黄土区土壤水分对典型植物有效性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区水资源匮乏,气候暖干化背景下土壤干燥化不断加剧,生态和农业可持续发展都面临严峻挑战。研究不同土壤质地、植物及气象条件下土壤水分有效性对黄土高原植被恢复和发展旱地农业具有指导意义。本文选取3种代表性土壤、2种代表性作物和一种常见造林树种进行盆栽及田间小区的控水试验,观测不同水分处理条件下植物的生长、蒸腾和光合等生理参数的变化,系统分析了不同土壤、气象和植物条件下的土壤水分有效性,并借助Hydrus-1D模型从理论上探讨了不同因子对植物水分有效性的影响。取得如下结论:
     (1)比较了盆栽和田间小区试验作物生长和蒸腾对水分亏缺的响应,发现:盆栽玉米和小麦的绝对生长量和蒸腾量明显低于田间小区,但是盆栽和田间小区作物的相对生长和相对蒸腾随土壤含水量的动态变化没有明显差异。
     (2)分析了不同生理指标评价土壤水分有效性的差异,发现:不同指标随土壤含水量的动态变化具有一致的规律,即都存在阈值反应。不同指标的土壤水分阈值不同,瞬时指标的水分阈值低于日指标和生育期指标,与生长有关的指标的水分阈值低于与蒸腾有关的指标,灌浆前日蒸腾的水分阈值高于灌浆后日蒸腾,而灌浆前后生长指标的土壤水分阈值差异不明显。
     (3)研究了不同质地、不同植物土壤水分有效性的差异,发现:玉米各项生理指标的土壤水分阈值塿土最高、黑垆土和黄绵土相近,在田间稳定湿度附近,土壤水分有效性黑垆土>黄绵土>塿土;小麦各项植物指标的土壤水分阈值黄绵土最高、塿土居中、黑垆土最低,在田间稳定湿度附近,土壤水分有效性黑垆土>塿土>黄绵土;刺槐各项指标的土壤水分阈值塿土最高、黄绵土居中、黑垆土最低,在田间稳定湿度附近土壤水分有效性,塿土>黑垆土>黄绵土。
     (4)分析气象因子对土壤水分有效性的影响,发现:塿土的水分有效性在高温时不受湿度影响,在低温时随湿度升高而降低;黄绵土的植物水分有效性在高温时随湿度升高而升高,在低温时随湿度升高而降低;玉米3种土壤的盆栽试验中土壤水分阈值随大气蒸发力虽有升高但升高不明显;小麦3种土壤试验中土壤水分阈值随大气蒸发力的升高而升高,且ET0 > 3.0 mm d-1时土壤水分阈值有明显升高;刺槐3种土壤试验中黄绵土的土壤水分阈值在ET0 > 3.0 mm d-1时明显升高,塿土和黑垆土的水分阈值随大气蒸发力的升高反而明显降低。
     (5)利用Hydrus-1D模型模拟土壤水分有效性动态变化过程及其影响因素,发现:大气蒸发力和叶面积指数对土壤水分有效性动态变化曲线的形状没有明显影响,对土壤水分阈值略有影响;而根系深度和根系分布形状不仅对土壤水分有效性动态变化曲线的形状有影响,而且对土壤水分阈值影响的也很大;3种土壤以绝对含水量表示的水分阈值大小顺序是塿土>黑垆土>黄绵土;根系吸水速率的土壤水分阈值随着大气蒸发力的升高而升高,但还受其叶面积指数、根系深度和根系分布影响;在冠层郁闭前后土壤水分阈值随叶面积指数的变化不同;随着根系深度和深层根系分布的增加土壤水分阈值降低,但是在黄绵土中降低程度小于塿土和黑垆土。
     本研究结果表明,利用归一化植物生理指标研究盆栽试验中土壤水分对作物的有效性可以应用到田间,评价土壤水分有效性的结果会因所用指标的时间尺度、生育期及涉及生理过程不同而有差异,土壤水分有效性是土壤质地、气象条件和植物生长状况等因素综合影响下植物对土壤水分变化的响应。
Water resources shortage is very severe in the Loess Plateau of China. The climate warming and drying in this area is leading to a further decline of soil water reserve, which challenges the ecological and agricultural sustainable development. Studying on the dynamics of soil water availability for different plants in different textured soils, and under different weather conditions could guide for the vegetation restoration and the development of the dryland farming. In this study, three typical textured soils (loamy clay, clay loam and sandy loam) collected from different area in the Loess Plateau were selected for growing maize (Zea Mays L.), winter wheat(Triticum Aestivum L.), and black locust (Robinia Pseudoacacia L.) under six different constant soil water levels in the pots and under three water treatments in the plots. The plant growth and transpiration and photosynthetic parameters were measured in different soil water treatments. The effects of soil texture, plant and weather conditions on soil water availability were systemically analyzed based on these measurements. With the Hydrus-1D model, the factors affecting the response of root water uptake to soil water availability were discussed on a theoretical basis. The main conclusions of this study were as follows:
     (1) The responses of plant growth and transpiration of maize and winter wheat to soil water stress were compared between the pot and plot experiments. Characteristic responses of the various plant indices to changes in the soil water content obtained in the pot experiment were applicable to the field, although large differences were found between the plants grown in the pots and plots when considering their absolute plant growth and total transpiration.
     (2) The dynamic aspects of soil water availability were compared among different physiological indices. With the linear-plateau function, the dynamic aspects of soil water availability for various physiological indices showed the same trend with a threshold response. The threshold values for the indices over the transient time scale were lower than that over the daily and seasonal scales. The threshold values for indices related to growth were lower than that related to transpiration. Higher threshold value was obtained for daily transpiration before the filling stage, however, no significant difference were obtained between the threshold values for indices related to growth before and after the filling stage.
     (3) The dynamic aspects of soil water availability for various physiological indices of maize, winter wheat and black locust were also compared among different soils. The average threshold values of relative soil water content for maize were larger for the loamy clay than clay loam and sandy loam; near the broken capillary moisture, soil water availability for maize was the largest for the clay loam, the medium for the sandy loam and the least for the clay loam. The average threshold values of relative soil water content for winter wheat were the largest for the sandy loam, the medium for the loamy clay and the least for the clay loam; near broken capillary moisture, soil water availability for winter wheat was the largest for the clay loam, the medium for the loamy clay and the least for the sandy loam; The average threshold values of relative soil water content for black locust were the largest for loamy clay, the medium for the sandy loam and the least for the clay loam; near broken capillary moisture, soil water availability was the largest for the loamy clay, the medium for the clay loam and the least for the sandy loam. The capacity of draught resistance was the largest for black locust, the medium for winter wheat and the least for maize.
