Size, and Particle Size Engineering of Titania with Seeding Technique and Phosphate Modification[J]. The Journal of Physical Chemistry C,113(31):13750-13757.
    Randeniya LK, Bendavid A, Martin PJ, et al.2007. Photoelectrochemical and Structural Properties of TiO2 and N-Doped TiO2 Thin Films Synthesized Using Pulsed Direct Current Plasma-Activated Chemical Vapor Deposition[J]. The Journal of Physical Chemistry C, 111(49):18334-18340.
    Subbaraman R, Tripkovic D,Chang K-C, et al.2012. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts[J]. Nat Mater,11(6):550-557.
    Umebayashi T, Yamaki T, Itoh H, et al.2002. Band gap narrowing of titanium dioxide by sulfur doping[J]. Applied Physics Letters,81(3):454-456.
    Van de Walle CG,Neugebauer J.2004. First-principles calculations for defects and impurities: Applications to Ⅲ-nitrides[J]. Journal of Applied Physics,95(8):3851-3879.
    Vanderbilt D.1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B,41(11):7892-7895.
    Xu L. Tang C-Q. Qian J, et al.2010. Theoretical and experimental study on the electronic structure and optical absorption properties of P-doped TiO2[J]. Applied Surface Science, 256(9):2668-2671.
    Yang K, Dai Y, Huang B.2007. Origin of the photoactivity in boron-doped anatase and rutile TiO_{2} calculated from first principles[J]. Physical Review B,76(19):195201.
    Yang K, Dai Y. Huang B.2007. Study of the Nitrogen Concentration Influence on N-Doped TiO2 Anatase from First-Principles Calculations[J]. The Journal of Physical Chemistry C, 111(32):12086-12090.
    Yang K, Dai Y, Huang B.2007. Understanding Photocatalytic Activity of S- and P-Doped TiO2 under Visible Light from First-Principles[J]. The Journal of Physical Chemistry C,111(51): 18985-18994.
    Yu JC, Zhang L, Zheng Z, et al.2003. Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity[J]. Chemistry of Materials,15(11): 2280-2286.
    Zhao W, Ma W, Chen C, et al.2004. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation[J], Journal of the American Chemical Society, 126(15):4782-4783.
    Zheng R, Lin L, Xie J, et al.2008. State of Doped Phosphorus and Its Influence on the Physicochemical and Photocatalytic Properties of P-doped Titania[J]. The Journal of Physical Chemistry C,112(39):15502-15509.
    Zuo F, Wang L, Wu T, et al.2010. Self-Doped Ti3+Enhanced Photocatalyst for Hydrogen Production under Visible Light[J], Journal of the American Chemical Society,132(34): 11856-11857.
    Augustynski J, Koudelka M, Sanchez J, et al.1984. ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,160(1-2):233-248.
    Bard AJ, Fox MA.1995. Artificial Photosynthesis:Solar Splitting of Water to Hydrogen and Oxygen[J]. Accounts of Chemical Research,28(3):141-145.
    Bediako DK, Lassalle-Kaiser B, Surendranath Y, et al.2012. Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst[J]. Journal of the American Chemical Society, 134(15):6801-6809.
    Boggio R, Carugati A, Trasatti S.1987. Electrochemical surface properties of Co304 electrodes[J]. Journal of Applied Electrochemistry,17(4):828-840.
    Burke LD. Murphy OJ.1979. Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,96(1):19-27.
    Che G, Lakshmi BB, Fisher ER, et al.1998. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature,393(6683):346-349.
    Chen L, Guay D, Lasia A.1996. Kinetics of the Hydrogen Evolution Reaction on RuO2 and lrO2 Oxide Electrodes in H2SO4 Solution:An AC Impedance Study[J]. Journal of The Electrochemical Society,143(11):3576-3584.
    Cheng W, He J, Sun Z, et al.2012. Ni-Doped Overlayer Hematite Nanotube:A Highly Photoactive Architecture for Utilization of Visible Light[J]. The Journal of Physical Chemistry C,116(45):24060-24067.
