组织培养诱导水稻纯系日本晴(japonica)和93-11(indica),其正反交杂交种和多倍体发生遗传、表观遗传变异以及转座子mPing的激活
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织培养可以诱发基于遗传和表观遗传变异的可遗传的表型变异,这种现象被称为体细胞克隆变异(somaconal variation)。尽管已经有大量工作对组织培养诱导的基因组变异的分子机制以进行了探索研究,但对于水稻纯系,杂交种和多倍体对组织培养的应答是否存在差异以及差异程度的研究却鲜有报道。
     本文研究了两种水稻纯系(不同亚种),二者正反交杂交种F1代和相应多倍体在组织培养条件下发生的遗传变异和表观遗传变异。我们利用扩增片段长度多态性(AFLP)和甲基化敏感扩增多态性(MSAP)两种分子标记技术检测了六个基因型的愈伤组织和再生苗的遗传变异和DNA甲基化变异,发现总体上遗传变异频率高于表观遗传变异频率。对于两种类型的变异,各个基因型之间存在着显著差异,但仅有一种杂交种(N/9)的遗传变异与其他各个基因型表现出极其显著的差异。我们发现两个杂交种之间的遗传变异的差异大于两个纯系亚种之间的差异。两个多倍体之间的遗传变异频率亦存在差异,但差异程度也低于两杂交种之间的差异。对DNA修复和DNA甲基化相关基因的表达水平检测证实,愈伤组织和再生苗中均发生了基因表达变化,部分检测基因的表达变化与遗传变异或表观遗传变异存在相关性。
     本文研究结果表明:水稻体细胞克隆变异中,遗传变异是主要变异类型并伴随表观遗传变异的发生;组织培养导致DNA修复和DNA甲基化相关基因的表达变化,这种变化与遗传变异和表观遗传变异存在相关性;组织培养诱发的遗传和表观遗传变异特点在纯系、杂交种和多倍体种存在本质差异;正反交杂交种之间体细胞克隆变异频率存在显著差异。
Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood.
     We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal Fl hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. Significant genotypic difference was observed in frequencies of both types of alterations, but only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations.
     Out results document that genetic alteration is the major cause of somaclonal variation in rice, which is concomitant epigenetic alteration. Perturbed expression by tissue culture of genes encoding for enzymes involved in DNA repair and DNA methylation is associated with both genetic and epigenetic alterations. There exist fundamental differences among distinct types of genotypes, pure-lines, hybrids and tetraploids, in propensities of generating both genetic and epigenetic alterations under the tissue culture condition. Unexpectedly, parent-of-origin has a conspicuous effect on the alterationfrequencies.
引文
[1]Wang Q M, Wang L. An evolutionary view of plant tissue culture:somaclonal variation and selection[J]. Plant Cell Rep,2012,31:1535-1547.
    [2]E. Miiller P T H B, S. Hartke and H. Lfrz. DNA variation in tissue-culture-derived rice plants[J]. Theor Appl Genet,1990,80:7.
    [3]von Arnold S, Sabala I, Bozhkov P, et al. Developmental pathways of somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture,2002,69:233-249.
    [4]Prange A, Serek M, Bartsch M, et al. Efficient and stable regeneration from protoplasts of Cyclamen coum Miller via somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2010,101:171-182.
    [5]Irikova T, Grozeva S, Rodeva V. Anther culture in pepper(Capsicum annuum L.) in vitro [J]. Acta Physiologiae Plantarum,2011,33:1559-1570.
    [6]Taha R M, Wafa S N. Plant Regeneration and Cellular Behaviour Studies in Celosia cristata Grown In Vivo and In Vitro[J]. The Scientific World Journal,2012,2012:8.
    [7]Grafi G, Avivi Y. Stem cells:a lesson from dedifferentiation[J]. Trends Biotechnol,2004,22: 388-389.
