污染土壤修复基准建立的方法体系、案例研究与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了今后我国在国家层面上建立污染土壤修复基准系统,促进我国国家生态安全体系的建立,本研究对国外发达国家建立污染土壤修复基准的情况进行了系统详细的文献检索。结合一些发达国家土壤修复标准以及我国土壤污染实际情况,提出建立污染土壤修复标准应从多方面综合考虑。并且以铅和乙草胺两种在我国东北地区普遍存在的污染物作为研究对象,首次开展区域水平上建立污染土壤修复基准方法和修复效果评判的尝试性研究。
     通过农作物(小麦、大豆和白菜)发芽毒理实验,以食品卫生标准为反推基础的农作物毒物吸收实验,土壤动物毒理实验,生化水平毒理实验,土壤化学毒理实验和土壤酶学水平效应实验得出对土壤中主要组分和功能不产生影响,棕壤中乙草胺和铅浓度阈值。其基准不是所谓的不产生不良或有害影响的最大单一浓度或单一的无作用剂量,而是一个基于不同保护对象的多目标函数或一个范围值,所以对于不同的修复要求和保护对象确定乙草胺的修复阈值为0.4~12 mg·kg-1,铅的修复阈值为3.98~793 mg·kg-1。
     以沈阳某冶炼厂废弃厂区重金属污染监测为依据,采用美国环保局(US EPA)最新的人类健康风险评价标准方法对冶炼厂废弃地块污染土壤进行评价的结果显示:冶炼厂厂区内土壤污染非常严重;无论是工业用地假设还是休闲用地假设,由无机Cu造成的人类健康风险在整个风险中所占的比例最大;单纯依靠US EPA的健康风险评价并不能正确指示出土壤的潜在风险。运用土壤酶、暴露在土壤环境中的陆生植物以及与土壤环境直接接触的无脊椎动物等可靠的生态毒理指标,来判定、评价污染土壤的修复效果是可行的。
With the rapid development of remediation technology for contaminated soils in China in recent years, the remediation standard has become a choke point to judge the effectivity of the remediation of the contaminated soils. In this paper, we studied the remediation standards of the other countries and analyzed the disadvantages of Environmental quality standard for soils in China. It was emphasized that the choice of contaminations, rules of detection, classified contaminated soils, protection of groundwater and toxicological risk assessments should be fully considered in the enactment of remediation standards. We studied the Pb and acetochlor which were pollutions existed widely in northeastern China. It is the first attempt to enactment a remediation standards and assessment about remedial soil in area.
     By testing the inhibition of seed germination and root elongation of crops (Chinese cabbage (Brassica pekimensis), soybean (Glycine max), wheat (Triticum aestivum)), by test of the food quality standard and a maximum acceptable damage of wheat (Triticum aestivum), by testing the toxicological effects on earthworms, by testing the physiological mechanisms in wheat that stressed by Pb and acetochlor, and by testing the transfer of Pb in soil and by test the effect of soil enzyme activities, we got the remediation of standard of Pb and acetochlor were 3.98~793 mg·kg-1 and 0.4~12 mg·kg-1。They are the strictest standard for agriculture soil. There is no distinct effect on all the part of the soil system.
     On the basis of investigation of heavy metals pollution in the Shenyang smeltery site, we assessed the human health risk by using the United States Environmental Protection Agency methodologies for human health risk assessment. For the defined future land use patterns, the industrial (I) and recreational (II) exposure scenarios were assumed and evaluated. The results of the human health risk assessment indicated that the soil was serious pollution and the potential health risks at Shenyang smeltery soil were mainly associated with the exposure to copper (industrial and recreational scenarios). The risk-based remedial goals calculated under the industrial scenario were lower than environment quality risk assessment criteria for soil at manufacturing facilities of China. The human health risk assessment only can not completely express the potential risk of soil. But the test of seed germination, crop growth, and the toxicological effects on earthworms can demonstrate the holistic characteristic of soil quality.
引文
1. Achazia RK, Flennera C, Livingstone DR, et al. Cytochrome P450 and dependent activities in unexposed and PAH-exposed terrestrial annelids. Comparative Biochemistry and Physiology(Part C), 1998,121:339~350
    2. Alam M.G.M., Snow E.T., Tanaka A. Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. The Science of the Total Environment. 2003, 308:83~96.