    Di Blasi A, D'Urso C,Baglio V, et al.2009. Preparation and evaluation of RuO2-IrO2, IrO2-Pt and IrO2-Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer[J]. Journal of Applied Electrochemistry,39(2):191-196.
    Dinca M, Surendranath Y. Nocera DG.2010. Nickel-borate oxygen-evolving catalyst that functions under benign conditions[J]. Proceedings of the National Academy of Sciences, 107(23):10337-10341.
    Fujishima A. Honda K.1972. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,238(5358):37-38.
    Gissler W, McEvoy AJ, Graetzel M.1982. The Effect of Sputtered RuO2 Overlayers on the Photoelectrochemical Behavior of CdS Electrodes[J]. Journal of The Electrochemical Society,129(8):1733-1736.
    Jiao F, Frei H.2009. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts[J]. Angewandte Chemie International Edition,48(10): 1841-1844.
    Kanan MW, Nocera DG.2008. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+[J]. Science,321(5892):1072-1075.
    Kanan MW, Surendranath Y, Nocera DG.2009. Cobalt-phosphate oxygen-evolving compound[J]. Chemical Society Reviews,38(1):109-114.
    King WJ, Tseung ACC.1974. The reduction of oxygen on nickel-cobalt oxides—Ⅰ:The influence of composition and preparation method on the activity of nickel-cobalt oxides[J]. Electrochimica Acta,19(8):485-491.
    Lewis NS, Nocera DG.2006. Powering the planet:Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences,103(43):15729-15735.
    Li Y, Hasin P. Wu Y.2010. NixCo3-xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution[J]. Advanced Materials,22(17):1926-1929.
    Li Y, Tan B. Wu Y.2007. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability[J]. Nano Letters,8(1):265-270.
    Metz JG, Nixon PJ. Rogner M, et al.1989. Directed alteration of the D1 polypeptide of photosystem Ⅱ:evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P68O[J]. Biochemistry,28(17): 6960-6969.
    Nikolov I, Darkaoui R,Zhecheva E, et al.1997. Electrocatalytic activity of spinel related cobalties MxCo3-xO4 (M= Li, Ni, Cu) in the oxygen evolution reaction[J]. Journal of Electroanalytical Chemistry,429(1-2):157-168.
    Nozik AJ.1978. Photoelectrochemistry:Applications to Solar Energy Conversion[J]. Annual Review of Physical Chemistry,29(1):189-222.
    Osterloh FE.2007. Inorganic Materials as Catalysts for Photochemical Splitting of Water[J]. Chemistry of Materials,20(1):35-54.
    Palmas S, Ferrara F, Vacca A, et al.2007. Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium[J]. Electrochimica Acta,53(2):400-406.
    Peng Y, He J, Liu Q, et al.2011. Impurity Concentration Dependence of Optical Absorption for Phosphorus-Doped Anatase TiO2[J].The Journal of Physical Chemistry C,115(16): 8184-8188.
    Singh RN, Hamdani M, Koenig JF, et al.1990. Thin films of Co3O4 and NiCo2O4 obtained by the method of chemical spray pyrolysis for electrocatalysis Ⅲ. The electrocatalysis of oxygen evolution[J]. Journal of Applied Electrochemistry,20(3):442-446.
    Subbaraman R, Tripkovic D, Chang K-C, et al.2012. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts[J]. Nat Mater,11(6):550-557.
    Suntivich J. May KJ, Gasteiger HA, et al.2011. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles[J]. Science,334(6061):1383-1385.
    Takashima T, Hashimoto K, Nakamura R.2011. Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO2 Electrocatalysts[J]. Journal of the American Chemical Society,134(3):1519-1527.
    Vass I. Styring S.1991. pH-Dependent charge equilibria between tyrosine-D and the S states in photosystem Ⅱ. Estimation of relative midpoint redox potentials [J]. Biochemistry,30(3): 830-839.