    [8]Phillips R L, Kaeppler S M, Olhoft P. Genetic instability of plant tissue cultures:breakdown of normal controls[J]. Proc Natl Acad Sci USA,1994,91:5222-5226.
    [9]Larkin P J, Scowcroft W R. Somaclonal variation — a novel source of variability from cell cultures for plant improvement[J]. Theoretical and Applied Genetics,1981,60:197-214.
    [10]Hirochika H, Sugimoto K, Otsuki Y, et al. Retrotransposons of rice involved in mutations induced by tissue culture[J]. Proc Natl Acad Sci USA,1996,93:7783-7788.
    [11]Tanurdzic M, Vaughn M W, Jiang H, et al. Epigenomic consequences of immortalized plant cell suspension culture[J]. PLoS Biol,2008,6:2880-2895.
    [12]Krizova K, Fojtova M, Depicker A, et al. Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles[J]. Plant Physiol,2009,149: 1493-1504.
    [13]Jiang C, Mithani A, Gan X, et al. Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes[J]. CurrBiol,2011,21:1385-1390.
    [14]Shan X H. Tissue culture-induced alteration in cytosine methylation in new rice recombinant inbred lines[J]. African Journal of Biotechnology,2012,11.
    [15]Karp A. Somaclonal variation as a tool for crop improvement[J]. Euphytica,1995,85:295-302.
    [16]Linacero R, Rueda J, Esquivel E, et al. Genetic and epigenetic relationship in rye, Secale cereale L., somaclonal variation within somatic embryo-derived plants [J]. In Vitro Cellular & Developmental Biology-Plant,2011,47:618-628.
    [17]Neelakandan A Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications[J]. Plant Cell Rep,2012,31:597-620.
    [18]Miyao A, Nakagome M, Ohnuma T, et al. Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing[J]. Plant Cell Physiol,2012,53:256-264.
    [19]Larkin P J, Ryan S A, Brettell R I S, et al. Heritable somaclonal variation in wheat[J]. Theoretical and Applied Genetics,1984,67:443-455.
    [20]Al-Zahim M A, Ford-Lloyd B V, Newbury H J. Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis[J]. Plant Cell Rep,1999,18:473-477.
    [21]Gao D-Y, Vallejo V, He B, et al. Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2009,98: 187-196.
    [22]Doran P M. Foreign protein production in plant tissue cultures[J]. Current Opinion in Biotechnology,2000,11:199-204.
    [23]Grandbastien M A, Audeon C, Bonnivard E, et al. Stress activation and genomic impact of Tntl retrotransposons in Solanaceae[J]. Cytogenet Genome Res,2005,110:229-241.
    [24]Ngezahayo F, Dong Y S, Liu B. Somaclonal variation at the nucleotide sequence level in rice (Oryza sativa L.) as revealed by RAPD and ISSR markers, and by pairwise sequence analysis[J]. J Appl Genet,2007,48:329-336.
    [25]Kuanar A, Kar B, Acharya L, et al. Nuclear DNA, DNA finger printing and essential oil content variation in callus derived regenerants of Curcuma longa L[J]. The Nucleus,2012,55:101-106.
    [26]Chen D H, Ronald P C. A Rapid DN A Minipreparation Method Suitable for AFLP and Other PCR Applications[J]. Plant Molecular Biology Reporter,1999,17:53-57.
    [27]Gzyl A, Augustynowicz E, Mosiej E, et al. Amplified fragment length polymorphism (AFLP) versus randomly amplified polymorphic DNA (RAPD) as new tools for inter-and intra-species differentiation within Bordetella[J]. J Med Microbiol,2005,54:333-346.
    [28]Bautista G H, Cruz H A, Nesme X, et al. Genomospecies identification and phylogenomic relevance of AFLP analysis of isolated and non-isolated strains of Frankia spp[J]. Syst Appl Microbiol, 2011,34:200-206.
    [29]Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Res,1995,23:4407-4414.
