黄瓜衰老过程中叶绿素降解相关酶基因cDNA片段的克隆与表达初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶绿素(Chlorophyll, Chl)是绿色植物叶绿体内参与光合作用的重要色素,叶绿素降解是衰老的一个重要现象,叶绿素降解是植物自然生长的结果,也可能受衰老诱导;植物衰老的一个显著标志是失绿。本文以衰老表现不同的两种黄瓜,‘华黄5号,(Cucumis sativusL.var.Huahuang 5)和西双版纳黄瓜(Cucumis sativus L.var.xishuangbannanesis Qi etYuan)为试材,初步研究了野生种和栽培种衰老过程中生理生化特性,并且克隆叶绿素降解途径中的两个关键酶基因cDNA片段——脱镁叶绿素脱镁叶绿酸a水解酶(PPH)和脱镁叶绿酸a加氧酶(PAO)。应用Real-time PCR技术检测其在植株衰老过程中叶和茎中的相对表达量,探讨了PPH和PAO基因的表达模式及与抗衰老的关系,主要研究结果如下:
     1.黄瓜叶片衰老过程中生理生化特性
     黄瓜叶片衰老过程中,西双版纳黄瓜和‘华黄5号’黄瓜叶片叶绿素含量总体表现为先上升后下降。在叶片伸出15天时叶绿素含量最高,叶片伸出35天后,‘华黄5号’叶片开始出现老化症状,在45天时仅为15天的42%。而西双版纳叶片一直保持较高叶绿素含量,‘华黄5号’叶内SOD活性开始快速下降,后有微弱的上升,在35天后下降,而西双版纳黄瓜在35天时活性最高,后微弱下降,野生种SOD活性开始出现下降的时间比栽培种晚20天,可能在35天西双版纳黄瓜叶片才开始衰老。‘华黄5号’的POD活性一直呈上升趋势,而西双版纳黄瓜的POD活性变化呈双峰曲线模式,除在5天时活性低于‘华黄5号’,其余天数远远高于‘华黄5号’。西双版纳黄瓜和‘华黄5号’叶片POD活性在45天最高,在生长后期,野生种在清除活性氧方面仍强于栽培种。西双版纳黄瓜叶片中可溶性蛋白含量高于‘华黄5号’,西双版纳黄瓜在35天时蛋白含量最高,‘华黄5号’在45天时含量最高,并且可溶性蛋白质变化规律不明显。
     2.黄瓜茎衰老过程中生理生化特性
     黄瓜茎衰老过程中,西双版纳黄瓜茎在45天叶绿素含量最高,和叶片不同,西双版纳茎中叶绿素含量变化趋势不明显,茎叶绿素含量最高出现在45天,表明野生种茎可能还未进入衰老期。‘华黄5号’茎叶绿素含量在25天最高,茎中叶绿素含量先上升后下降;野生种茎中叶绿素含量高于栽培种。在栽培种和野生种茎里SOD活性变化均呈现双峰式变化趋势,西双版纳黄瓜和‘华黄5号’在35天时茎中的SOD活性最高。西双版纳黄瓜茎的POD活性一直呈上升趋势,‘华黄5号’的POD变化有呈现双峰趋势。在45天时,西双版纳黄瓜和‘华黄5号’的POD活性达到最大,并且西双版纳黄瓜茎中的POD活性始终高于‘华黄5号’。在35天时西双版纳和‘华黄5号’黄瓜茎中可溶性蛋白的含量最高,整体变化趋势是先升高后下降,在45天时最低。表明此时茎已经走向衰老。
     3.脱镁叶绿素脱镁叶绿酸a水解酶(PPH)和脱镁叶绿酸a加氧酶酶(PAO)基因克隆
     克隆的PPH和PAO基因碱基序列片段长度分别为265 bp和230 bp, BLAST核酸同源性在线分析表明,PPH片段与拟南芥(AT5G13800)、花椰菜(OL386R)、葡萄(XM002271131.1)和烟草(AM851012.1)的该家族基因分别具有87%、88%、80%和78%的核苷酸序列同源性,PAO片段与拟南芥(NM-114357.5)、葡萄(FJ799360.1)、花椰菜(AB470926)、毛果杨(XM002331446.1)和蓖麻(XM002523689)的该家族基因分别具有90%、86%、85%、83%和82%的核苷酸序列同源性,证明该扩增产物是PPH和PAO酶基因片段。
     4.西双版纳和‘华黄5号’黄瓜叶衰老过程中PPH和PAO基因的相对表达量。
     PPH和PAO基因在西双版纳黄瓜叶中的相对表达量的变化趋势有所不同,PPH基因的相对表达量是先上升后下降,在35天时表达量最高。PAO基因在15、25天时表达较弱,在35天时表达最强。PPH和PAO基因在‘华黄5号’叶的相对表达量与在西双版纳黄瓜叶片里表达模式基本相同,PPH基因的相对表达量是先上升后下降,在35天时表达量最高,PAO基因在15、25天时表达较弱,和在西双版纳不同的是,PAO基因在45天表达最强。这两个基因在西双版纳和‘华黄5号’叶片中表达呈正相关。
     5.西双版纳和‘华黄5号’黄瓜茎衰老过程中PPH和PAO基因的相对表达量。
     与在叶片中的表达模式相似,PPH和PAO基因在西双版纳黄瓜茎中的相对表达量的变化趋势也有所不同,PPH基因在茎中的表达趋势和在叶片中的表达趋势相同,先上升后下降,在35天时最强。PAO基因的表达变化趋势是先上升、后下降、再上升,在45天表达最强。和在西双版纳黄瓜茎里的表达模式不同,PPH和PAO基因在‘华黄5号’茎的表达模式是上升、稍微下降、上升、稍微下降。并且和5日的参照值相比都有一个较高的表达量。PPH在35天表达最强,PAO基因在15天表达最强。相关性分析表明,这两个基因在‘华黄5号’茎中表达呈正相关,而在西双版纳茎中表达呈负相关。