    Xia X-h,Tu J-p, Zhang Y-q, et al.2012. Freestanding Co3O4 nanowire array for high performance supercapacitors[J]. RSC Advances,2(5):1835-1841.
    Yan W, Sun Z, Liu Q, et al.2010. Mediating distribution of magnetic Co ions by Cr-codoping in (Co.Cr):ZnO thin films[J]. Applied Physics Letters,97(4):042504-042503.
    Yang L-Shan S. Loukrakpam R, et al.2012. Role of Support-Nanoalloy Interactions in the Atomic-Scale Structural and Chemical Ordering for Tuning Catalytic Sites[J]. Journal of the American Chemical Society,134(36):15048-15060.
    Yao T, Sun Z, Li Y, et al.2010. Insights into Initial Kinetic Nucleation of Gold Nanocrystals[J]. Journal of the American Chemical Society,132(22):7696-7701.
    Augustynski J, Koudelka M, Sanchez J, et al.1984. ESCA study of the state of iridium and oxygen in electrochemically and thermally formed indium oxide films[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,160(1-2):233-248.
    Bard AJ, Fox MA.1995. Artificial Photosynthesis:Solar Splitting of Water to Hydrogen and Oxygen[J]. Accounts of Chemical Research,28(3):141-145.
    Boggio R, Carugati A. Trasatti S.1987. Electrochemical surface properties of Co3O4 electrodes[J]. Journal of Applied Electrochemistry,17(4):828-840.
    Burke LD, Murphy OJ.1979. Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodesfJ]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,96(1):19-27.
    CheG. Lakshmi BB. Fisher ER, et al.1998. Carbon nanotubule membranes for electrochemical energy storage and production[J], Nature,393(6683):346-349.
    Chen L, Guay D. Lasia A.1996. Kinetics of the Hydrogen Evolution Reaction on RuO2 and IrO2 Oxide Electrodes in H2SO4 Solution:An AC Impedance Study[J]. Journal of The Electrochemical Society,143(11):3576-3584.
    Crawford S, Thimsen E, Biswas P.2009. Impact of Different Electrolytes on Photocatalytic Water Splitting[J]. Journal of The Electrochemical Society,156(5):H346-H351.
    Di Blasi A, D'UrsoC, Baglio V, et al.2009. Preparation and evaluation of RuO2-lrO2, lrO2-Pt and IrO2-Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer[J]. Journal of Applied Electrochemistry,39(2):191-196.
    Dinca M, Surendranath Y. Nocera DG.2010. Nickel-borate oxygen-evolving catalyst that functions under benign conditions[J]. Proceedings of the National Academy of Sciences, 107(23):10337-10341.
    Dogutan DK, McGuire R, Nocera DG.2011. Electocatalytic Water Oxidation by Cobalt(Ⅲ) Hangman β-Octafluoro Corroles[J]. Journal of the American Chemical Society,133(24): 9178-9180.
    El-Deab MSA, M.1.; Mohammad, A. M.; Osaka, T.2007. Electrochem. Commun.,9:2082.
    Fabregat-Santiago F. Barea EM, Bisquert J, et al.2008. High Carrier Density and Capacitance in TiO2 Nanotube Arrays Induced by Electrochemical Doping[J].Journal of the American Chemical Society,130(34):11312-11316.
    Fujishima A, Honda K.1972. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,238(5358):37-38.
    Gerken JB, McAlpin JG, Chen JYC, et al.2011. Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14:The Thermodynamic Basis for Catalyst Structure, Stability, and Activity[J]. Journal of the American Chemical Society,133(36): 14431-14442.
    Gissler W, McEvoy AJ. Graetzel M.1982. The Effect of Sputtered RuO2 Overlayers on the Photoelectrochemical Behavior of CdS Electrodes[J]. Journal of The Electrochemical Society,129(8):1733-1736.
    Gomaa H, Al Taweel AM.2004. Dynamic analysis of mass transfer at vertically oscillating surfaces[J]. Chemical Engineering Journal,102(1):71-82.