    [30]Kim D S, Lee I S, Hyun D Y, et al. Detection of DNA instability induced from tissue culture and irradiation in Oryza sativa L. by RAPD analysis[J]. J Plant Biotech,2003,5:25-31.
    [31]Winarto B, Rachmawati F, Pramanik D, et al. Morphological and cytological diversity of regenerants derived from half-anther cultures of anthurium[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2011,105:363-374.
    [32]Bairu M, Aremu A, Staden J. Somaclonal variation in plants:causes and detection methods[J]. Plant Growth Regulation,2011,63:147-173.
    [33]Buchanan-Wollaston V, Page T, Harrison E, et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis[J]. The Plant Journal,2005,42:567-585.
    [34]Henderson I R, Jacobsen S E. Epigenetic inheritance in plants[J]. Nature,2007,447:418-424.
    [35]Kaeppler S M, Kaeppler H F, Rhee Y. Epigenetic aspects of somaclonal variation in plants[J]. Plant Molecular Biology,2000,43:179-188.
    [36]Martienssen R A, Kloc A, Slotkin R K, et al. Epigenetic inheritance and reprogramming in plants and fission yeast[J]. Cold Spring Harb Symp Quant Biol,2008,73:265-271.
    [37]Gehring M, Henikoff S. DNA methylation dynamics in plant genomes[J]. Biochim Biophys Acta, 2007,1769:276-286.
    [38]Akimoto K, Katakami H, Kim H J, et al. Epigenetic inheritance in rice plants[J]. Ann Bot,2007, 100:205-217.
    [39]Miguel C, Marum L. An epigenetic view of plant cells cultured in vitro:somaclonal variation and beyond[J]. J Exp Bot,2011,62:3713-3725.
    [40]Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Dev,2002,16:6-21.
    [41]Yaakov B, Kashkush K. Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids[J]. Int J Plant Genomics,2011,2011:569826.
    [42]Penterman J, Uzawa R, Fischer R L. Genetic interactions between DNA demethylation and methylation in Arabidopsis[J]. Plant Physiol,2007,145:1549-1557.
    [43]Miki D, Shimamoto K. De novo DNA methylation induced by siRNA targeted to endogenous transcribed sequences is gene-specific and OsMetl-independent in rice[J]. Plant J,2008,56:539-549.
    [44]Lewis Z A, Adhvaryu K K, Honda S, et al. DNA methylation and normal chromosome behavior in Neurospora depend on five components of a histone methyltransferase complex, DCDC[J]. PLoS Genet,2010,6:e1001196.
    [45]Naik S K, Chand P K. Tissue culture-mediated biotechnological intervention in pomegranate:a review[J]. Plant Cell Rep,2011,30:707-721.
    [46]Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat[J]. Genetics,2012, 192:763-774.
    [47]Soltis P S, Soltis D E. The role of hybridization in plant speciation[J]. Annu Rev Plant Biol,2009, 60:561-588.
    [48]Kapoor A, Agius F, Zhu J K. Preventing transcriptional gene silencing by active DNA demethylation[J]. FEBS Lett,2005,579:5889-5898.
    [49]Cokus S J, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature,2008,452:215-219.
    [50]Beck S, Rakyan V K. The methylome:approaches for global DNA methylation profiling[J]. Trends in Genetics,2008,24:231-237.
    [51]Lister R, O'Malley R C, Tonti-Filippini J, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis[J]. Cell,2008,133:523-536.
    [52]Sato M, Kawabe T, Hosokawa M, et al. Tissue culture-induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3',5'hydroxylase (F3'5'H) promoter[J]. Plant Cell Rep,2011,30:929-939.
    [53]Labra M, Grassi F, Imazio S, et al. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L[J]. Chemosphere,2004,54:1049-1058.
    [54]Zhao X, Chai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids[J]. Plant Science,2007,172:930-938.
    [55]Becker C, Hagmann J, Muller J, et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome[J]. Nature,2011,480:245-249.