     (4) By comparing the dynamic aspects of soil water availability under different weather conditions, we found that soil water availability in the loamy clay was insusceptible to humidity variation under high temperature, but increased with the humidity increasing under low temperature; soil water availability in the sandy loam increased with humidity increasing under high temperature and decreased with humidity increasing under high temperature; The effects of evaporative demand on the dynamic aspects of soil water availability were different among different textured soils and plant types. For maize, the threshold values of soil water content increased with the evaporative demand increasing, but no significant difference could be found among different ET0 levels. For winter wheat, the threshold values of soil water content increased with the evaporative demand increasing, and significant higher threshold values were obtained when ET0 > 3.0 mm d-1. For black locust, the threshold values of soil water content in the sandy loam increased significantly when ET0 > 3.0 mm d-1 as the evaporative demand increasing, however, in the loamy clay and clay loam, the threshold values of soil water content decreased significantly.
     (5) The Hydrus-1D model was selected to investigate the mechanism of the influence of soil texture, plant growth and weather conditions on the dynamic aspects of soil water availability. The plant selected for simulating was maize growing with different leaf area index, root depth and root density distribution. Results showed the threshold values of soil water content were quite different under different soil, plant and weather conditions, among which root depth and root density distribution also had significant influence on the shape of the dynamic curve of the soil water availability to plant. However, the response of soil water availability to leaf area index and weather condition was different among different soils. In general, the critical soil water content declined with soil texture in the order: loamy clay > clay loam > sandy loam, increased as evaporative demand increasing and decreased as root depth and root density distributed in the deep depth increasing.
     The results showed that, with the normalized plant physiological indices, the soil water availability to plant in the pot experiment could be applied in the field; the soil water availability would be different when the plant indices used were different in time scales, growth stages or related physiological processes; soil water availability was the plant responses to soil water variation under the comprehensive effects of soil texture, weather condition and plant growing state.
引文
[1]安芷生,张信宝,周杰, et al.黄土高原植被恢复与黄土旱地水分保持[M]. Management of ecological environment in the Loess Plateau of China-Proceeding of CCAST (World Laboratory) workshop. 1999: 31-40.
    [2]黄明斌,杨新民,李玉山.黄土高原生物利用型土壤干层的水文生态效应研究[J].中国农业生态学报, 2003, 11(3): 113-116.
    [3]姚玉璧,王毅荣,李耀辉, et al.中国黄土高原气候暖干化及其对生态环境的影响[J].资源科学, 2005, 27(5): 146-152.
    [4]姚玉璧,李耀辉,王毅荣, et al.黄土高原气候与气候生产力对全球气候变化的响应[J].干旱地区农业研究, 2005, 23(2): 202-208.
    [5]李振朝,韦志刚,文军, et al.近50年黄土高原气候变化特征分析[J].干旱区资源与环境, 2008, 22(3): 57-62.
    [6]杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社, 1992.
    [7]李玉山,喻宝屏.土壤深层储水对小麦产量效应的研究[J].土壤学报, 1980, 17(1): 383-388.
    [8]陈志雄,汪仁真.中国几种主要土壤的持水性质[J].土壤学报, 1979, 16(3): 277-281.
    [9]邵明安,黄明斌.土-根系统水动力学[M].西安:陕西科学技术出版社, 2000.
    [10] Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden [J]. Agricultural and Forest Meteorology, 2002, 112: 67-85.
    [11] Sinclair T R, Holbrook N M, Zwieniecki M A. Daily transpiration rate of woody species on drying soil [J]. Tree Physiology, 2005, 25: 1469-1472.
    [12]李玉山,韩仕峰,汪正华.黄土高原土壤水分性质及其分区[J].水土保持研究, 1985, (2): 1-17.
    [13]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社, 2000.
    [14] Israelson O W, West F L. Water holding capacity of irrigated soils[J]. Utah State Agricultural Experiment Station Bull, 1922, 183: 1-24.
    [15] Veihmeyer F J, Hendrickson A H. The moisture equivalent as a measure of the field capacity of soils [J]. Soil Science, 1931, 32: 181-193.
    [16] Wopereis M C S, Kropff M J, Malligaya A R, et al. Drought-stress responses of two lowland rice cultivars to soil water status [J]. Field Crops Research, 1996, 46: 21-39.
    [17] Colman E A. A laboratory procedure for determining the field capacity of soils [J]. Soil Science,1947, 63: 277-283.
    [18] Cassel D K, Nielsen D R. Field capacity and available water capacity [M]. Klute A. Methods of soil analysis, Part 1. Physical and mineralogical methods. Madison: Soil Science Society of America. 1986 901-926.
    [19] Rivers E D, Shipp R F. Soil water retention as related to particle size in selected sands and loamy sands[J]. Soil Science, 1978, 126: 94-100.
    [20] Ratliff L F, Ritchie J T, Cassel D K. Field-measured limits of soil water availability as related to laboratory-measured properties [J]. Soil Science Society of American Journal, 1983, 47: 770-775.
    [21]罗戴A A.土壤水[M].巴逢辰,乔樵,孙励敬等译.北京:科学出版社. 1964.
    [22]杨文治,韩仕峰.黄土丘陵区人工林草地的土壤水分生态环境[J].水土保持研究, 1985, 2: 18-28.
    [23] Briggs L J, Shantz H L. The wilting coefficient and its indirect determination [J]. Botanical Gazette, 1912, 53: 20-37.
    [24] Veihmeyer F J, Hendrickson A H. Soil moisture at permanent wilting of plants [J]. Plant Physiology, 1928, 3: 355-357.
    [25] Richards L A, Weaver L R. Fifteen-atmosphere percentage as related to the permanent wilting percentage [J]. Soil Science, 1943, 56: 331-339.
    [26] Veihmeyer F J, Hendrickson A H. Soil-moisture conditions in relation to plant growth [J]. Plant Physiology, 1927, 2: 71-82.