Chlorophyll is an important pigment in the plant chloroplasts being concerned with photosynthesis.Chlorophyll degradation is an important phenomenon in the senescence process. Chlorophyll is degraded in plants as a result of natural or induced senescence.Loss of green color is the most obvious sign of plant senescence.In this study, the cultivar Cucumis sativusL.var.Huahuang 5 and the wild species Cucumis sativus L.var.xishuangbannanesis Qi etYuan with different senescence were used as experient materials.The physiological and biochemical characteristics were preliminary studied during senescence in the wild species and the cultivar. Meanwhile, Two key enzymes gene of Chlorophyll degradation (Pheophytin Pheophorbide Hydrolase and Pheideaoxygenase) were cloned. Expression of these two genes during leaf and stem senescence was quantified through real-time PCR technique. The relationship between the expression model of PPH and PAO genes and anti-senescence were discussed. Major results are as follows:
     1. The physiological and biochemical characteristics of cucumber leaf during senescence
     As xishuangbannanesisQietYuan and Huahuang 5 became senescent, chlorophyll content in leaves increased first,but decreased later. The Chlorophyll content was the highest at 15d. The ageing symptoms of leaf in Huahuang 5 appeared at 35d, the contents at 45d were 45% at 15d. on the contrary, chlorophyll content in xishuangbannanesisQi etYuan was always a higer level. The activities of SOD in Huahuang 5 decreased dramatically first, but increased faint later, decreased at 35d again. The activities of SOD of xishuangbannanesisQi etYuan at 35d was the highest, decreased later, The activities of SOD in the wild species started to decrease 20 days later than the cultivar, Maybe the senescent of xishuangbannanesisQietYuan start at 35d.The activities of POD of Huahuang 5 all raise as cucumber became senescent, POD showed two peaks in the wild species, The activities of POD was higher than Huahuang 5 except at 5d. The activities of POD of Huahuang 5 and xishuangbannanesisQi etYuan was the highest at 45d. the ability of the wild species which cleaned out active oxygen was stonger than the cultivar at the later stage of cucumber growth. The soluble protein content of xishuangbannanesis Qi etYuan was higher than Huahuang 5, The Chlorophyll content was the highest at 35d. The soluble protein content of Huahuang 5 was at 45, meanwhile, the variation laws of the soluble protein was not significantly.