    [56]Vroh-Bi I, Anagbogu C, Nnadi S, et al. Genomic characterization of natural and somaclonal variations in bananas (Musa spp.)[J]. Plant Molecular Biology Reporter,2011,29:440-448.
    [57]Miyao A. Target Site Specificity of the Tos17 Retrotransposon Shows a Preference for Insertion within Genes and against Insertion in Retrotransposon-Rich Regions of the Genome[J]. The Plant Cell Online,2003,15:1771-1780.
    [58]Takagi K, Ishikawa N, Maekawa M, et al. Transposon display for active DNA transposons in rice[J]. Genes Genet Syst,2007,82:109-122.
    [59]Ngezahayo F, Xu C M, Wang H Y, et al. Tissue culture-induced transpositional activity of mPing is correlated with cytosine methylation in rice[J]. BMC Plant Biol,2009,9:91.
    [60]Zemach A, Kim M Y, Silva P, et al. Local DNA hypomethylation activates genes in rice endosperm[J].Proc Natl Acad Sci USA,2010,107:18729-18734.
    [61]Meyer P. DNA methylation systems and targets in plants[J]. FEBS Lett,2011,585:2008-2015.
    [62]Pena-Ramirez Y, Juarez-Gomez J, Gonzalez-Rodriguez J, et al. Tissue Culture Methods for the Clonal Propagation and Genetic Improvement of Spanish Red Cedar (Cedrela odorata). In: Loyola-Vargas V M, Ochoa-Alejo N, editors. Plant Cell Culture Protocols.,2012,129-141.
    [63]Wang Q-M, Gao F-Z, Gao X, et al. Regeneration of Clivia miniata and assessment of clonal fidelity of plantlets[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2012,109:191-200.
    [64]张东旭,周增产,卜云龙,et al.植物组织培养技术应用研究进展[J].北方园艺,2011,06:209-213.
    [65]袁云香,张莹.水稻组织培养研究进展[J].江苏农业科学,2010,1:83-86.
    [66]肖哲丽,柳金凤.植物组织培养的研究进展及新技术应用[J].宁夏农业科技,2011,01:13-14.
    [67]Sahoo K K, Tripathi A K, Pareek A, et al. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars[J]. Plant Methods,2011,7:49.
    [68]李永欣,王义强.植物组织培养的应用研究概述[J].江苏林业科技,2005,32:44-46.
    [69]Toki S, Hara N, Ono K, et al. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice[J]. Plant J,2006,47:969-976.
    [70]Longin C F, Muhleisen J, Maurer H P, et al. Hybrid breeding in autogamous cereals[J]. Theor Appl Genet,2012,125:1087-1096.
    [71]高东迎,郭士伟,李霞,et al.水稻体细胞无性系变异[J].植物学通报,2002,6:749-755.
    [72]Zhang M, Xu C, Yan H, et al. Limited tissue culture-induced mutations and linked epigenetic modifications in F hybrids of sorghum pure lines are accompanied by increased transcription of DNA methyltransferases and 5-methylcytosine glycosylases[J]. Plant J,2009,57:666-679.
    [73]Yu X M, Li X 1, Zhao X X, et al. Tissue culture-induced genomic alteration in maize (Zea mays) inbred lines and F1 hybrids[J]. Annals of Applied Biology,2011,158:237-247.
    [74]Otto S P. The evolutionary consequences of polyploidy[J]. Cell,2007,131:452-462.
    [75]Adams K L, Wendel J F. Polyploidy and genome evolution in plants[J]. Curr Opin Plant Biol,2005, 8:135-141.
    [76]Sankoff D, Zheng C, Zhu Q. Polyploids, genome halving and phylogeny[J]. Bioinformatics,2007, 23:i433-439.
    [77]Udall J A, Swanson J M, Nettleton D, et al. A novel approach for characterizing expression levels of genes duplicated by polyploidy [J]. Genetics,2006,173:1823-1827.
