水蚀风蚀交错带坡面土壤水分特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原水蚀风蚀交错带土壤侵蚀严重,沟壑区地形破碎,其中坡地占有相当大的比重,是进行植被恢复和重建中重要的土地资源。坡地上土地利用方式多样,不同土地利用方式下,土壤水分特性和土壤理化性质差异明显,而且坡面上复杂的环境因素导致土壤水分特性和理化性质都具有强烈的时空变异性。本文选取了六道沟流域的一个具有多种土地利用方式的坡面,利用原位动态监测、野外采样和室内分析的方法,对坡面上的土壤水分特性和土壤理化性质进行研究,得到主要结论如下:
     (1)坡面容重、毛管孔隙度、饱和含水量的变异系数基本小于10%,为弱变异性;田间持水量和永久凋萎点属于弱变异性和中等变异性;有效水含量的变异系数介于15.00-20.56%之间,属于中等变异性;而饱和导水率的变异系数介于80.68-115.90%之间,属于中等和强变异性。谷子地的容重比杏树地、苜蓿地、长芒草地高,而毛管孔隙度明显低于其它植被。苜蓿地土壤的田间持水量最高,持水能力较强,而谷子地的土壤持水能力较弱,说明农地不利于改善土壤的结构状况,林地和草地是比农地更适合的土地利用方式。
     (2)研究区土壤有效水的上限即田间持水量,相当于-0.2×105 Pa土壤基质势时的土壤含水量。有效水的下限即永久凋萎点,则低于-2.0×106 Pa土壤基质势对应的土壤含水量,这与黄土高原的其它地区不同。苜蓿地的有效水含量范围最宽,谷子地的有效水含量范围最窄,这说明苜蓿地的土壤水分可较容易被植物吸收利用,水分利用的效率最高,而谷子只对很窄的一段土壤水分能够吸收利用,也就是说苜蓿地的土壤水分有效性最大,谷子地的土壤水分有效性最小,而且苜蓿地的土壤水分有效性的提高主要是提高了迟效水的部分。
     (3)坡面土壤容重的半方差模型可用指数模型描述,饱和含水量和田间持水量则可用球状模型,都表现为有基台值的平稳曲线。有机质和土壤比重的空间变异性虽也可以用指数模型表示,但拟合效果较差。通过分析各土壤性质的空间异质比,得出土壤容重、比重、有机质和饱和含水量表现出中等的空间依赖性,表明这4种土壤特性的空间变异受到系统变异和随机变异的共同作用。田间持水量表现出强的空间依赖性,说明田间持水量的空间变异性主要受到系统变异的控制。
     (4)不同土地利用方式对土壤性质的影响主要表现为人为耕作、施肥和植物根系的影响,种植苜蓿会导致表层土壤容重的增加,而人为施肥会使农地有机质含量提高;坡面土壤容重自坡顶经坡面到坡脚呈现出高—低—高的变化,饱和含水量和田间持水量则呈现出低—高—低的变化;坡向对土壤特性的影响主要是由于阴坡的水分条件较好,植被总覆盖度要高于阳坡,从而导致阴坡的土壤理化性质要比阳坡的好。坡长、坡向和土地利用方式对各个土壤特性的逐步回归分析结果表明,坡面上土壤特性受到坡长、坡向和土地利用方式的共同影响,但坡长、坡向和土地利用方式对各个土壤特性的方差贡献有所不同。
     (5)Van Genuchten(VG)模型是描述水分特征曲线的应用最为广泛的模型,其中有效孔隙度为饱和含水量和滞留含水量之差,参数n称为曲线形状因子或孔隙大小指标,参数a称为进气吸力的倒数。Gardner的幂函数模型对黄土高原典型土壤的持水曲线都适用,其参数A·B与土壤的供水性和耐旱性密切相关,也是土壤水力学性质中极重要的参数。因而选取VG模型和Gardner的幂函数模型进行坡面土壤导水特性空间变异性的研究,得出参数n和B在坡面上表现为弱变异性,参数a、A、A·B、有效孔隙度和饱和导水率为中等变异性。参数a、A、B、A·B、有效孔隙度和饱和导水率的半方差模型均为指数模型,而且块金效应明显,表明空间变异主要随机性因素所引起。参数n的块金值与基台值相等,半方差不随滞后距离的增加而变化,表现为纯块金效应。
     (6)研究坡面土壤水分有效性的动态变化发现,冬季和初春时作物生长基本停滞,作物耗水量很低,土壤水分只有轻度亏缺,6、7、8月份作物迅速生长,蒸散量大幅增加,作物耗水量很高,水分有效性差,土壤水分严重亏缺。9月和10月作物需水量降低,土壤水分得到恢复,土壤水分基本不亏缺。
The soil erosion is very serious in the Wind-water erosion crisscross region in the Loess Plateau. The terrain of Gully area is broken. Slopes have a large proportion, so slopes are important land resources for vegetation restoration and reconstruction. There are different land-use types on slope. Under different land use patterns, soil moisture characteristics, soil physical and chemical properties are different significantly. Complicated environmental factors on slopes lead to the intense spatial and temporal variability of soil moisture characteristics, physical and chemical properties. Therefore, the soil moisture characteristics, soil physical and chemical properties studied on a slope of many kind of land use in Liudaogou watershed by dynamic monitoring, field sampling and laboratory analysis methods. The main conclusions are as follows:
     (1) The coefficients of variation of bulk density, capillary porosity and saturated water content were less than 10% for the weak variability. Field capacity and permanent wilting point had the weak and middle variability. The coefficient of variation of effective water content was between 15.00 and 20.56% for the middle variability. The coefficient of variation of saturated hydraulic conductivity ranged from 80.68 to 115.90% for middle and high variability. The bulk density of millet land was higher than the other land uses, while the capillary porosity was significantly lower than others. The field capacity of alfalfa land was highest, so alfalfa land had better water-holding ability, while millet land had weak water-holding capacity. The farmland did not benefit to the structural condition of the soil, woodland and grassland are more suitable than the farmland.