    3. Amit C, Banerjee RN. Determination of lead and other metals in a residential area of greater Calcutta. The Science of the Total Environment. 1999, 227:175~185.
    4. Asada, A. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant. 1992, 85, 235~241.
    5. ASTM. Standard guide for risk-based corrective action applied at petroleum release sites, E1739-95. American Society for testing and Materials, West Conshohocken, PA, USA, 1995
    6. ASTM. Standard provisional guide for risk-based corrective action, PS104-98. American Society for Testing and Materials, West Conshohocken, PA, USA. ,1998
    7. Bachman. Threshold values in the context of European soil protection policies. Keya choudhury, Ecologic, Berlin, 1999.
    8. Badula L, Pacha J, S1iwa U. Effect of zinc and copper on soil enzyme activity. Acta Biol Katowice, 1980,375: 128~142.
    9. Barnthonse L W, SuterⅡG W. Use manual for ecological risk assessment. ORNL, 1988, 6251
    10. Bart V, Jurgen S. Earthworm biomass as additional information for risk assessment of heavy metal biomagnigication: a case study for dredged sediment-derived soils and polluted floodplain soils. Environmental Pollution 2004.129: 363~375
    11. Beath JM. Consider phytoremediation for waste site cleanup. Chem Eng Prog, 2000, 96(7):61~69
    12. Benitez E, Nogales R, Elvira C et al., Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida. J. Bioresource Technology, 1999,67: 297~303
    13. Berkovits LA, Helguero FP. Copper toxicity and copper-zinc interaction. The Science of the Total Environment, 1998,221(1):1~10
    14. Bradford, M.M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein~dye binding. Anal. Biochem., 1976,72,248~254
    15. Bruce P. Lanphear, David A. Burgoon, Steven W. Rust. Environmental exposures to lead and urban children’s blood lead levels. Environmental research section A, 1998, 76:120~130.
    16. Bullard RD. Dumping in Dixie: Race, Class, and Environmental Quality. 3rd edition. New York: Westview Press. 2000, 234
    17. Cabrera G L, Rodriguez DMG. Genotoxicity of soil from farmland irrigated with waste water using three plant bioassays. Mutatiion Research,1999, 426:211~214
    18. Calow P. Ecological risk assessment: risk for what? How do we decide? Ecotoxicology and Environmental Safety, 1998, 40: 15~18
    19. Chang L W, Meier J R, Smith M K. Application of plant and earthworm bioassays to evaluate remediation of a leadcontaminated soil. Arch Environ Toxicol, 1997, 32: 166~171
    20. Chapman PM. Integrating toxicology and ecology: Putting the“eco”into ecotoxicology. Marine Pollution Bulletin, 2002, 44(1):7~15
    21. Cheek A O, Ide C F. Alteration of lepard frog (Rana pipiens) mtamorphosis by the herbicide acetochlor. Archives of Environmental Contamination and Toxicology, 1999, 37(1): 70~77
    22. Chen CL, Liao M, Huang CY. Effect of combined pollution by heavy metals on soil enzymatic activities in areas polluted by tailings from Pb-Zn-Ag mine. Journal of Environmental Sciences, 2005, 17(4):637~640
    23. Chen SK, Edwards C A, Subler Scott. A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth. Applied Soil Ecology, 2001, 18:69~82.
    24. Cheryl E H, Jason A S, Rose A, Stephen A. S, et al. Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils. Journal of hazardous materials, 2005, 120:101~111
    25. Chip A and Lena M. Concentration, pH, and Surface Charge Effects on Cadmium and Lead Sorption in Three Tropical Soils. Environ. Qual. 2002,31:581~589.
    26. Coleman S, Linderman L S. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environmental Health Perspectives, 2000, 108(12): 1151~1157
    27. Depledge MH, Fossi MC, Leonzio C. Nondestructive biomarkers in vertebrates. Lewis Publishers, Boca Raton, FL,1993,271~295
    28. Dick W A, Cheng L, Wang P. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology & Biochemistry, 2000, 32:1915~1919
    29. Dong B, Sang WL, Jiang X. Effects of aluminum on physiological metabolism and antioxidant system of wheat (Triticum aestivum L.). Chemosphere, 2002,47:87~92
    30. Duan C, Hu B, Jiang X, et al. Genotoxicity of water samples from Dianchi lake detected by the Vicia faba micronucleus test. Mutation Research, 1999, 426: 121~125
    31. Edelgaard, L., Dahlstr?m, K.. Denmark. In: Ferguson, C., Kasamas, H.(Eds.), Risk Assessment for Contaminated Sites in Europe, vol.2. Policy Frameworks. Nottingham, LQM Press, 1999, 29~39.