    [78]Mueller U G. Wolfenbarger L L. AFLP genotyping and fingerprinting[J]. Trends in Ecology & Evolution,1999,14:389-394.
    [79]Foll M, Gaggiotti O. A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers:A Bayesian Perspective[J]. Genetics,2008,180:977-993.
    [80]Meudt H M, Clarke A C. Almost Forgotten or Latest Practice? AFLP applications, analyses and advances[J]. Trends in Plant Science,2007,12:106-117.
    [81]McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases[J]. Nucleic Acids Research,1994,22: 3640-3659.
    [82]Miguel C, Marum L. An epigenetic view of plant cells cultured in vitro:somaclonal variation and beyond[J]. J Exp Bot,2011,62:3713-3725.
    [83]Rodriguez-Enriquez J, Dickinson H G, Grant-Downton R T. MicroRNA misregulation:an overlooked factor generating somaclonal variation?[J]. Trends Plant Sci,2011,16:242-248.
    [84]Kaeppler S M, Kaeppler H F, Rhee Y. Epigenetic aspects of somaclonal variation in plants[J]. Plant Mol Biol,2000,43:179-188.
    [85]Rhee Y, Sekhon R S, Chopra S, et al. Tissue culture-induced novel epialleles of a Myb transcription factor encoded by pericarp colorl in maize[J]. Genetics,2010,186:843-855.
    [86]Jiang Y, Cai Z, Xie W, et al. Rice functional genomics research:progress and implications for crop genetic improvement[J]. Biotechnol Adv,2012,30:1059-1070.
    [87]Madlung A, Comai L. The effect of stress on genome regulation and structure[J]. Ann Bot,2004, 94:481-495.
    [88]Lisch D. Epigenetic regulation of transposable elements in plants[J]. Annu Rev Plant Biol,2009, 60:43-66.
    [89]Lisch D. How important are transposons for plant evolution?[J]. Nat Rev Genet,2012,14:49-61.
    [90]Pecinka A, Mittelsten Scheid O. Stress-induced chromatin changes:a critical view on their heritability[J]. Plant Cell Physiol,2012,53:801-808.
    [91]Sabot F, Picault N, El-Baidouri M, et al. Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data[J]. Plant J,2011,66:241-246.
    [92]Hancock C N, Zhang F, Wessler S R. Transposition of the Tourist-MITE mPing in yeast:an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily[J]. Mob DNA,2010,1: 5.
    [93]Wessler S R. Transposable elements and the evolution of eukaryotic genomes[J]. Proc Natl Acad Sci USA,2006,103:17600-17601.
    [94]Feschotte C, Jiang N, Wessler S R. Plant transposable elements:where genetics meets genomics[J]. Nat Rev Genet,2002,3:329-341.
    [95]Yoshida K, Aoki M (2008) DNA transposable elements research. New York:Nova Science Publishers, p. p.
    [96]Holligan D, Zhang X, Jiang N, et al. The transposable element landscape of the model legume Lotus japonicus[J]. Genetics,2006,174:2215-2228.
    [97]Slotkin R K, Martienssen R. Transposable elements and the epigenetic regulation of the genome[J]. Nat Rev Genet,2007,8:272-285.
    [98]Ammiraju J S, Zuccolo A, Yu Y, et al. Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza[J]. Plant J,2007,52:342-351.
    [99]Baucom R S, Estill J C, Leebens-Mack J, et al. Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome[J]. Genome Res,2009,19:243-254.
    [100]Hirochika H, Fukuchi A, Kikuchi F. Retrotransposon families in rice[J]. Mol Gen Genet,1992, 233:209-216.
    [101]Kashkush K, Khasdan V. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes[J]. Genetics,2007,177:1975-1985.
    [102]Gao D, Jimenez-Lopez J C, Iwata A, et al. Functional and structural divergence of an unusual LTR retrotransposon family in plants[J]. PLoS One,2012,7:e48595.