     2.The physiological and biochemical characteristics of cucumber stem during senescence
     As xishuangbannanesis QietYuan and Huahuang 5 became senescent, The Chlorophyll content in stem of xishuangbannanesisQi etYuan was the highest at 45d. unlike leaf, the variation trends of the Chlorophyll content in stem of xishuangbannanesis Qi etYuan was not significantly. Maybe the stem didn't enter the senescent.The Chlorophyll content in stem of Huahuang 5 was the highest at 25d. chlorophyll content in stems increased first, but decreased later.Thecontent of chl of xishuangbannanesisQi etYuan was higher than Huahuang 5.
     The activities of SOD of xishuangbannanesisQi etYuan and Huahuang 5, showed two peaks. It were the highest at 35d.The activities of POD of xishuangbannanesis Qi etYuan all raise as cucumber became senescent, it showed two peaks in the cultivar, The activities of POD of Huahuan 5 and xishuangbannanesisQi etYuan was the highest at 45d. The activities of POD was higher than Huahuang 5.The soluble protein content of xishuangbannanesis Qi etYuan and Huahuang 5 were the highest at 35d, overall, the variation trends of the soluble protein was in stem increased first,but decreased later.the lowest were at 45d.
     3. Cloning of PPH and PAO genes.
     The length of cloned PPH and PAO genes were 265 base pairs and 230 base pairs, Analysis of the nucleotide sequenee by BLAST on line indicated that homology of PPH gene was up to 87% between Cucumis sativusL.var. and Arabidopsis thaliana (L.) Heynh, up to 88% between it and Brassica oleracea L. var. botrytis L, up to 80% between it and Vitis vinifera, up to 78% between it and Nicotiana tabacum. homology of PAO gene was up to 90% between Cucumis sativusL.var. and Arabidopsis thaliana (L.) Heynh, up to 86% between it and Brassica oleracea L. var. botrytis L, up to 85% between it and P. trichocarpa, up to 82% between it and Ricinus communis.
     4. Relative quantification of PPH and PAO genes during leaf senescence of Cucumis sativus L.var.xishuangbannanesis Qi etYuan and Huahuang 5.
     It is different that expression of both PPH and PAO genes in the leaf of xishuangbannanesisQi etYuan. The relative expression of PPH gene basically up-regulated first, down-regulated later. It was the highest expression at 35d. The minimum expression of PAO gene at 15d and 25d.The maximum at 35d. Expression of PPH and PAO genes between cultivars and wild species was quite similar. The relative expression of PPH gene basically up-regulated first,down-regulated later in stem of Huahuang 5. The maximum at 35d too, the minimum expression of PAO gene at 15d and 25d, the maximum at 45d. There was a positive correlation between both PPH and PAO genes in the leaf of xishuangbannanesis Qi etYuan and Huahuang 5.
     5. Relative quantification of PPH and PAO genes during stem senescence of Cucumis sativus L.var.xishuangbannanesis Qi etYuan and Huahuang 5.
     Unlike the expression modle of leaf. It is different that expression of both PPH and PAO genes in the stem of xishuangbannanesis Qi etYuan. Expression of PPH and PAO genes between leaf and stem was quite similar. The relative expression of PPH gene basically up-regulated first, down-regulated later too.it was the highest expression at 35d. The expression mold of PAO gene basically up-regulated first, down-regulated later, then up-regulated. The maximum at 45d. Unlike the expression modle of stem of xishuangbannanesis Qi etYuan, expression of both genes basically down-regulated first, up-regulated, down-regulated, up-regulated last, it showed two peaks in the cultivar,there was a higher expression than the value of at 5d. The maximum expression of PPH at 35d, PAO at 15d. There was a positive correlation between both PPH and PAO genes in the stem of Huahuang 5. negative correlation in the stem of xishuangbannanesis Qi etYuan.