    32. Eduardo F S, Zhang C S, et al. Hazard assessment on arsenic and lead in soils of Castromil gold mining area, Portugal. Applied Geochemistry, 2004, 19:887~898
    33. Eleonora W, Dawn I, Rafal K, Jerzy S. Human health risk assessment case study: an abandoned metal smelter site in Poland. Chemosphere 2002,47 :507~515
    34. Erika K.W, Perttu K. 2002 Effects of nutrient supply and soil cadmium concentration on cadmium removal by willow. Biomass and Bioenergy. 2002, 23: 415~426.
    35. European Committee on Radiation Risk. Criteria for“clearance”controlling the release of solid materials of very low average activity for reuse recycling and disposal. 2003.
    36. Fent K. Ecotoxicological probema associated with contaminated sites. Toxicology Letters, 2003,140/141:353-365
    37. Fernández MD, Vega MM, Tarazona JV. Risk-based ecological soil quality criteria for the characterization of contaminated soils: Combination of chemical and biological tools. Science of the Total Environmenta, 2006, 366:466-484
    38. Fletcher J. A brief overview of plant toxicity testing In Gorsuch JW(eds) Plants for toxicity assessment, 22 end vol. ASTM STP 1115, American Society for Testing and Materials, Philadelphia, 1991.5~11
    39. Foyer, C. H., Lelandais, M., Kunert, K. J. Photooxidative stress in plants. Physiol. Plant. 1994, 92, 696~717
    40. Gianfreda L, Bollag JM. Influence of natural and anthropogenic factors on enzyme activity in soil. In: Stotzky G, Bollag J-M. (Eds), Soil Biochemistry, vol. 9. Marcel Dekker, New York. 1996; 123~193.
    41. Goksoyr A, Beyer J, Egass E, et al. Biomarker responses in flounder (Platichthys flesus) and their use in pollution monitoring. Mar Pollut Bull, 1997,33:36~45
    42. Gong H J, Zhu X Y, Chen K, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 2005, 169,313~321.
    43. Greene JC, Bartels GL, Warren-Hicks WJ. Protocols for short-term toxicity screening of hazardous waste site. US Environmental Protection Agency. 1998, EPA/600/3-88/029
    44. Guo G.L., Zhou Q.X., Koval P.V. et.al. Speciation distribution of Cd, Pb, Cu, and Zn in contaminated Phaeozem in north-east China using single and sequential extraction procedures. Australian Journal of Soil Research. 2006, 44:135~142.
    45. Hegedüs, A., Erdei, S., Horvàth, G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedling under cadmium stress. Plant Sci. 2001, 160: 1085~1093. 46. HJ/T25-1999
    47. Huang Q, Shindo H. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biology and Biochemistry, 2000, 32: 1885~1892
    48. Huang Q Y, Chen W L, Gianfreda L., et al, Adsorption of acid phosphatase on minerals and soil colloids in presence of citrate and phosphate. Pedosphere. 2002, 12(4):339~348.
    49. International Organization for Standardizatiion ( ISO ) . Soil quality-Determination of the effects of pollutants on soil flora. Part 1: method for the measurement of inhibition of root growth. 1993. ISO 11269-1
    50. International Organization for Standardization (ISO). Soil quality-Determination of the effects of pollutants on soil flora. Part 2:Effects of chemicals on the emergence and growth of higher plants. 1993. ISO 11269-2
    51. Jablonkai I. Microbial and photolytic degradation of the herbicide acetochlor. International Journal of Environmental Analytical Chemistry, 2000, 78(1): 1~8
    52. Kuperman RG, Checkai RT, Simini M. Manganese toxicity in soil for Eisenia fetida, Enchytraeus crypticus(Oligochaeta), and Folsomia candida(Collembola). Ecotoxicology and Environmental Safety, 2004, 57:48~53
    53. Landsdell S, McConnell S. Ecological considerations in setting soil criteria for total petroleum hydrocarbons (    54. Lee S Z, Chang L, Chen C M, et al. Development of soil metal criteria to preserve groundwater quality. Wat. Sci. Tech, 1998, 38(11):131~139.