    [27] Veihmeyer F J, Hendrickson A H. Soil moisture in relation to plant growth [J]. Annual Review of Plant Physiology, 1950, 1: 285-305.
    [28] Richards L A, Wadleigh C H. Soil water and plant growth. Soil Physical Conditions and Plant Growth [M]. Shaw B T (Ed.). American Society of Agronomy Series Monographs. New York: Academic Press. 1952, 74-251.
    [29] Ritchie J T. Water dynamics in the soil-plant-atmosphere system [J]. Plant and Soil, 1981, 58: 81-96.
    [30] Sinclair T R, Ludlow M M. Influence of soil water supply on the plant water balance for four tropical grain legumes [J]. Australian Journal of Plant Physiology, 1986, 13: 329-341.
    [31] Lacape M J, Wery J, Annerose D J M. Relationships between plant and soil water status in five field-grown cotton (Gossypium hirsutum L.) cultivars [J]. Field Crops Research, 1998, 57: 29-43.
    [32] Lecoeur J, Guilioni L. Rate of leaf production in response to soil water deficits in field pea [J].Field Crops Research, 1998, 57(3): 319-328.
    [33] Soltani A, Khooie F R, Ghassemi-Golezani K, et al. Thresholds for chickpea leaf expansion and transpiration response to soil water deficit [J]. Field Crops Research, 2000, 68(3): 205-210.
    [34] Pellegrino A, Lebon E, Voltz M, et al. Relationships between plant and soil water status in vine (Vitis vinifera L.) [J]. Plant and Soil, 2004, 266: 129-142.
    [35] Sinclair T R, Hammond L C, Harrison J. Extractable soil water and transpiration rate of soybean on sandy soils [J]. Agronomy Journal, 1998, 90: 363-368.
    [36] Bouman B A M, Kropff M J, Tuong T P, et al. ORYZA 2000: Modeling Lowland Rice[M]. Institute International Rice Research. The Philippines. 2001, 235.
    [37] Davatgar N, Neishabouria M R, Sepaskhahb A R, et al. Physiological and morphological responses of rice(Oryzasativa L.) to varying water stress management strategies [J]. International Journal of Plant Production, 2009, 3(4): 19-32.
    [38] Philip J R. Plant water relations: some physical aspect [J]. Annual Review of Plant Physiology, 1966, 17: 245-268.
    [39] Veihmeyer F J, Hendrickson A H. Use of tensiometers in measuring availability of water to plant [J]. Plant Physiology, 1955, 18: 66-78.
    [40]郭庆荣,张秉刚.土壤水分有效性研究综述[J].热带亚热带土壤科学, 1995, 4(2): 119-124.
    [41] Kelley O I. Requirement an availability of water [J]. Advance in Agronomy, 1954, 6: 67-94.
    [42] Ritchie J T. Influence of soil water status and meteorological conditions on evaporation from a corn canopy [J]. Agronomy Journal, 1973, 65: 893-897.
    [43] Meyer W S, Green G C. Plant indicators of wheat and soybean crop water stress[J]. Irrigation Science, 1981, 2: 167-176.
    [44] Gollan T, Passioura J B, Munns R. Soil water status affects the stomatal conductance of fully turgid wheat and sun flower leaves [J]. Australian Journal of Plant Physiology, 1986, 13: 459-464.
    [45] Rosenthal W D, Arkin G F, Shouse P J, et al. Water deficit effects on transpiration and leaf growth [J]. Agronomy Journal, 1987, 79: 1019-1026.
    [46] Sadras V O, Milroy S P. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review [J]. Field Crops Research, 1996, 47: 253-266.
    [47] Sinclair T R. Theoretical analysis of soil and plant traits influencing daily plant water flux on drying soils [J]. Agronomy Journal, 2005, 97: 1148-1152.
    [48]刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社, 1999.
    [49]郭庆荣,李玉山.黄土高原南部土壤水分有效性研究[J].土壤学报, 1994, 31(3): 236-243.
    [50]邵明安,杨文治,李玉山.黄土区土壤水分有效性研究[J].水利学报, 1987, 32(8): 1421-1423.
    [51]希勒尔D.土壤和水-物理原理和过程[M].北京:农业出版社, 1981.
    [52] Bailey R J, Spackrnan E. A model for estimating soil moisture changes as an aid to irrigation scheduling and crop water-use studies: I. Operational details and description [J]. Soil Use and Management, 1996, 12: 122-128.
    [53] Novák V, Hutalova T, Matejka F. Predicting the effects of soil water content and soil water potential on transpiration of maize [J]. Agricultural Water Management, 2005, 76: 211-223.
    [54] Van Diepen C A. Two alternative methods for evaluating crop yield potential in the European Community [J]. Geoderma, 1993, 60: 359-376.
    [55] Akinremi O O, McGinn S M. Regional simulation of fall and spring soil moisture in Alberta [J]. Canadian Journal of Soil Science, 1997, 77: 431-442.
    [56] Wassenaar T, Lagacherie P, Legros J P, et al. Modeling wheat yield responses to soil and climate variability at the regional scale [J]. Climate Research, 1999, 11: 209-220.
    [57] Petersen G W, Cunn R L, Matelski R P. Moisture characteristics of Pennsylvania soils: I. Moisture retention as related to texture [J]. Soil Science Society of America Proceedings, 1968, 32: 217-275.
    [58] Lund Z F. Available water-holding capacity of Alluvial soil in Louisiana [J]. Soil Science Society of America Proceedings, 1959, 23: 1-3.
    [59] Rivers E D, Shipp R F. Available water capacity of sandy and gravelly North Dakota soils [J]. Soil Science, 1972, 113 (2): 74-80.
    [60] Rivers E D, Shipp R F. Soil water retention as related to particle size in selected sands and loamy sands [J]. Soil Science, 1978, 126(2): 94-100.
    [61] Petersen G W, Cunnlngham R L, Matelski R P. Soil Science of America Proceedings [J]. Moisture characteristics of Pennsylvania soils: II. Soil factors affecting moisture retention characteristics within a textural class-silt loam, 1968, 32: 866-870.
    [62] Hudson B D. Soil organic matter and available water capacity [J]. Journal of Soil and Water Conservation, 1994, 49(2): 189-194.