    Gomaa H, Al Taweel AM. Landau J.2004. Mass transfer enhancement at vibrating electrodes[J]. Chemical Engineering Journal,97(2-3):141-149.
    Hernandez-Pagan EA. Vargas-Barbosa NM, Wang T, et al.2012. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells[J]. Energy & Environmental Science,5(6):7582-7589.
    lmanishi A. Okamura T, Ohashi N, et al.2007. Mechanism of Water Photooxidation Reaction at Atomically Flat TiO2 (Rutile) (110) and (100) Surfaces:Dependence on Solution pH[J]. Journal of the American Chemical Society,129(37):11569-11578.
    Jiao F, Frei H.2009. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts[J]. Angewandte Chemie International Edition,48(10): 1841-1844.
    Kanan MW, Nocera DG.2008. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+[J]. Science,321 (5892):1072-1075.
    Kanan MW, Surendranath Y, Nocera DG.2009. Cobalt-phosphate oxygen-evolving compound[J]. Chemical Society Reviews,38(1):109-114.
    Kanan MW, Yano J, Surendranath Y, et al.2010. Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy[J]. Journal of the American Chemical Society,132(39):13692-13701.
    Klahr B. Gimenez S, Fabregat-Santiago F, et al.2012. Water Oxidation at Hematite Photoelectrodes:The Role of Surface States[J]. Journal of the American Chemical Society, 134(9):4294-4302.
    Lewis NS, Nocera DG.2006. Powering the planet:Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences,103(43):15729-15735.
    Li Y, Hasin P, Wu Y.2010. NixCo3-xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution[J]. Advanced Materials,22(17):1926-1929.
    Li Y, Tan B, Wu Y.2007. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability[J]. Nano Letters,8(1):265-270.
    Nikolov I, Darkaoui R. Zhecheva E, et al.1997. Electrocatalytic activity of spinel related cobalties MxCo3-xO4 (M= Li, Ni, Cu) in the oxygen evolution reaction[J]. Journal of Electroanalytical Chemistry,429(1-2):157-168.
    Nozik AJ.1978. Photoelectrochemistry:Applications to Solar Energy Conversion[J]. Annual Review of Physical Chemistry,29(1):189-222.
    Satoshi Kaneco KI, Hideyuki Katsumata.2007. Electrochemical reduction of high pressure carbon dioxide ata a Cu electrode in cold methanol with CsOH supporting salt.[J]. Chemical Engineering Journal,128(1):47-50.
    Singh RN, Hamdani M, Koenig JF, et al.1990. Thin films of Co3O4 and NiCo2O4 obtained by the method of chemical spray pyrolysis for electrocatalysis 111. The electrocatalysis of oxygen evolution[J]. Journal of Applied Electrochemistry,20(3):442-446.
    Singh RNS, J. P.; Cong, H. N.; Chartier, P.2006. Int. J. Hydrogen Energy,31:1372.
    Takashima T, Hashimoto K, Nakamura R.2011. Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO2 Electrocatalysts[J]. Journal of the American Chemical Society,134(3):1519-1527.
    Takashima T, Hashimoto K, Nakamura R.2012. Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions[J]. Journal of the American Chemical Society,134(44):18153-18156.
    Trotochaud L, Mills TJ, Boettcher SW.2013. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts[J]. The Journal of Physical Chemistry Letters: 931-935.
    Walter MG. Warren EL, McKone JR, et al.2010. Solar Water Splitting Cells[J]. Chemical Reviews,110(11):6446-6473.
    Xia X-h, Tu J-p. Zhang Y-q, et al.2012. Freestanding Co3O4 nanowire array for high performance supercapacitors[J]. RSC Advances,2(5):1835-1841.
    Yano J, Kern J, Sauer K, et al.2006. Where Water Is Oxidized to Dioxygen:Structure of the Photosynthetic Mn4Ca Cluster[J]. Science,314(5800):821-825.
    Zhong DK, Sun J, Inumaru H, et al.2009. Solar Water Oxidation by Composite Catalyst/a-Fe2O3 Photoanodes[J], Journal of the American Chemical Society,131(17):6086-6087.