    [103]Ma J, Devos K M, Bennetzen J L. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice[J]. Genome Res,2004,14:860-869.
    [104]Picault N, Chaparro C, Piegu B, et al. Identification of an active LTR retrotransposon in rice[J]. Plant J,2009,58:754-765.
    [105]Takahashi K, Terai Y, Nishida M, et al. A novel family of short interspersed repetitive elements (SINEs) from cichlids:the patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika[J]. Mol Biol Evol,1998,15: 391-407.
    [106]Martin S L. Nucleic acid chaperone properties of ORFlp from the non-LTR retrotransposon, LINE-1[J]. RNA Biol,2010,7:706-711.
    [107]Tu Z. Maque, a family of extremely short interspersed repetitive elements:characterization, possible mechanism of transposition, and evolutionary implications[J]. Gene,2001,263:247-253.
    [108]Grandbastien M.A. Activation of plant retrotransposons under stress conditions [J]. Trends in Plant Science,1998,5:181-187.
    [109]Takata M, Kiyohara A, Takasu A, et al. Rice transposable elements are characterized by various methylation environments in the genome[J]. BMC Genomics,2007,8:469.
    [110]Oki N, Yano K, Okumoto Y, et al. A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica[J]. Genes Genet Syst,2008,83:321-329.
    [111]Menzel G, Dechyeva D, Keller H, et al. Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L[J]. Chromosome Res,2006,14: 831-844.
    [112]Chen Y, Zhou F, Li G, et al. MUST:a system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi[J]. Gene, 2009,436:1-7.
    [113]Yang G, Nagel D H, Feschotte C, et al. Tuned for transposition:molecular determinants underlying the hyperactivity of a Stowaway MITE[J]. Science,2009,325:1391-1394.
    [114]Jiang N, Feschotte C, Zhang X, et al. Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs)[J]. Curr Opin Plant Biol,2004,7:115-119.
    [115]Moreno-Vazquez S, Ning J, Meyers B C. hATpin, a family of MITE-like hAT mobile elements conserved in diverse plant species that forms highly stable secondary structures [J]. Plant Mol Biol, 2005,58:869-886.
    [116]Huang J, Zhang K, Shen Y, et al. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice[J]. Genomics,2009,93:274-281.
    [117]Langer M, Sniderhan L F, Grossniklaus U, et al. Transposon excision from an atypical site:a mechanism of evolution of novel transposable elements[J]. PLoS One,2007,2:e965.
    [118]Huang X, Lu G, Zhao Q, et al. Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice[J]. Plant Physiol,2008,148:25-40.
    [119]Feschotte C, Pritham E J. DNA transposons and the evolution of eukaryotic genomes[J]. Annu Rev Genet,2007,41:331-368.
    [120]Hayward A, Ghazal A, Andersson G, et al. ZBED Evolution:Repeated Utilization of DNA Transposons as Regulators of Diverse Host Functions[J]. PLoS One,2013,8:e59940.
    [121]Le Q H, Wright S, Yu Z, et al. Transposon diversity in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2000,97:7376-7381.
    [122]Blumenstiel J P. Evolutionary dynamics of transposable elements in a small RNA world[J]. Trends Genet,2011,27:23-31.
    [123]Murata M, Uchida T, Yang Y, et al. A large inversion in the linear chromosome of Streptomyces griseus caused by replicative transposition of a new Tn3 family transposon[J]. Arch Microbiol,2011, 193:299-306.
    [124]Watanabe S, Ito T, Morimoto Y, et al. Precise excision and self-integration of a composite transposon as a model for spontaneous large-scale chromosome inversion/deletion of the Staphylococcus haemolyticus clinical strain JCSC1435[J]. J Bacteriol,2007,189:2921-2925.
    [125]Wang F, Li Z, Fan J, et al. An Ac transposon system based on maize chromosome 4S for isolating long-distance-transposed Ac tags in the maize genome[J]. Genetica,2010,138:1261-1270.