    [63] Hollis J M, Jones R J A, Palmer R C. The effects of organic matter and particle size on thewater-retention properties of some soils in the west midlands of England [J]. Geoderma, 1977, 17: 225-238.
    [64] Rawls W J, Gish T J, Brakensiek D L. Estimating soil water retention from soil physical properties and characteristics [J]. Advances in Soil Science, 1991, 16: 213-234.
    [65]赵世伟,周印东,吴金水.子午岭次生植被下土壤蓄水性能及有效性研究[J].西北植物学报, 2003, 23(8): 1389-1392.
    [66]胡梦珺,刘文兆.黄土丘陵沟壑区灌木林地土壤水分有效性及盈亏分析[J].甘肃农业科技, 2004, (4).
    [67] Jong D R, Shields J A, Sly W K. Estimated soil water reserves applicable to a wheat-fallow rotation for generalized soil areas mapped in southern Saskatchewan [J]. Canadian Journal of Soil Science, 1984, 64: 667-680.
    [68] Bruand A D, Hardy B M. Prediction of water retention properties of clay soil validity of relationships using a single soil characteristic[J]. Soil Use and Management, 1994, 10(1): 99-103.
    [69] Saxton K E, Rawls W J, Romberger J S, et al. Estimating generalized soil-water characteristics from texture [J]. Soil Science Society of American Journal, 1986, 50(4): 1031-1036.
    [70] Bouma J, Van Lanen J A. Transfer functions and threshold values: from soil characteristics to land qualities [M]. ISSS and SSSA International Workshop on Quantified Land Evaluation. Washington DC, USA. 1987.
    [71] Cazemier D R, Lagacherie P, Martin-Clouaire R. A possibility theory approach for estimating available water capacity from imprecise information contained in soil databases [J]. Geoderma, 2001, 103: 113-132.
    [72]周文佐,刘高焕,潘剑君.土壤有效含水量的经验估算研究-以东北黑土为例[J].干旱区资源与环境, 2003, 17(4): 88-95.
    [73] Zhou W Z, Liu G H, Pan J J, et al. Distribution of available soil water capacity in China[J]. Journal of Geographical Sciences, 2005, 15(1): 3-12.
    [74]毛学森,王新元.根据气象资料求算土壤有效含水量的方法[J].生态农业研究, 1995, 3(2): 83-86.
    [75]刘增文,王佑民.人工油松林蒸腾耗水及林地水分动态特征的研究[J].水土保持通报, 1990, 10(6): 78-84.
    [76]余新晓,张建军,朱金兆.黄土地区防护林生态系统土壤水分条件的分析与评价[J].林业科学, 1996, 32(4): 289-297.
    [77]张小泉,张清华.太行山北部中山幼林地土壤水分的研究[J].林业科学, 1994, 30(3): 193-200.
    [78]王孟本,柴宝峰,李洪建, et al.黄土区人工林的土壤持水力与有效水状况[J].林业科学, 1999, 35(2): 7-14.
    [79]王志强,刘宝元,海春兴, et al.晋西北黄土丘陵区不同植被类型土壤水分分析[J].干旱区资源与环境, 2002, 16(4): 53-58.
    [80]邵孝侯,王宇,毕利东, et al.基于最优分割理论的土壤水分有效性评价[J].农业工程学报, 2010, 26(3): 106-111.
    [81]张光灿,刘霞,贺康宁.黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究[J].应用生态学报, 2003, 14(6): 858-862.
    [82]周泽福,刘致远,张光灿.黄土丘陵区金矮生苹果园土壤水分有效性及生产力分级[J].林业科学研究, 2005, 18(1): 10-15.
    [83] Bielorai H. Prediction of irrigation needs[M]. Yaron B, Danfos E, Vaadia Y. Arid zone irrigation. Berlin: Springer. 1973, 359-368.
    [84] Masinde P W, Stutzel H, Agong S G, et al. Plant growth, water relations and transpiration of two species of African nightshade (Solanum villosum Mill. ssp. Miniatum (Bernh. ex Willd.) Edmonds and S.sarrachoides Sendtn.) under water-limited conditions [J]. Scientia Horticulturae, 2006, 110: 7-15.
    [85] Casadebaig P, Debaeke P, Lecoeur J. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes [J]. European Journal of Agronomy, 2008, 28(4): 646-654.
    [86] Muchow R C, Sinclair T R. Water deficit effects on maize yields modelled under current and "greenhouse" climates [J]. Agronomy Journal, 1991, 83: 1052-1059.
    [87] Lecoeur J, Sinclair T R. Field pea transpiration and leaf growth in response to soil water deficits [J]. Crop Science, 1996 36(2): 331-335.
    [88] Ray J D, Sinclair T R. The effect of pot size on growth and transpiration of maize and soybean during water deficit stress [J]. Journal of Experimental Botany, 1998, 49: 1381-1386.
    [89] Wahbi A, Sinclair T R. Transpiration response of Arabidopsis, maize and soybean to drying of artificial and mineral soil [J]. Environmental and Experimental Botany, 2007, 59: 188-192.
    [90] Denmead O T, Shaw R H. Availability of soil water to plants as affected by soil moisture content and meteorological conditions [J]. Agronomy Journal, 1962, 45: 385-390.
    [91] Metselaar K, Jong van Lier Q. de. The Shape of the Transpiration Reduction Function under Plant Water Stress [J]. Vadose Zone Journal, 2007, 6: 124-139.
    [92] Kramer P J. Water movement in the soil plant atmosphere continuum [M]. Orlando, Florida: Academic Press, 1983.
    [93] Veihmeyer F J, Hendrickson A H. Methods of measuring field capacity and permanent wilting percentage of soils [J]. Soil Science, 1949, 68: 75-76.
    [94] Veihrneyer F J. The availability of soil moisture to plantar results of empirical experiments with fruit trees [J]. Soil Science, 1972, 111: 268-294.
    [95] Macgillivray J H. Soil moisture conditions as related to the irrigation of truck crops on mineral soils [J]. Proceedings of the American Society for Horti-cultural Science, 1942, 40: 483-492.
    [96] Ayers A D. The interrelationship of salt concentration and soil moisture content with growth of beans [J]. Journal of the American Society Agronomy, 1943, 35: 796-810.