引文
1.阿加拉铁.水稻灌浆期控制叶绿素含量的OTL分析.[硕士学位论文].成都:四川农业大学,2007
    2.布都会.叶片衰老延缓基因PSAG12-IPT导入小麦品种西农1376的功能表达研究.[硕士学位论文].杨凌:西北农林科技大学,2005
    3.程晓霞.GA3调控日本结缕草叶片衰老过程相关基因的分离与初步功能分析.[博士学位论文].北京:北京林业大学,2010
    4.崔素霞,王蔚,陈国仓,张承烈.两种沙生植物内源激素、叶绿体膜脂肪酸组成和膜脂抗氧化系统酶类的季节变化.植物生态学报.2000,24:96-101
    5.曹慧.水分胁迫诱导苹果属植物衰老机理的研究.[博士学位论文].北京:中国农业大学,2003
    6.陈文峻,蒯本科.植物叶绿素的降解.植物生理学通讯,2001,37(4):336-339
    7.崔世友,喻德跃.大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析.作物学报,2007,33(5):744-750
    8.程正渭.桂花花瓣衰老过程的生理生化及细胞学初步研究.[硕士学位论文].武汉:华中农业大学,2003
    9.范淑秀,王嘉宇,毛艇,徐正进.水稻孕穗期叶绿素含量的QTL定位.华北农学报,2010,25(4):69-72
    10.葛欣.香石竹抗衰老遗传转化主要影响因素的研究.[硕士学位论文].哈尔滨:东北农业大学,2000
    11.高志民,刘成,刘颖丽,彭镇华.毛竹捕光叶绿素a/b结合蛋白基因cab2PhE1的克隆与表达分析.林业科学,2009,45(3):145-149
    12.郭素枝,高华娟,王湘平.含笑花被片发育和衰老过程中细胞超微结构的变化.电子显微学报,2009,28(5):467-472
    13.侯典云.小麦返白系叶绿体基因组分析及叶绿体超微结构和差异表达蛋白质研究.[博士学位论文].杨凌:西北农林科技大学,2009
    14.胡颂平,梅捍卫等.正常与水分胁迫下水稻叶片叶绿素含量的QTL分析.植物生态学报,2006,30(3):479-486
    15.黄俊丽,刘太波,王贵学,李贤勇.水稻高叶绿素含量基因DET1cDNA的克隆、生物信息学分析及超表达载体的构建.中国生物工程杂志,2010,30(4):60-64
    16.韩华.水杨酸调控三个梨品种叶片衰老及光合速率的效应研究.[硕士学位论文].保定:河北农业大学,2007
    17.姜树坤,张喜娟,徐正进,陈温福.粳稻叶绿素含量QTL与其合成降解相关基因的比较分析.作物学报,2010,36(3):376-384
    18.晋晓彤.高温、强光及氮营养胁迫对黄瓜幼苗衰老的影响.[硕士学位论文].天津:天津大学,2009
    19.李艳秋.黄瓜果实成熟衰老特性的研究.[硕士学位论文].哈尔滨:东北农业大学,2006
    20.李成双.利用PPF1基因延缓叶片衰老和几个水稻生殖相关突变体的研究.[博士学位论文].成都:四川农业大学,2006
    21.李琼.离芭离体叶片衰老过程中植物激素与活性氧代谢关系的初步研究.[硕士学位论文].武汉:华中农业大学,2007
    22.李合生.现代植物生理学[M].北京:高等教育出版社,2002:87-88
    23.李合生.现代植物生理学[M].北京:高等教育出版社,2002:381-383
    24.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2004:105-261.