    [126]Yu C, Han F, Zhang J, et al. A transgenic system for generation of transposon Ac/Ds-induced chromosome rearrangements in rice[J]. Theor Appl Genet,2012,125:1449-1462.
    [127]Zwaal R R, Broeks A, van Meurs J, et al. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank[J]. Proc Natl Acad Sci USA,1993,90: 7431-7435.
    [128]Wiatrowski H A, Carlson M. Identification of a mutant locus by noncomplementation of a transposon insertion library in Saccharomyces cerevisiae[J]. Genetics,2001,158:1825-1827.
    [129]Sironi M, Menozzi G, Comi G P, et al. Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns[J]. Genome Biol, 2006,7:R120.
    [130]Wang X, Weigel D, Smith L M. Transposon variants and their effects on gene expression in Arabidopsis[J]. PLoS Genet,2013,9:e1003255.
    [131]Batut P, Dobin A, Plessy C, et al. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression[J]. Genome Res,2013,23: 169-180.
    [132]Song G, Li Q, Long Y, et al. Effective expression-independent gene trapping and mutagenesis mediated by Sleeping Beauty transposon[J]. J Genet Genomics,2012,39:503-520.
    [133]Chen W, VanOpdorp N, Fitzl D, et al. Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midribl mutation in maize[J]. Plant Mol Biol,2012,80:289-297.
    [134]Kim H S, Kim N R, Kim W, et al. Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae[J].Appl Microbiol Biotechnol,2012,95: 531-540.
    [135]Studer A, Zhao Q, Ross-Ibarra J, et al. Identification of a functional transposon insertion in the maize domestication gene tb 1 [J]. Nat Genet,2011,43:1160-1163.
    [136]Parti R P, Shrivastava R, Srivastava S, et al. A transposon insertion mutant of Mycobacterium fortuitum attenuated in virulence and persistence in a murine infection model that is complemented by Rv3291c of Mycobacterium tuberculosis[J]. Microb Pathog,2008,45:370-376.
    [137]Chalker D L, Yao M C. DNA elimination in ciliates:transposon domestication and genome surveillance[J]. Annu Rev Genet,2011,45:227-246.
    [138]Saze H, Kakutani T. Differentiation of epigenetic modifications between transposons and genes[J]. Curr Opin Plant Biol,2011,14:81-87.
    [139]Naito K, Zhang F, Tsukiyama T, et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression[J]. Nature,2009,461:1130-1134.
    [140]Jiang N, Bao Z, Zhang X, et al. An active DNA transposon family in rice[J]. Nature,2003,421: 163-167.
    [141]Kikuchi K, Terauchi K, Wada M, et al. The plant MITE mPing is mobilized in anther culture[J]. Nature,2003,421:167-170.
    [142]Shan X, Liu Z, Dong Z, et al. Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.)[J]. Mol Biol Evol,2005,22:976-990.
    [143]Lin X, Long L, Shan X, et al. In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization[J]. J Exp Bot,2006,57:2313-2323.
    [144]Ngezahayo F, Xu C, Wang H, et al. Tissue culture-induced transpositional activity of mPing is correlated with cytosine methylation in rice[J]. BMC Plant Biol,2009,9:91.
    [145]Shan X H, Ou X F, Liu Z L, et al. Transpositional activation of mPing in an asymmetric nuclear somatic cell hybrid of rice and Zizania latifolia was accompanied by massive element loss[J]. Theor Appl Genet,2009,119:1325-1333.
    [146]Naito K, Cho E, Yang G, et al. Dramatic amplification of a rice transposable element during recent domestication[J]. Proc Natl Acad Sci USA,2006,103:17620-17625.
    [147]Ohmori Y, Abiko M, Horibata A, et al. A transposon, Ping, is integrated into intron 4 of the DROOPING LEAF gene of rice, weakly reducing its expression and causing a mild drooping leaf phenotype[J]. Plant Cell Physiol,2008,49:1176-1184.