    55. Li L, Liu X, Guo Y, et al. Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis(Orthptera Acridoidae). Environmental Toxicology and Pharmacology, 2005, 20:412~416
    56. Liu S Y, Chen Y P, Yu H Q, et al. Kinetics and mechanisms of radiation-induced degradation of acetochlor. Chemsophere. 2005,59:13~19
    57. Ma TH. Vicia cytogenetic tests for environmental mutagens. A report of the U.S. Environmental Protection Agency Gene-Tox program. Mutation Research,1982,99:257~271
    58. Meng L, Tan D Y, Wang H X. Study on the response of wheat to lead, cadmium and zinc. J. Environ. Sci., 1998, 10 (2): 238~244.
    59. Minissi S, Caccese D, Passafiume F, et al. Mutagenicity(micronucleus test in Vicia faba root tips), polycyclic aromatic hydrocarbons and heavy metal content of sediments collected in Tiber river and its tributaries within the urban area of Roma. Mutation Research, 1998,420:77~84
    60. Mittler, R., Zilinskas, B. A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 1994, 5: 397~405.
    61. Moore MN.Cellular responses to pollutants.Marine Polution Bulletin. 1985,16(4):134~139
    62. Nemeth-Konda L, Fuleky Gy, Morovjan Gy, et al. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil. Chemosphere, 2002,48:545~552
    63. Nicola A. Davies, Mark E. Hodson, Stuart Black. Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity. Environmental Pollution, 2003, 121:49~54
    64. Nowak J., Kaklewski K, Klódka D. Influence of various concentrations of selenic acid(Ⅳ) on the activity of soil enzymes. The Science of the Total Environmen, 2002, 291:105~110
    65. Nowak J, Kaklweski K, Marek L. Influence of selenium on oxidoreductive enzymes activity in soil and in plants. Soil Biology and Biochemistry, 2004, 36:1553~1558
    66. OECD (Organization for Economic Cooperatiion and Development). OECD guidelines for testing of chemicals. Paris France: European Committee,1984 208~209
    67. Oregon Department of Environmental Quality Waste Management and Cleanup Divison. Soil cleanup manual. 1994.
    68. Palazzo AJ, Legett DC. Effect and disposition of TNT in a terrestrial plant. J Environ Qual, 1986,15:49~52
    69. Paoletti GM. The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems and Environment,1999,74:137~177
    70. Peterson MM, Hotst GL. TNT and 4-amino-2,6-dinitrotoluene influence on the germination and early seeding development of tall fescue. Environ Pollut,1996,93:57~62
    71. Polak J, Flaherty EJ, Freeman, GB, et al. Evaluating lead bioavailability data by means of a physiologically based lead kinetic model. Fundamental and applied toxicology, 1996, 29:63~70.
    72. Qureshi J A, Hardwick K, Collin H A. Intraellular localization of lead in a lead tolerant and sensitive clone of Anthoxanthum odoratum. J Plant Physiol., 1986, 122: 357~364.
    73. Rai V, Vajpayee P, Singh SN. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, praline level and eugenol content of Ocimum tenuiflorumL. Plant Science,2004, 167:1159~1169.
    74. Randall L. Getting the lead out cheaply: a review of the EPA’s proposed residential lead hazard standards. Environmental Science and Policy. 2001, 4:13~23
    75. Richard D. Sandifer, Stephen P. Hopkin. Effects of pH on the toxicity of cadmium, copper,lead and zinc to Folsomia candida willem, 1902 (collembolan) in a standard laboratory test. Chemosphere, 1996, 33(12):2475~2486
    76. Ridban K, Tayfun A, Betul B, et al. Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology, 2004,40:95~102`
    77. Riser-Roberts E. Remediation of petroleum contaminated soils: biological, physical, and chemical processes. Boca Raton: Lewis Publishers. Inc. 1998
    78. Robinson CH, Ineson P, Piearce TG, et al. Effects of earthworms on cation and phosphate mobilization in limed peat soils under Picea sitchensis. Forest Ecology and Management, 1996, 86(1-3):253~258
    79. Saint-Denis M, Narbonne JF, Arnaud C. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effects of lead acetate. Sol Biology & Biochemistry, 2001, 33:395~404
    80. Saint-Denis M, Narbonne JF. Arnaud C, et al. Biochemical responsed of the earthworm Eisenia fetida Andrei exposed to contaminated artificial soil: effects of benzo(a)pyrene. Soil Biology and Biochemistry, 1999, 31:1837~1846
    81. Salah S A, Barrington S F. Effect of soil fertility and transpiration rate on young wheat plants (Triticum aestivum) Cd/Zn uptake and yield. Agricultural Water Management. 2006, 82: 177~192.