    25.陆定志,傅家瑞,宋松泉.植物衰老及其调控.1997.北京:中国农业出版社
    26.林河通.橄榄果实采后呼吸变化和外源乙烯处理的生理效应.福建农业大学学报,1997,26(4):416-420
    27.李向东,王晓云,张高英等.2001.花生叶片衰老过程中某些酶活性的变化.植物生理学报,27(4):353-358
    28.李继兰.猕猴桃贮藏中叶绿素降解机理及加工中影响其稳定性因素研究.[硕士学位论文].杨凌:西北农林科技大学,2008
    29.李金.采后菜心叶片衰老过程中叶绿素降解研究.[硕士学位论文].广州:华南农业大学,2008
    30.刘振威,孙丽,刘宏,李新峥.南瓜自交系及其杂交组合叶绿素变化规律分析.贵州农业科学,2009,37(9):28-30
    31.李广军,李河南,程利国,章元明.大豆叶绿素含量动态表达的QTL分析.作物学报,2010,36(2):242-248
    32.罗聪,蒋雅琴,高美萍,陈虎,何新华.杧果叶绿素a/b结合蛋白基因cDNA全长克隆及其序列分析.果树学报,2010,27(3):441-444
    33.吕晓依.基因枪介导法将叶片衰老延缓基因PSAG12-1PT导入小麦品种的研究.[硕士学位论文].杨凌:西北农林科技大学,2007
    34.赖齐贤.基因枪介导PSAG12-IPT基因转化非洲菊及其抗衰老机理的研究.[博士学位论文].杭州:浙江大学,2006
    35.兰海波.蔡乙酸(NAA)对盆栽冬红果衰老的影响.[硕士学位论文].保定:河北农业大学,2006
    36.李新峥,刘振威,孙丽,杜晓华.中国南瓜叶绿素含量的配合力与杂种优势分析.内蒙古农业大学学报,2009,30(2):78-81
    37.李亚利.与黄瓜果皮绿色性状相关的SRAP分子标记.[硕士学位论文].杨凌:西北农林科技大学,2008
    38.马春花,马锋旺,李明军,韩明玉,束怀瑞.外源抗坏血酸对离体苹果叶片衰老的影响.园艺学报,2006,33(6):1179-1184
    39.未丽,徐秉良,雷江丽等.胡杨叶绿素a/b结合蛋白基因的克隆及序列特性分析.中国农业科技导报,2008,10(4):63-69
    40.彭晓莉.叶片衰老抑制基因PSAG12-IPT转化马铃薯的研究.[硕士学位论文].兰州:甘肃农业大学,2005
    41.秦鸿德,张天真.棉花叶绿素含量和光合速率的QTL定位.棉花学报,2008,20(5):394-398
    42.饶景萍,任小林.果实成熟过程中组织超微结构的变化.西北植物学报,1997,17(1):128-134
    43.商庆梅.黄瓜衰老特征特性研究.[硕士学位论文].哈尔滨:东北农业大学,2009
    44.孙艳,梁宇柱,陈敬东,丁勤,徐伟君,徐向东.黄瓜叶片衰老过程中抗坏血酸含量与生理指标关系的研究.西北植物学报,2008,28(3):0512-0516
    45.沈成国.植物衰老生理与分子生物学.2001.中国农业出版社
    46.沈法富.短季棉衰老的激素变化及衰老相关基因的克隆.[博士学位论文].北京,中国农科院,2004
    47.孙小镭,王永强,王冰等.黄瓜嫩果果皮叶绿素含量的遗传.园艺学报,2004,31(3):327-331
    48.孙小镭,王冰等.黄瓜嫩果皮色与色素含量的关系.园艺学报,2003,30(6):721
    49.唐蕾.脱镁叶绿酸a单加氧酶与叶绿素降解.《生命的化学》,2008,28(5):606-608
    50.屠荫华.NO对蒜苔衰老的延缓作用及其机理的研究.[硕士学位论文].西安:陕西师范大学,2009
    51.田长河.1-MCP处理对柿果实成熟衰老过程中超微结构变化的影响.[硕士学位论文].杨凌:西北农林科技大学,2005
    52.王志坤1,秦智伟,周秀艳.挂蔓黄瓜果实成熟衰老鉴定指标的筛选.东北农业大学学报,2010:41(8):19-23