    [148]Zhang X, Jiang N, Feschotte C, et al. PIF-and Pong-like transposable elements:distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements[J]. Genetics,2004,166:971-986.
    [149]Yang G, Zhang F, Hancock C N, et al. Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2007,104: 10962-10967.
    [150]Monden Y, Naito K, Okumoto Y, et al. High potential of a transposon mPing as a marker system in japonica x japonica cross in rice[J]. DNA Res,2009,16:131-140.
    [151]Hancock C N, Zhang F, Floyd K, et al. The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean[J]. Plant Physiol,2011,157:552-562.
    [152]Nakazaki T, Okumoto Y, Horibata A, et al. Mobilization of a transposon in the rice genome[J]. Nature,2003,421:170-172.
    [153]R:A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna[M].2011
    [154]Irizarry R A, Bolstad B M, Collin F, et al. Summaries of Affymetrix GeneChip probe level data[J]. Nucleic Acids Res,2003,31:e15.
    [155]Bolstad B M, Irizarry R A, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[J]. Bioinformatics,2003,19:185-193.
    [156]Irizarry R A, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data[J]. Biostatistics,2003,4:249-264.
    [157]Smyth G K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments[J], Stat Appl Genet Mol Biol,2004,3:Article3.
    [158]Benjamini Y, Drai D, Elmer G, et al. Controlling the false discovery rate in behavior genetics research[J]. Behav Brain Res,2001,125:279-284.
    [159]Wang L, Xie W, Chen Y, et al. A dynamic gene expression atlas covering the entire life cycle of rice[J]. Plant J,2010,61:752-766.
    [160]Zhou Du X Z, Yi Ling, Zhenhai Zhang, and Zhen Su. agriGO:a GO analysis toolkit for the agricultural community [J]. Nucleic Acids Research,2010, Vol.38.
    [161]Wessler S R, Carrington J C. The consequences of gene and genome duplication in plants[J]. Curr Opin Plant Biol,2005,8:119-121.
    [162]Karki S, Tsukiyama T, Okumoto Y, et al. Analysis of distribution and proliferation of mPing family transposons in a wild rice (Oryza rufipogon Griffi)[J]. Breeding Science,2009,59:297-307.
    [163]Shen S, Wang Z, Shan X, et al. Alterations in DNA methylation and genome structure in two rice mutant lines induced by high pressure[J]. Science in China Series C,2006,49:97-104.
    [164]Long L, Ou X, Liu J, et al. The spaceflight environment can induce transpositional activation of multiple endogenous transposable elements in a genotype-dependent manner in rice[J]. J Plant Physiol, 2009,166:2035-2045.
    [165]Takata M, Kiyohara A, Takasu A, et al. Rice transposable elements are characterized by various methylation environments in the genome[J]. BMC Genomics,2007,8:469.
    [166]Kakutani T, Kato M, Kinoshita T, et al. Control of development and transposon movement by DNA methylation in Arabidopsis thaliana[J]. Cold Spring Harb Symp Quant Biol,2004,69:139-143.
    [167]Saze H, Kakutani T. Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1 [J]. EMBO J,2007,26:3641-3652.
    [168]Kantama L, Junbuathong S, Sakulkoo J, et al. Epigenetic changes and transposon reactivation in Thai rice hybrids[J]. Molecular Breeding,2013.
    [169]Bucher E, Reinders J, Mirouze M. Epigenetic control of transposon transcription and mobility in Arabidopsis[J]. Curr Opin Plant Biol,2012,15:503-510.
    [170]Eun C H, Takagi K, Park K I, et al. Activation and epigenetic regulation of DNA transposon nDartl in rice[J]. Plant Cell Physiol,2012,53:857-868.
    [171]Brennecke J, Malone C D, Aravin A A, et al. An epigenetic role for maternally inherited piRNAs in transposon silencing[J]. Science,2008,322:1387-1392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700