    82. Salin, M. L., Toxic oxygen species and protective systems of the chloroplast. Physiol. Plant. 1987, 72, 681~689.
    83. Sanitàdi Toppi, L., Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41: 105~130.
    84. Simini M, Wentsel R S. Evaluation of soil toxicity at joliet army ammunition plant. Environmental Toxicology and Chemistry, 1995, 14(4): 623~630
    85. Skiba Ute and Wainwright M. Assay of urease activity in marine sands-its use as an indicator of sewage contamination of beaches. J. Enzyme and Microbial Technology. 1982, 4(5): 310~312
    86. State of California. Compilation of sediment & soil standards,criteria & guidelines. 1995.
    87. State of Maryland Department of the Environment. Cleanup standard for soil and groundwater. 2000.
    88. Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 2001,161:613~619
    89. Suter G W. Predictive risk assessment. Chapter, Ecological Risk Assessment. Ann Arbor: Lewis Publishers. 1995, 49~90
    90. Svendsen C, Weeks J M. Relevance and applicability of a simple earthworm biomarker of copper exposure. Ecotoxiclogy and Environmental Safety, 1997, 36:80~88
    91. Tarazona J.V., Vega MM. Hazard and risk assessment of chemicals for terrestrial ecosystems.Toxicology.2002, 181-182:187~191.
    92. Teisseire H, Couderduet M, Vernet G. Toxic responses and cotalase activity of Lemna minor L. exposed to flopet, copper, and their combination. Ecotoxicol. Environ. Saf. 1998, 40: 194~200.
    93. Urlacher VB, Lutz-Wahl S, Schmid RD. Microbial P450 enzymes in biotechnology. Applied Microbiology and Biotechnlogy, 2004, 64(3):317~325.
    94. US Environmental Protection Agency. Soil Cleanup Criteria in 40 CFR Part 192. 1998.
    95. US EPA. Exposure Factors Handbook, vol. 1, EPA/600/P-95/002Fa. US Environmental Protection Agency, Washington, DC., 1997
    96. US EPA. National Oil and Hazardous Substances Pollution Contingency Plan, 40 CRF Part 300. US Environmental Protection Agency, Washington, DC.,1990
    97. US EPA. Oral Absorption Values for Oral-to-Dermal Extrapolation per RAGS, Appendix A. US EPA Region III, 04/08/1999. 1999
    98. US EPA. Recommendations of the Technical Review Workgroup for Lead for an Interim Approach to Assessing Risks Associated with Adult Exposure to Lead in Soil. Technical Review Workgroup for Lead, US Environmental Protection Agency. 1996
    99. US EPA. Risk Assessment Guidance for Superfund, vol. I, Human Health Evaluation Manual. Part B. Development of Risk-based PreliminaryRemediation Goals(Interim), PB92-963333. Publication 9285.7-01B. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC,1991
    100.US EPA. Risk Assessment Guidance for Superfund, vol.I, Human Health Evaluation Manual. Part A (Interim Final), EPA/540/1-89/002. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC. ,1989
    101.US EPA. Risk Assessment Guidance for Superfund, vol.I, Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors (Interim Final), OSWER Directive 9285.6-03. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC, 1991
    102.US EPA. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. Office of Solid Waste and Emergency Response. OSWER Directive 9355.0-30., 1991
    103.US EPA. Soil screening Guidance: Technical Back-ground Document, 9355.4-17A, EPA/540/R-95/128, PB96-963502. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC. 1996
    104.US EPA.US EPA Region III Risk-Based Concentration Table: Technical Background Information. Development of Risk-based Concentrations, 04/12/1999. 1999
    105.Wan FX, Chen P. Soil Enzyme Activities under Agroforestry Systems in Northern Jiangsu Province. Forestry Studies in China, 2004, 16(2):21~26
    106.Wang GM, Edge WD, Woltf JO. Demographic uncertainty in ecological risk assessments. Ecological Modelling. 2001,13(6): 362~364
    107.Wang M E, Zhou Q X. Single and joint toxicity of chlorimuron-ethyl, cadmium, and copper acting on wheat Triticum aestivum. Ecotoxicology and Environmental Safety, 2005, 60:169~175
    108.Wang X F, Zhou Q X. Ecotoxiclogical effects of cadmium on three ornamental plants. Chemosphere, 2005, 60:16~21.