    53.王志坤,秦智伟,李艳秋,周秀艳.黄瓜果实衰老过程中果皮超微结构的变化.园艺学报,2007,34(4):889-894
    54.王家保.采后荔枝果皮衰老过程中生理变化与基因差异表达分析.[博士学位论文].海口:华南热带农业大学,2007
    55.王利,张亚红,郭文忠,谭瑶.黄瓜博耐13-b叶片衰老机理研究.农业科学研究,2007,28(4)12-15
    56.文莉.水稻叶片衰老特异性启动子的克隆和利用及剑叶早期衰老上升表达基因的鉴定.[博士学位论文].武汉:华中农业大学,2008
    57.王宝增.叶绿素降解代谢的研究进展.生物学教学,2010,35(2):7-8
    58.吴岳轩,吴振球.丁酸对杂交水稻根系代谢活性及叶片衰老进程的影响.杂交水稻,1991,(4):29-34
    59.王阳光.采后青梅果实叶绿素降解机制及保绿措施的研究.[博士学位论文].杭州:浙江大学,2003
    60.王云莉,王成荣,王然,杨绍兰,刘宪路.细胞分裂素类生长调节剂对青花菜采后衰老的影响.园艺学报,2009,36(11):1619-1626
    61.吴敏,陈昆松,张上隆,吴平.桃果实采后膜脂肪酸组成分和脂氧合酶的变化.园艺学报.2001,28:218-222
    62.王爱玉,张春庆.玉米叶绿素含量的QTL定位.遗传,2008,30(8):1083-1091
    63.宋美珍.短季棉早熟不早衰生化遗传机制及QTL定位.[博士学位论文].北京,中国农科院,2006
    64.汪斌,兰涛,吴为人,李维明.水稻叶绿素含量的QTL定位.遗传学报,2003,30(12):1127-1132
    65.夏明月,柴岩,冯佰利,高小丽,慕芳,苗芳.绿豆开花后不同节位叶片衰老的超微结构研究.西北农业学报,2009,18(3):131-135
    66.徐幸福.桂花切花花瓣衰老过程中的蛋白质变化分析.[硕士学位论文].武汉:华中农业大学,2003
    67.奚亚军.叶片衰老抑制基因PSAG12-IPT转化小麦的研究.[博士学位论文].杨凌:西北农林科技大学,2002
    68.杨晓棠,张昭其,徐兰英,庞学群.植物叶绿素的降解.植物生理学通讯,2008,44(1):1-7
    69.杨晓棠,张昭其,庞学群.果蔬采后叶绿素降解与品质变化的关系.果树学报,2005,22(6)691-696
    70.严波,陈国平,胡宗利,罗敏,陈绪清.滞绿突变体的研究现状及应用前景.重庆大学学报(自然科学版),2007,30(7):113-119
    71.杨转英.不同着色期荔枝果皮的叶绿素降解研究及mRNA差显分析.[博士学位论文],广州华南农业大学,2006
    72.阎星颖,李加纳,金梦阳,谌利,王家丰,曲存民,刘列钊.甘蓝型油菜角果皮叶绿素含量的QTL分析.中国油料作物学报,2009,31(3):269-273
    73.向太和,王利琳,庞基良.水稻(Oryza sativa L1)捕光叶绿素a/b结合蛋白因全长cDNA的克隆和特性分析.作物学报,2005(9):1227-1232
    74.张鹏.黄瓜叶片衰老过程中内肤酶变化及其生化特性的研究.[博士学位论文].南京:南京农业大学,2006
    75.张洪平.水稻衰老相关基因cDNA片段的克隆与转化.[硕士学位论文].福州:福建农林大学,2007
    76.张洁,方少忠,蔡宣梅,郭文杰,林真.赤霉素预处理对'Sorbonne'百合切花衰老的影响.江西农业学报,2009,21(11):48-50
    77.周相娟,姜微波,胡小松,周立刚.赤霉素和乙烯对香菜叶片衰老的影响.北方园艺,2003(3):54-56
    78.章家长.Psag12-ipt基因导入延缓中华结缕草衰老研究.[博士学位论文].北京:中国农业大学,2010
    79.张衍鹏,于贤昌,张振贤等.日光温室嫁接黄瓜的光合特性和保护酶活性.园艺学报,2004,31(1):94-96.