    [97]裴步祥,安顺清.冬小麦农田水分与产量关系试验的初步结果[J].科学通报, 1985, 20: 1599-1600.
    [98] Stanhill G. The effect of differences in soil-moisture status on plant growth: A review and analysis of soil moisture regime experiments [J]. Soil Science, 1957, 84(3): 205-214.
    [99] Ludlow M M. Strategies of response to water stress [M]. Kreeb K H, Richter H, Hinckley T M. Structural and functional responses to environmental stresses. The Hague: SPB Academic publishing. 1989, 69-81.
    [100] Liu F, Stützel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress [J]. Scientia Horticulturae, 2004, 102: 15-27.
    [101] Turner N C. Further progress in crop water relations [J]. Advances in Agronomy, 1997, 58: 293-338.
    [102]李文华,吴万兴,张忠良, et al.土壤水分对仁用杏水分和生长特征的影响[J].西北农林科技大学学报(自然科学版), 2003, 31(4): 139-144.
    [103]景茂,曹福亮,汪贵斌, et al.土壤水分含量对银杏生长及生物量分配的影响[J].南京林业大学学报(自然科学版), 2005, 29(3): 5-8.
    [104]李洁,朱清科,郭小平.不同土壤水分对幼龄梨树生理特性及生物量的影响[J].水土保持通报, 2007, 27(2): 79-82.
    [105] Furr J R. The range of soil-moisture percentages through which plants undergo permanentwilting in soils from semiarid irrigated areas [J]. Journal of Agricultural Research, 1945, 71: 149-170.
    [106] Blair G Y, Richards L A, Campbell R B. Rate of elongation of sunflower plants in relation to available soil moisture [J]. Soil Science, 1950, 70(6): 431-440.
    [107] Zunzunegui M, Diaz Barradas M C, Aguilar F, et al. Growth response of Halimium halimifolium at four sites with different soil water availability regimes in two contrasted hydrological cycles [J]. Plant and Soil, 2002, 247: 271-281.
    [108] Carvallho L M, Casali V W, Souza M A, et al. Soil water availability and growth of feverfew [J]. Horticultura Brasileira, 2003, 21(4): 237-243.
    [109] Rodiyati A, Arisoesolaningsih E, Isagi Y, et al. Responses of Cyperus brevifoilus (Rottb.) Hask. and Cyperuskyllingia Endl. to varying soil water availability [J]. Environmental and Experimental Botany, 2005, 53(3): 259-269.
    [110] Bindi M, Bellesi S, Orlandini S, et al. Influence of water deficit stress on leaf area development and transpiration of Sangiovese grapevines grown in pots [J]. American Journal of Enology and Viticulture, 2005, 56(1): 68-72.
    [111]孙志虎,王庆成.土壤含水量对三种阔叶树苗气体交换及生物量分配的影响[J].应用与环境生物学报, 2004, 10(1): 7-11.
    [112] Williams L E., Dokoozlian N K., Wample R. Grape[M]. Schaffer B, Anderson P C. Handbook of Environmental Physiology of Fruit Crops. Boca Raton: CRC Press. 1994.
    [113] Williams L E. Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. Chardonnay [A]. 1er Colloquy International 'Les terroirs viticoles' [C]. Angers, France, 1996, 161-163.
    [114] Cuevas E, Baeza E P, Lissarrague J R. Variation in stomatal behavior and gas exchange between mid-morning and mid-afternoon of north-south oriented grapevines (Vitis vinifera L.cv. Tempranillo) at different levels of soil water availability [J]. Scientia Horticulturae, 2006, 108: 173-180.
    [115] Dias P C, Araujo W L, Moraes G A, et al. Morphological and physiological responses of two coffee progenies to soil water availability [J]. Journal of Plant Physiology, 2007, doi:10.1016/j.jplph.2006.12.004.
    [116]沈善敏,卢明远.土壤水分对大豆有效性的初步研究[J].土壤通报, 1964, 2: 35-39.
    [117]郭连生,田有亮.八种针阔叶幼树清晨叶水势与土壤含水量的关系及其抗旱性研究[J].生态学杂志, 1992, 11(2): 4-7.
    [118]郭连生,田有亮. 4种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及其抗旱性研究[J].应用生态学报, 1994, 5(1): 32-36.
    [119]李良厚,贾志英,付祥健.土壤水分胁迫下苗木水分参数变化的研究[J].河南农业大学学报, 1999, 33 (1): 92-99.
    [120]李洪建,王孟本,柴宝峰.黄土区4个树种水势特征的研究[J].植物研究, 2001, 21(1): 100-105.
    [121] Liu M Z, Jiang G M, Niu S L, et al. Photosynthetic response to soil water contents of an annual pioneer C4 grass (Agriophyllum squarrosum) in Hunshandak Sandland, China [J]. Photosynthetica, 2003, 41(2): 293-296.
    [122]张文丽,张彤,吴冬秀, et al.土壤逐渐干旱下玉米幼苗光合速率与蒸腾速率变化的研究[J].中国生态农业学报, 2006, 14(2): 72-75.
    [123]郭庆荣.黄土区土壤水分有效性研究[D].陕西杨凌:中科院水利部水土保持研究所, 1992.
    [124]康绍忠,刘晓明,熊运章.冬小麦根系吸水模式研究[J].西北农业大学学报, 1992, 20(2): 5-12.
    [125] Arya L M, Leij F J, van Genuchten M Th, et al. Scaling parameter to predict the soil water characteristic from particle-size distribution data[J]. Soil Science Society of America Journal, 1999, 63: 510-519.
    [126] Chakraborty D, Chakraborty A, Santra P, et al. Prediction of hydraulic conductivity of soils from particle-size distribution [J]. Current Science, 2006, 90(11): 49-55.
    [127] Whisler F D, Klute A, Millington R J. Analysis of steady state evapotranspiration from a soil column[J]. Soil Science Society of Amercia Journal, 1968, 32: 167-174.
    [128] NeSmith D S, Ritchie J T. Short- and long-term responses of corn to pre-anthesis soil water deficit [J]. Agronomy Journal, 1992, 84: 107-113.
    [129] Passioura J B, Gardner P A. Control of leaf expansion in wheat seedlings growing in drying soil [J]. Australian Journal of Plant Physiology, 1990, 17: 149-157.