    109.White PA, Claxton LD. Mutagens in contaminated soil: a review. Mutation Research, 2004, 567:227~345
    110.Wierzibicka M. How lead loses its toxicity to plants. Act. Soc. Bot. Pol. 1995,(64): 81~90
    111.Wu Y Y, Zhou Q X, Adriano D C. Interim environmental guidelines for cadmium and mercury in soils of China. Water, Air, and Soil Pollution. 1991, 57-58: 733~743
    112.Wu, X. Y., von Tiedemann, A. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley ( Hordeum vulgare L.) exposed to ozone. Environ. Pollution. 2002, 116, 37~47
    113.Xu DM, Liu GS, Xu J, et al. Effects of lanthanum and cerium on acid phosphatase activities in two soils. Journal of Rare Earths, 2004, 22(5):725~728
    114.Zhou Q X, Xiong X Z. Soil-environment capacity and its application: A case study. Journal of Zhejiang Agricultural University, 1995, 21(5): 539~545
    115.Zhou Q X. Soil-quality guidelines related to combined pollution of chromium and phenol in agricultural environments. Human and Ecological Risk Assessment, 1996, 2(3):591~607
    116.蔡思义,米长虹,郑振华.水田环境乙草胺允许浓度研究.农业环境保护,1996,15(3):128~129
    117.杜克久.农药与环境的可持续发展.自然辩证法通讯,1999,21(3):32~37
    118.杜秀英,竺乃恺,夏希娟,徐晓白.微宇宙理论及其在生态毒理学研究中的应用.生态学报, 2001, 21(10): 1726~1733
    119.关松荫.土壤酶及其研究法.北京:农业出版社, 1987
    120.郭观林,周启星.土壤-植物系统复合污染研究进展.应用生态学报, 2003, 14(5): 823~828
    121.何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社. 1998.
    122.和文祥,蒋新,余贵芬,等.杀虫双对土壤脲酶活性特征的影响[J].土壤学报, 2003, 40(5): 750~755
    123.和文祥,蒋新,朱茂旭,等.杀虫双对土壤磷酸酶的毒性效应.应用与环境生物学报. 2002, 8(6): 658~661
    124.和文祥,马爱生,武永军,等.砷对土壤脲酶活性的影响.应用生态学报, 2004, 15(5):895~898
    125.环境污染分析方法科研协作组.环境污染分析方法(第1卷):无机物分析.北京:科学出版社. 1987.
    126.黄元巨,张子丰,韩逢春.乙草胺与苄嘧黄隆混剂对水稻安全性研究.黑龙江农业科学,2000,(4):22~24
    127.蒋建清,吴燕玉模拟酸雨对草甸棕壤中重金属迁移的影响中国科学院研究生院学报, 1995, 12(2)185~190
    128.靳萍,马剑敏,杨柯金,张改娜,王琳. Hg2+对小麦种子萌发及幼苗生长的影响[J].河南师范大学学报(自然科学版),2002, 30(4):81~84
    129.瞿福平,杨义燕,冯旭东,戴猷元.含氮农药的好氧生物降解性能及废水治理对策.环境科学,1999,20(4):12~15
    130.李培军,熊先哲,杨桂芬,等.动物生物标志物在土壤污染生态学研究中的应用.应用生态学报,2003,14(12):2347~2350
    131.李培军,熊先哲,杨桂芬,刘宛,许华夏,台培东.动物生物标志物在土壤污染生态学研究中的应用.应用生态学报,2003,14(12):2347-2350
    132.李酉开. 1984.土壤农化常规分析法.北京:科学出版社.
    133.刘宛,李培军,周启星,许华夏,孙铁珩,张春桂.植物细胞色素P450酶系的研究进展及其与外来物质的关系.环境污染治理技术与设备, 2001, 2(5): 1~9
    134.陆雍森.环境评价.上海:同济大学出版社. 1999.