    高正耀,王杰,陈显德等,古汝瓷指纹元素散布分析[J].核技术,1997,20(7):399-403.
    李国桢,王俭,李文超等,天青釉的呈色热力学分析[C].李家治,陈显求主编。1989年古陶瓷科学技术国际讨论会论文集。上海:上海科学技术文献出版社,1989,266-271.
    李家治。中国科学技术史陶瓷卷。北京:科学出版社,1998.
    李融武,杨雷,李国霞等,汝瓷着色机理的中子活化分析和Mossbauer谱[J].科学通报,2002,47(4):572-574.
    栾天,毛振伟,王昌燧,邛崃窑彩绘瓷彩绘工艺的SRXRF研究[J].光谱学与光谱分析,2006,26(8):1560-1563.
    王俭,赵海雷,李文超等,用XPS测定汝瓷月白釉挂红中Fe和Cu的形态[J].中国陶瓷,1995,31(5):27-30.
    韦世强,孙治湖,潘志云等,XAFS在凝聚态物质研究中的应用[J].中国科学技术大学学报,2007,37(4-5):426-440.
    杨益民,毛振伟,朱铁权等,EDXRF探针分析古瓷产地的尝试[J].文物保护与考古科学,2003,15(3):1-8.
    杨益民,冯敏,毛振伟等,汝瓷及其仿制品瓷釉的显微结构分析和“汝钧不分”的难题的破解[J].分析测试学报,2005,24(5):16-20
    张斌,赵维娟,李国霞等,宋代著名汝瓷着色元素的中子活化分析[J].郑州大学学报(自然科学版),1999,31(3):45-48.
    张福康.中国古陶瓷的科学。上海:上海人民出版社,2000,60-66
    张茂林,王昌燧,金普军等,用XAFS初探汝瓷釉中Fe的价态[J].核技术,2008,31(9):648-652.
    钟文杰,贺博,李征等,USTCXAFS2.0软件包[J].中国科学技术大学学报,2001,31(3):328-333.
    朱剑,毛振伟,杨益民等,汝瓷成分的线扫描分析[J].核技术,2002,25(10):853-858.
    朱守梅,毛振伟,冯敏等,南宋低岭头越瓷的同步辐射X荧光线扫描分析[J].核技术,2004,27(12):953-957
    朱铁权,王昌燧,毛振伟等,不同窑口古瓷断面能量色散X射线荧光光谱线扫描分析[J].岩矿测试,2007,26(5):381-384
    Calas G, Manceau A and Petiau J 1998 in Synchrotron radiation applications in mineralogy and petrology (ed. A. Barto-Kyriakidis) Theophrastus Publications, Athens, Greece.77-96
    Crozier E D. Impact of the asymmetric pair distribution function in the analysis of XAFS [J]. Physica B:Condensed Matter,1995,209:330.
    Filipponi A, Di Cicco A, Panfilis S D et al. Structure of undercooled liquid Pd probed by X-ray absorption spectroscopy.[J] Phys Rev Lett 1999,83:560-563
    Matsunaga M and Nakai 12004 Archaeometry.46 103
    Ottaviano L, Filipponi A, Di Cicco A. Supercooling of liquid-metal droplets for X-ray absorption spectroscopy investigations [J]. Phys Rev B,1994,49:11749-11758.
    Wei S Q, Oyanagi H, Liu W H et al. Local structure of liquid gallium studied by X-ray absorption fine structure [J].J non-crystalline solids,2000,275(3):160-168
    Ando K.2006. Seeking Room-Temperature Ferromagnetic Semiconductors [J]. Science,312: 1883.
    Beaulac R, Schneider L, Archer P 1, et al.2009. Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots [J]. Science,325:973.
    Kitchen D, Richardella A, Tang JM, et al.2006. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions [J]. Nature,442:436.
    Wallentin J, Anttu N, Asoli D, et al.2013. InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit[J]. Science,339(6123):1057-1060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700