    80.张少颖,饶景,任小林.一氧化氮对瓶插月季呼吸作用及相关酶活性的影响.园艺学报,2007,34(1):]83-188
    81.曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应.植物生理学报.]991,17:177-182
    82.朱丽琴,朱树华,周杰.NO延缓园艺产品成熟和衰老的生理效应研究进展.园艺学报,2008,35(10):1539-1544
    83.张波,李鲜,陈昆松.脂氧合酶基因家族成员与果实成熟衰老研究进展.园艺学报,2007,34(1):245-250
    841.张海娜.6-BA和氮素调控小麦、棉花叶片衰老的生理机制及衰老相关基因鉴定.[博士学位论文].保定:河北农业大学,2008
    85.张玉.水杨酸对采后琳猴桃果实成熟衰老的调控及其机理研究.[博士学位论文].杭州:浙江大学,2004
    86.朱树华.一氧化氮对草莓和肥城桃果实成熟衰老的调控机理研究.[博士学位论文].泰安,山东农业大学,2006
    87.张晓平.NO处理对猕猴桃果实贮藏性及叶绿素含量的影响.[硕士学位论文].杨凌:西北农林科技大学,2007
    88.左海龙.控制水稻叶片叶绿素含量及其降解相关基因的遗传定位.[硕士学位论文].上海:上海师范大学,2008
    89.周凤丽.银杏叶绿素降解酶的诱导表达研究.[硕士学位论文].无锡:江南大学,2008
    90.赵延明,董树亭,严敏,高宏伟.玉米叶片叶绿素含量的发育遗传动态及环境互作效应分析.中国生态农业学报,2008,16(3):649-654
    91.朱德蔚,王德槟,李锡香.中国作物及野生近缘植物(蔬菜作物卷).北京:中国农业出版社,2008,399-404
    92.AgustinM.Buchert,PedroM.Civello,GustavoA.Martinez,Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. Journal of Plant Physiology.2010,7:1-7
    93.Asumi Fukasawaa, Yasuo Suzukia, Hirofumi Teraia, Naoki Yamauchib Effects of postharvest ethanol vapor treatment on activities and gene expression of chlorophyll catabolic enzymes in broccoli florets.Postharvest Biology and Technology,2010,55:97-102
    94.Adriana Pruzinska, Gaby Tanner, Sylvain Aubry et al. Chlorophyll Breakdown in Senescent ArabidopsisLeaves. Characterization of Chlorophyll Catabolitesand of Chlorophyll Catabolic Enzymes Involved in the Degreening Reaction. Plant Physiology,2005,139:52-63
    95.BarryCS,McQuinnRP,ChungMY,BesudentA,GiovannoniJJAmino.acid substitutios in homologs of the STAY-GREEN protein are responsible for the greefles hand chorophyll retainer mutations of tomato and pepper. Physiol Plant,2008,147(1):179-187
    96.Cornelius S. Barry. The stay-green revolution:Recent progress in deciphering the mechanisms ofchlorophyll degradation in higher plants. Plant Science,2009,176:325-333
    97.Davyd W. Chung, Adriana Pruzinska, Stefan Hortensteiner, and Donald R. Ort. The Role of Pheophorbide a Oxygenase Expression and Activity in the Canola Green Seed Problem. American Society of Plant Biologists,2006, Vol.142:88-97
    98.Ficko T, Cernelc P.2005. Real-time quantitative PCR assay for analysis of platelet glycol protein Ⅲ a gene expression. Journal of Biochemical and Biophysical Methods,62 (3):241-250.
    99.Funamoto, YamauehiN. ShigenagaT, ShigyoM.Effeets of heat treatment on ehloroPhyll degrading enzymes in stored broecoli(BrassicaoleraeeaL.).Postharvest Biology Teehnology.2002,24:163-170
    100.Heaton JW, Yada RY, Marangoni AG.Discoloration of coleslaw is caused by chlorophyll degradation. Agric Food Chem,1996,44:395-8.