    [130] Czy? E A, Tomaszewska J, Dexter A R. Response of spring barley to changes of compaction and aeration of sandy soil under model conditions [J]. International Agrophysics, 2001, 15: 9-12.
    [131] Stirzaker R J, Passioura J B, Wilms Y. Soil structure and plant growth: Impact of bulk density and biopores [J]. Plant and Soil, 1996, 185: 151-162.
    [132] Da Silva A P, Kay B D. Estimating the least limiting water range of soils from soil propertiesand management [J]. Soil Science Society of America Journal, 1997, 61: 877-883.
    [133] Erickson P I, Ketring D L, Stone J F. Response of internal tissue water balance of peanut to soil water [J]. Agronomy Journal, 1991, 83: 248-253
    [134] Robertson M J, Fukai S. Comparison of water extraction models for grain sorghum under continuous soil drying [J]. Field Crops Research, 1994, 36: 145-160.
    [135] Hanson B R, Peters D. Soil type affects accuracy of dielectric moisture sensors [J]. California Agriculture, 2000, 54(3): 43-47.
    [136] Jong van Lier Q. de, Metselaar K, van Dam J C. Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation [J]. Vadose Zone Journal, 2006, 5: 1264-1277.
    [137] Hammer G L, Muchow R C, Quantifying climatic risk to sorghum in Australia's semiarid tropics and subtropics: model development and simulation [M]. Muchow R C, Bellamy J A (Eds.), Climatic Risk in Crop Production: Models and Management for the Semi-arid Tropics and Subtropics C.A.B. International.1990, pp.205-232.
    [138] Muchow R C, Sinclair T R. Water deficit effects on maize yields modelled under current and "greenhouse" climates [J]. Agronomy Journal, 1991, 83, 1052-1059.
    [139] Nable R O, Robertson M J, Berthelsen S. Response of shoot growth and transpiration to soil drying in sugarcane [J]. Plant Soil, 1999, 207: 59-65.
    [140]张喜英,裴冬,由懋正.几种作物的生理指标对土壤水分变动的阈值反应[J].植物生态学报, 2000, 24(3): 280-283.
    [141] Ray J D, Sinclair T R. Stomatal closure of maize hybrids in response to drying soil [J]. Crop Science, 1997, 37: 803-807.
    [142] Jyostna Devi M, Sinclair T R, Vadez V, et al. Peanut genotypic variation in transpiration efficiency and decreased transpiration during progressive soil drying [J]. Field Crops Research, 2009, 114: 280-285.
    [143] Weisz R, Kaminski J, Smilowitz Z. Water deficit effects on potato leaf growth and transpiration: Utilizing fraction extractable soil water for comparison with other crops [J]. American Journal of Potato Research, 1994, 71(12): 829-840.
    [144] Eavis B W. Soil physical conditions affecting seedling root growth III. Comparisons between root growth in poorly aerated soil and at different oxygen partial pressures [J]. Plant and Soil, 1972, 37(1): 151-158.
    [145]鲍巨松,杨成书,薛吉全, et al.不同生育时期水分胁迫对玉米生理特性的影响[J].作物学报, 1991, 17(4): 261-266.
    [146]王延宇,王鑫,赵淑梅, et al.玉米各生育期土壤水分与产量关系的研究[J].干旱地区农业研究, 1998, 16(1): 100-105.
    [147]赵世伟,管秀娟,吴金水.不同生育期干旱对冬小麦产量及水分利用效率的影响[J].灌溉排水, 2001, 20(4): 56-59.
    [148]韩晓增,乔云发,张秋英, et al.不同土壤水分条件对大豆产量的影响[J].大豆科学, 2003, 22(4): 269-272.
    [149] Turner N C, Schulzel E D, Gollan T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content (2): In the mesophytic herbaceous species Helianthus annuus [J]. Oecologia, 1985, 65(3): 348-355.
    [150] Gollan T, Turner N C, Schulzel E D. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content (3): In the sclerophyllous woody species Nerium oleander [J]. Oecologia, 1985, 65(356-362).
    [151] Ray J D, Gesch R W, Sinclair T R, et al. The effect of vapor pressure deficit on maize transpiration response to adrying soil [J]. Plant and Soil, 2002, 239(1): 113-121.
    [152] Novák V, Havrila J. Method to estimate the critical soil water content of limited availability for plants[J]. Biologia, 2006, 61(19): S289-S293.
    [153]张卫强,贺康宁,朱艳艳, et al.黄土半干旱区油松苗木蒸腾特性与影响因子的关系[J].中国水土保持科学, 2007, 5(1): 49-54.
    [154] Bariac T, Rambal S, Jusserand C, et al. Evaluating water fluxes of field-grown alfalfa from diurnal observations of natural isotope concentrations, energy budget and ecophysiological parameters [J]. Agricultural and Forest Meteorology, 1989, 48(3-4): 263-283.
    [155] Molz F J, Romson I. Extraction term models of soil moisture use by transpiring plants [J]. Water Resource Research, 1970, 6: 1346-1356.
    [156] Feddes R A, Kowalik P J, Zaradny H. Simulation of field water use and crop yield[M]. New York: John Wiley & Sons, 1978.
    [157] Hillel D. A macroscopic scale model of water uptake by anon uniform root system and salt movement in the soil Profile [J]. Soil Science, 1976, 121: 242-255.
    [158] Nimah M N, Hanks R J. Model for estimating soil water, plant and atmosphere interrelations: Field test of model [J]. Soil Science Society of America Journal, 1973, 37 (4): 528-532.
    [159] Molz F J. Models of water transport in the soil-plant system: A review [J]. Water Resources Research, 1981, 17: 1254-1260.
    [160] Herkelrath W H, Miller E E, Gardner W R. Water uptake by plant: 1. Divided root experiment [J]. Soil Science of America Journal, 1977, (41): 1033-1038.
    [161]姚建文.作物生长条件下土壤含水量预测的数学模型[J].水利学报, 1989, (9): 32-38.
    [162]邵爱军,李会昌.野外条件下作物根系吸水模型的建立[J].水利学报, 1997, (2): 68-72.
    [163]刘晓明,康绍忠,韦忠.夏玉米根系吸水模式的研究[J].西北水资源与工程, 1992, 3(1): 28-36.