    135.孟伟,张远,郑丙辉.水环境质量基准、标准与流域水污染物总量控制策略.环境科学研究. 2006,19(3):1-6
    136.米长虹,蔡思义,郑振华.乙草胺与农业环境保护.农业环境与发展,1996,(1):25~28
    137.庞欣,王东红,彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响.环境科学,2001,22(5):108~111
    138.彭鸣,王焕校,吴玉树.镉、铅在玉米幼苗中的积累和迁移-X射线显微分析.环境科学学报. 1989, 9(1):61~67.
    139.邱江平.蚯蚓及其在环境保护上的应用II.蚯蚓生态毒理学.上海农学院学报,1999,17(4):301~308
    140.冉梦莲,陈友荣,肖敬平.乙草胺对不同品种水稻萌发生长期间水稻呼吸代谢的影响.华南农业大学学报,1999,20(1):68~72
    141.戎念杭,韩农,樊德方.番茄、茄子中乙草胺、塞克津、除草通、丁草胺残留分析.环境污染于防治,1993,15(6):31~34
    142.宋玉芳,周启星,宋雪英,孙铁珩.土壤环境污染的生态毒理学诊断方法研究进展.生态科学, 2002, 21(2): 184~188
    143.宋玉芳,周启星,许华夏,任丽萍,宋雪英,龚平.菲、芘、1,2,4-三氯苯对土壤高等植物根伸长抑制的生态毒性效应.生态学报, 2002, 22(11): 166~171
    144.宋玉芳,许华夏,任丽萍,等.土壤重金属对白菜种子发芽与根伸长抑制的生态毒性效应.环境科学,2002, 23(1):103~107
    145.宋玉芳,周启星,宋雪英,等.石油污灌渠底泥生态毒性诊断研究.应用生态学报, 2005, 16(1):175~179
    146.宋玉芳,周启星,宋雪英,等.石油污灌土壤污染物的残留与生态毒理.生态学杂志, 2004, 23(5):61~66
    147.宋玉芳,周启星,宋雪英,等.土壤整体质量的生态毒性评价,环境科学. 2005 26(1):130~134
    148.宋玉芳,周启星,宋雪英,等。沈阳西部污灌渠沉积物中污染物积累与生态毒性研究.应用生态学报, 2004, 15(10):1926~1930
    149.宋玉芳,周启星,王新,等.污灌土壤的生态毒性研究.农业环境科学学报, 2004, 23(4):638~641
    150.宋玉芳,周启星,许华夏,等.土壤重金属污染对蚯蚓的急性毒性效应研究.应用生态学报, 2002 13(2):187~190
    151.孙波,孙华,张桃林.红壤重金属复合污染修复的生态环境效应与评价指标.环境科学, 2004.25(2): 104~110
    152.孙铁珩,宋玉芳.土壤PAHs和矿物油植物修复调控研究.应用生态学报, 1999, 10(2): 225~229
    153.孙铁珩,周启星,李培军.污染生态学.北京:科学出版社. 2001.
    154.孙铁珩,李培军,周启星等土壤污染形成机理与修复技术.北京:科学出版社,2005.
    155.孙铁珩,周启星,李培军.污染土壤修复原理与方法.北京:科学出版社. 2005
    156.唐翔宇,朱永官.土壤中重金属对人体生物有效性的体外试验评估.环境与健康杂志, 2004, 21(3): 183~185
    157.王宏康.土壤中若干有毒元素的环境质量基准研究.农业环境保护, 1993, 12(4): 162~165
    158.王琪全,刘维屏.乙草氨合异丙甲草胺在土壤中的吸附研究.土壤学报,2000,37(1):95~101
    159.王琪全,彭展雄.几种酰胺类除草剂的光降解及其致突变性.环境科学,1999,20(4):51~54
    160.王淑芳,胡连生,纪有海,王玉兰,姚得明.重金属污染黑土中固氮菌及反硝化菌作用强度的测定.应用生态学报,1991,2(2):174~177
    161.王新,梁仁禄,周启星. Cd~Pb复合污染在土壤-水稻系统中生态效应的研究.农村生态环境, 2001, 17(2) :41~44
    162.魏复盛.中国土壤元素背景值.北京:中国环境科学出版社. 1990.