    101.jingH,LiM,LiangN,YanH,weiY,XuX,LiuJ,XuZ,ChenF,WuG. Molecular cloning and function analysis of the stay green gene in rice.Plant J,2007,52(2):197-209
    102.KusabaM, Ito H, Morita R. Iida S, Sato Y, Fujimoto M, KawasakiS, Tanaka R, Hirochika H, Nishimura M et al. Rice NON—ELLOW CoLOR1NG1 is involved in light havesting complexll and grana degradation during leaf senescence. Plant cell,2007,19:1362-1375
    103.KeishiS. Invivos Peetroseo Pie evidenee of ethylene-indueed ehloroPhyl degradation, bioehem. 1990,29:1725-1728
    104.MartinezGA, CivelloMP, ChavesAR, AnonMC.Characterization of Peroxidase mediatedehloro Phyllbleaehing in straw berry fruit.Phytochemistry.2001,58:379-387
    105.NoodenLD,GuiametJJ,John.Senescencemachani. Plant Physiol 1997.102:746-753
    106.Maria Roca, Caron James, Adriana Pruzinska, Stefan Hortensteiner,Howard Thomas, Helen Ougham.Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum.Phytochemistry,2004,65:1231-1238
    107.OellerPA, Min-Wong L, PikeDA, TheologisA.Reversible inhibition of tomato fruit senesence by antisenseRNA.Scienee.1991,254:437-439
    108.PennelR.I.andLamb.C.Programmed cell death in plants.Plant Cell,1997.9:1157-1168
    109.LohmanKN,GanS,JohnMC et al.Moleeular analysis of nature leaf seneseenee. Physiol Plant,1994, 92:322-328
    110.RontaniJF.Visible light-dependent degradation of lipidic Phyto Planktoniecom componenes Dur-ing senscenee:a review.Phytoehem.2001,58:187-202
    111.Ryouhei Morital, Yutaka Sato, Yu Masuda, Minoru Nishimura and Makoto Kusaba.Defect in non-yellow coloring 3, an a/b hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice.The Plant Journal,2009,59:940-952
    112.Stefan Ho rtensteiner. Stay-green regulates chlorophyll andchlorophyll-binding protein degrad-ation during senescence.Trends in Plant Science,2009,14(3):155-162
    113.Silvia Schelbert,Sylvain Aubry,Bo Burla, Birgit Agne,Felix Kessler,Karin 114.Krupinska and Stefan Ho rtensteiner.Pheophytin Pheophorbide Hydrolase (Pheophytinase) is Involved in Chlorophyll Breakdown during Leaf Senescencein Arabidopsis. The Plant Cell,2009,Vol.21: 767-785.
    115.SmartCM,SeofieldSR,BevanMW,Dyerl'A.Delayed leaf seneseenee in tobaeeo Plants Transformed with tmtmr agent for eytokin in Produetion in Agrobacterium.Plant cell,1991,3:647-656
    116.Sato Y,Morita R,Nishimura M,Yamaguchi H,Kusaba M. Mendel's green cotyledon gene encodes apositive regulator of the chlorophyll degrading pathway. Proc Natl Acad Sci USA,2007, 104(35):14169-14174.
    117.Woolhouse HW.The biochemistryand regulation of senence in chioroplast.Bot,1984,62:2934-2942
    118.Wang H.,Li J.andBostock R.M.et al.Apoptosis:a functional paradigm for programmed Plant cell death induced by a host selective phytoxin and invoked during devement. Plant Cell,1996.8(3): 375-379
    119.Wang C.Y.,Bowen J.H.,Weir I.E.,Allan A.C.and Ferguson I.B.Heat-induced protection against death of suspension cultured apple fruit cells exposed to low temperature[J]. Cell Enviro,2001. 24:1199-1207
    120.Xu C.J.,Chen K.S.and Ian B.F.Programmed cell death features in apple suspension cells under low oxygen culture.J.Zhejiang Univ.Sci.,2004.5:137-143
    121. Yen C.H.and Yang C.H.Evidence for programmed cell death during leaf senescence in plants [J]. Plant and Cell Physiology,1998.39:922-927

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700