    [164]邵明安,杨文治,李玉山.黄土区土壤水分有效性的动力学模式[J].科学通报, 1987, 32(18): 1421-1423.
    [165]张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述[J].世界林业研究, 2001, 14(2): 23-28.
    [166] Monteith J E. Evapotation and environment [J]. Symposium of the Society Experimental Botany, 1965, 19: 205-234.
    [167] Shutrieworth W J. A one-dimensional theoretical description of the vegetation-atmosphere interaction [J]. Boundary-layer Meteorology, 1976, 10(3): 273-302.
    [168] Shuttleworth W J, Wallace J S. Evaporation from sparse crops: an energy combination theory [J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839-855.
    [169]康绍忠,刘晓明.冬小麦叶片水势,气孔阻力、蒸腾速率与环境因素的关系[J].灌溉排水, 1991, 10: 1-6.
    [170]蔡焕杰,熊运章.计算农田蒸散量的冠层温度法的研究[J].西北水土保持研究所集刊, 1991, 13(1): 57-65.
    [171]刘昌明,窦清晨.土壤-植物-大气连续体模型中的蒸散发计算[J].水科学进展, 1992, 3(4): 256-263.
    [172]康绍忠,张富仓.作物叶面蒸腾与棵间蒸发分摊系数的计算方法[J].水科学进展, 1995, 6(4): 285-289.
    [173]孙景生,康绍忠.夏玉米田水热耦合运移的数值模拟[J].灌溉排水, 1995, 14(3): 24-29.
    [174]张瑞美,彭世彰.参考作物蒸发蒸腾量的气象因子响应模型[J].节水灌溉, 2007, (2): 1-3, 6.
    [175]卢振民,土壤-作物-大气系统(SPAC)水流运动模拟与实验研究.谢贤群,于沪宁,作物与水分关系研究.中国科学技术出版社:北京.1992, 287-357.
    [176]康绍忠,刘晓明,高新科, et al.土壤-植物-大气连续体水分传输的计算机模拟[J].水利学报, 1992, 3: 1-12.
    [177]刘树华,黄子琛,刘立超.土壤-植被-大气连续体中蒸散过程的数值模拟[J].地理学报, 1996, 51(2): 118-126.
    [178]莫兴国.土壤-植被-大气系统水分能量传输模拟和验证[J].气象学报, 1998, 56(3): 323-332.
    [179]罗毅,于强,欧阳竹, et al. SPAC系统中的水、热、CO2通量与光合作用的综合模型(I)模型建立[J].水利学报, 2001, 2: 90-97.
    [180]谢贤群,王立军.水环境要素观测与分析[M].北京:标准出版社, 1998.
    [181] van Genuchten M Th. A closed form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44: 892-898.
    [182] Mualem Y. A new model for predicting the hydraulic conductivity media [J]. Water Resources Research, 1976, 12(3): 512-522.
    [183] Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration guidelines for computing crop water requirement, FAO Irrigation and Drainage Paper [M]. Rome: Food and Agriculture Organization of the United Nations, 1998.
    [184]钱允褀.农业气象学[M].西安:兴界图书出版公司, 1997.
    [185] Kang S Z, Gu G B, Du T S, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter and maize in a semi-humid region [J]. Agricultural Water Management, 2003, 59(3): 239-254.
    [186] Townend A L, Dickinson A. Comparison of rooting environments in containers of different sizes [J]. Plant and Soil, 1995, 175: 139-146.
    [187] Hurley M B, Rowarth J S, Trought M C T, et al. Variations in water availability and temperature in the root environment during root volume restriction studies[J]. New zealand Journal of Crop and Horticultural Science, 1998, 26(2): 127-134.
    [188] Whiley A W, Searle C, Schaffer B, et al. Cool orchard temperatures or growing trees in containers can inhibit leaf gas exchange of avocado and mango[J]. Journal of the American Society for Horticultural Science, 1999, 124(1): 46-51.
    [189] Wang S, Okamoto G, Hirano K, et al. Effects of restricted rooting volume on vine growth and berry development of Kyoho grapevines[J]. American Journal of Enology and Viticulture, 2001, 52(3): 248-253.
    [190] Thomas R B, Strain B R. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide[J]. Plant Physiology, 1991, 96(2): 627-634.
    [191] Ronchi C P, DaMatta F M, Batista K D, et al. Growth and photosynthetic down-regulation in Coffea Arabica in response to restricted root volume [J]. Functional Plant Biology, 2006, 33(11): 1013-1023.
    [192] Hameed M A, Reid J B, Rowe R N. Root confinement and its effects on the water relations, growth and assimilate partitioning of tomato (Lycopersicon esculentum Mill.) [J]. Annals of Botany, 1987, 59(6): 685-692.
    [193] Tschaplinski T J, Blake T J. Effect of root restriction on growth correlations, water relations and senescence of alder seedlings [J]. Physiology Plantarum, 1985, 64(2): 152-157.
    [194] Boland A M, Jerie P H, Mitchell P D, et al. Long-term effects of restricted root volume and regulated deficit irrigation on peach: I. Growth and mineral nutrition [J]. Journal of the American Society for Horticultural Science, 2000, 125(1): 135-142.
    [195] Shi K, Hu W H, Dong D K, et al. Low O2 supply is involved in the poor growth in root-restricted plants of tomato (Lycopersicon esculentum Mill.) [J]. Journal of Environmental and Experimental Botany, 2007, 61(2): 181-189.
    [196] Hurley M B, Rowarth J S. Resistance to root growth and changes in the concentrations of ABA within the root and xylem sap during root-restriction stress [J]. Journal of Experimental Botany, 1999, 50(335): 799-804.
    [197] Chong C W, Chu L M. Growth of vetivergrass for cutslope landscaping: Effects of container size and watering rate [J]. Urban Forestry Urban Greening, 2007, 6(3): 135-141.
    [198] Kang S Z, Cai H J, Zhang J H. Estimation of maize evapotranspiration under water deficits in a semiarid region [J]. Agricultural Water Management, 2000, 43(1): 1-14.
    [199] Jackson R B, Sperry J S, Dawson T. Root water uptake and transport: using physiological processes in global predictions [J]. Trends in Plant Science, 2000, 5(11): 482-488.