    163.夏增禄土壤容量化学.北京:气象出版社. 1988
    164.徐浩,吴俐勤.气相色谱法测定油菜及土壤中乙草胺的残留.宁波高等专科学校学报,2001,13(sup):54~56
    165.徐宁彤,谷思玉,闫红.酸碱度对重金属镉、铜、锌在黑土中吸附解吸行为的影响.黑龙江水利科技,1998,4(4):62~64
    166.杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及可溶性结合形态.中国环境科学. 1993, 13(4):263~268.
    167.杨居荣,许嘉琳.灰钙土重金属生态基准.中国环境科学. 1995,15(6):177~182
    168.叶常明,雷志芳,段兴军,阎海,等.含莠去津和乙草氨和水灌溉对苗期水稻危害的研究.环境科学进展,1997,5(5):51~57
    169.叶常明,郑和辉,王杏军,雷志芳.作物植株残体还田土壤对除草剂的截留作用.环境科学学报,2001,21(3):354~357
    170.易秀,刘秀华,周玉明.土壤质量的生态毒理学评价.农业环境保护, 2001, 20(5): 345~347
    171.殷浩文.生态风险评价.上海:华东理工大学出版社. 2001.
    172.殷浩文.水环境生态风险评价程序.上海环境科学, 1995, 14(11): 11~14
    173.尹文英,等著.中国土壤动物.北京:科学出版社,2002.1~4
    174.尹文英.土壤动物学研究的回顾与展望.生物学通报,2001,36(8):1~3.
    175.于建垒,宋国春,万鲁长,曹德强,于迎春.乙草胺对土壤微生物的影响.环境污染治理技术与设备,2000,1(5):61~64
    176.于建垒,赵德友,刘炳海.乙草胺在大豆和土壤中的残留研究.农药,1998,37(1):28~30
    177.俞苏霞,蒋世熙.气相色谱法测定玉米中乙草胺残留量.农药,1997,36(12):26~27
    178.袁建新,王云.我国《土壤环境质量标准》现存问题与建议.中国环境监测, 2000, 16(5):41~44
    179.郑和辉,叶常明.环境样品中乙草胺和丁草胺的残留分析.中国环境科学,2001,21(3):217~220
    180.郑和辉,叶常明.乙草胺和丁草胺的水解及其动力学.环境化学,2001,20(2):168~171
    181.郑和辉,叶常明.乙草胺和丁草胺在土壤中的移动性.环境科学,2001,22(5):117~121
    182.郑和辉,叶常明.乙草胺和丁草胺在土壤中的紫外光化学降解.环境化学,2002,21(2):117~122
    183.周礼恺.土壤酶学,北京:科学教育出版社. 1987.
    184.周启星宋玉芳污染土壤修复原理与方法.北京:科学出版社,2004.
    185.周启星,程云,张倩茹,粱继东.复合污染生态毒理效应的定量关系分析.中国科学, 2003, 33(6): 566~573。
    186.周启星,黄国宏.环境生物地球化学及全球环境变化。北京:科学出版社. 2001.
    187.周启星,孔繁翔,朱琳,等.生态毒理学.北京:科学出版社. 2005.
    188.周启星,罗义,祝凌燕.环境基准值的科学研究与我国环境标准的修订.农业环境科学学报, 2007 26(1): 1-5
    189.周启星,任丽萍,孙铁珩,宋玉芳,王新.某铅锌矿开采区土壤镉的污染及有关界面过程.土壤通报, 2002, 33(4): 300~302
    190.周启星,宋玉芳.污染土壤修复原理与方法.北京:科学出版社. 2004.
    191.周启星,高拯民作物籽实中Cd与Zn的交互作用及其机理的研究.农业环境保护,1995,13(4):148~151
    192.周启星,任丽萍,孙铁珩.某铅锌矿开采区土壤隔的污染及有关界面过程.土壤通报, 2002,12(6):913~916
    193.周启星.复合污染生态学.北京:中国环境科学出版社. 1995.
    194.周启星.水-土壤-植物-动物连续体中挥发酚的迁移和积累模型.浙江农业大学学报,1997,23(1):7~12
    195.周启星.污染土壤修复标准建立的方法体系研究.应用生态学报,2004, 15(2): 316~320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700