    [200] McNaughton K G, Jarvis P G. Effects of spatial scale on stomatal control of transpiration [J]. Agricultural and Forest Meteorology, 1991 54(2-4): 279-302.
    [201] Delcourt H R, Delcourt P A, Webb T. Dynamic plant ecology: the spectrum of vegetation change in space and time [J]. Quaternary Science Reviews, 1983, 1(3): 153-175.
    [202] Clark W C. Scales of climate impacts [J]. Climatic Change, 1985, 7(1): 5-27.
    [203] Fernandez-Illescas C P, Porporato A, Laio F, et al. The ecohydrological role of soil texture in a water-limited ecosystem [J]. Water Resources Research, 2001, 37(12): 2863-2872.
    [204] Tardieu F, Simonneau T. Variability among species of stomatal control under fluctuating soilwater status and evaporative demand: modelling isohydric and anisohydric behaviours [J]. Journal of Experimental Botany, 1998, 49: 419-432.
    [205] Wery J. Differential effects of soil water deficit on the basic plant functions and their significance to analyse crop responses to water deficit in indeterminate plants[J]. Australian Journal of Agricultural Research, 2005, 56(11): 1201-1209.
    [206]李玉山,张孝中,郭民航.黄土高原南部作物水肥产量效应的田间研究[J].土壤学报, 1990, 27(1): 1-17.
    [207]严平,曹秀清,韦朝领.土壤水分对小麦光合作用影响的研究[J].作物杂志, 2000, 1: 13-14.
    [208]柴红敏,张巍巍,蔡焕杰.调亏灌溉试验中土壤水分胁迫水平设置研究[J].安徽农业科学, 2009, 37(14): 6609 - 6610.
    [209] Jones H.G. A quantitative approach to environmental plant physiology [M]. Plants and Microclimate. NewYork: Cambridge University Press. 1992.
    [210]黄占斌,山仑.不同供水下作物水分利用率和光合速率日变化的时段性及其机理研究[J].华北农学报, 1999, 14(1): 47-52.
    [211] Sinclair T R, Muchow R C. System analysis of plant traits to increase grain yield on limited water supplies [J]. Agronomy J, 2001, 93(2): 263-270.
    [212]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社, 2006.
    [213]李开元,韩仕峰,李玉山, et al.黄土丘陵区农田水分循环特征及土壤水分生态环境研究[J].水土保持研究, 1991, 13(1): 83-93.
    [214]李潮海,卢道文,荆棘, et al.不同质地土壤的水热状况及其对冬小麦产量形成的影响[J].应用生态学报, 1996, 7(增刊): 33-38.
    [215]成东梅,彭涛,高燕, et al.高产小麦旗叶与穗粒重关系的研究[J].安徽农业科学, 2007, 35(36): 11798 - 11799.
    [216] Lebon E, Pellegrion A, Louarn G, et al. Branch development controls leaf area dynamics in grapevine (Vitis vinifera) growing in drying soil [J]. Annals of Botany, 2006, 98: 175–185.
    [217] Simunek J, Sejna M, van Genuchten M Th. The hydrus-1D software package for simulating the one 2-dimensional movement of water, heat, and multiple solutes in variably-saturated media [R]. U. S. Salinity Laboratory, 1998.
    [218]刘群昌,谢森传.华北地区夏玉米田间水分转化规律研究[J].水利学报, 1998, (1): 62-68.
    [219]曹巧红,龚元石.应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征[J].植物营养与肥料学报, 2003, 9(2): 139-145.
    [220]王水献,周金龙,余芳, et al.应用HYDRUS-1D模型评价土壤水资源量[J].水土保持研究, 2005, 12(2): 36-38.
    [221]李亮,史海滨,贾锦凤, et al.内蒙古河套灌区荒地水盐运移规律模拟[J].农业工程学报, 2010, 26(1): 31-35.
    [222]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社, 1988.
    [223] Raats P A C. Steady flows of water and salt in uniform soil profiles with plant roots[J]. Soil Science Society of America Journal, 1974, 38(5): 717-722.
    [224] Prasad R. A linear root water uptake model [J]. Journal of Hydrology, 1988, 99(3-4): 297-306.
    [225]王淑芬,张喜英,裴冬.不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J].农业工程学报, 2006, 22(2): 27-32.
    [226] Hoffman G J, van Genuchten M Th. Soil properties and efficient water use: Water management for salinity control [M]. Taylor H M, Jordan W R, Sinclair T R (Eds.). Limitations and efficient water use in crop production. Madison: American Society of Agronomy. 1983, 73-85.
    [227] Ma D H, Wang Q J, Shao M A. Analytical method for estimating soil hydraulic parameters from horizontal absorption [J]. Soil Science Society of America Journal, 2009, 73(3): 727-736.
    [228] Ma D H, Shao Mi A, Zhang J B, et al. Validation of an analytical method for determining soil hydraulic properties of stony soils using experimental data [J]. Geoderma, 2010, doi: 10.1016/j.geoderma.2010.08.001.
    [229]齐丽彬,樊军,邵明安, et al.紫花苜蓿不同根系分布模式的土壤水分模拟和验证[J].农业工程学报, 2009, 25(4): 24-29.
    [230]王昆,莫兴国,林忠辉, et al.植被界面过程VIP模型的改进与验证[J].生态学杂志, 2010, 29(2): 387-394.
    [231]张喜英.作物根系与土壤水利用[M].北京:气象出版社, 1999.
    [232]刘晶淼,安顺清,廖荣伟, et al.玉米根系在土壤剖面中的分布研究[J].中国生态农业学报, 2009, 17(3): 517-521.
    [233]李潮海,李胜利,王群, et al.不同质地土壤对玉米根系生长动态的影响[J].中国农业科学, 2004, 37(9): 1334-1340.
    [234]张岁岐,周小平,慕自新, et al.不同灌溉制度对玉米根系生长及水分利用效率的影响[J].农业工程学报, 2009, 25(10): 1-6.
    [235] Thompson R B, Gallardo M, Valdez L C, et al. Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors [J].Agricultural Water Management, 2007, 88(1-3): 147-158.
    [235] Coelho E F, Or D, Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation [J]. Plant and Soil, 1999, 206(2): 123-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700