     (2) In the Wind-water erosion crisscross region in the Loess Plateau, the field capacity of the high limit of effective water equaled to soil water content of -0.2×105Pa soil matrix potential. The lower limit of effective water, that is, permanent wilting point was lower than soil water content of -2.0×106Pa soil matrix potential, which is different from other areas of the Loess Plateau. The effective water content of alfalfa land is highest; the effective water content of millet land is lowest, it indicated that the soil moisture of alfalfa which can be absorbed by plants was most, while millet only uses a very narrow section of the soil moisture. The soil water availability of alfalfa was largest, the soil water availability of millet was smallest, and the enhanced soil water availability of alfalfa was mainly the improved delayed-action part of the water.
     (3) The semi-variogram model of soil bulk density was exponential model, saturation moisture content and field capacity was the spherical model, and the shapes were smooth curves with still value. The semi-variogram model of the soil proportion and organic matter were exponential model, but r2 were lower. Soil bulk density, the soil proportion,the organic matter and saturation water content had the middle space-dependent, so the spatial variability of these soil properties were caused by the combined effect of the system variability and random variation. Field capacity showed strong spatial dependence, so the spatial variability of field capacity mainly caused by the system variability.
     (4) The effects of different land uses on soil properties were mainly for artificial cultivation, fertilization and plant roots. The alfalfa land would lead to the increases of surface soil bulk density. The artificial fertilization of agricultural land will improve organic matter content. Soil bulk density from the peak to the foot of the slope showed a high-low-high variation. Saturation moisture content and field capacity showed low-high-low variation. The impacts of slope aspect on soil physical and chemical properties were mainly for the better moisture conditions and higher plant total coverage than the sunny slope. The stepwise regression analysis of slope length, slope aspect and land use on soil physical and chemical properties showed the soil physical and chemical properties were influenced by the slope length, slope aspect and land use patterns, but the contributions to variance were different.
     (5) Van Genuchten (VG) model is a most widely used model which can describe water characteristic curve. Effective porosity equal to saturated water content by residual water content, parameter n is the curve shape factor or indicator of pore size, parameter a is the reciprocal of inlet air suction. Gardner model can be used to describe the soil water retention curve in the Loess Plateau. Parameters A·B is closely related to soil water supplying capability and drought tolerance. Therefore VG model and Gardner model were selected to research spatial variability of surface soil hydraulic properties. The results showed parameters n and B were weak variability, a, A, A·B, effective porosity and saturated hydraulic conductivity were medium variability. The semi-variance model of a, A, B, A·B, effective porosity and saturated hydraulic conductivity were exponential model, and the nugget effects were obvious, indicating that the variations were mainly caused by random factors. The nugget value of parameter n equaled the still value, so semi-variance did not change with the increase of lag distance for the pure nugget effect.
     (6) The research on the soil water availability dynamic changes showed that in winter and early spring the growth of vegetations stopped basically, water consumptions were very low, and soil moisture deficit was mild. In 6, 7 and 8 month the growth of vegetations were rapid, fields evapotranspiration increased greatly; water consumption was high, soil water availability was low, soil moisture deficit was serious. In September and October the water requirement reduced, soil moisture had been restored; the soil moisture deficit did not exist.
引文
[1]唐克丽等.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社,1991,213-222.
    [2]唐克丽等.水蚀风蚀交错带和神木试区环境背景及整治方向.中科院水土保持研究所集刊[J],1993(18):2-8.
    [3]唐克丽.黄土高原水蚀风蚀交错带治理的重要性与紧迫性[J].中国水土保持,2000,224(11):11-12,17.
    [4]郭庆荣,张秉刚.土壤水分有效性研究综述[J].热带亚热带土壤科学,1995,4(2):119-124.
    [5]Hillel D. Fundamentals of Soil physics[M]. New York: Academic Press, 1980.
    [6]邵明安等.土壤物理学[M].高等教育出版社,2006,11.
    [7]刘增文,王佑民.人工油松林蒸腾耗水及林地水分动态特征的研究[J].水土保持通报,1990,10(6):78-84.
    [8]魏胜利.田间持水量的测定与旱情分析[J].水科学与工程技术,2005(增刊):53-54.
    [9]李玉山等.黄土高原土壤水分性质及其分区[J].中国科学院西北水土保持研究所集刊,1985(2):l-16.
    [10]陈传军.土壤凋萎湿度试验测定的技术方法[J].四川气象,2006,26(1):26-27.
    [11]Veihmeyer F, Hendrikson B. Soil moisture in relation to plant growth[J]. American Review of Plant Physiology, 1950, 1:285-305.
    [12]Veilhmeyer F, Hendrikson B. Use of tensionmeters in measuring availability of water to plant[J]. Plant Physiology, 1975.56:66-78.
    [13]Richards L. Soil water and plant growth[M] Shaw B T.Soil Physical Conditions and Plant Growth. New York: Academic Press, 1952:72-251.
    [14]Stanhill G. The effect of difference in soil moisture on plant growth: A review and analysis of soil moisture regime experiments[J]. Soil Science, 1957, 84:205-214.
    [15]Kelley O. Requirements and availability of water[J]. Advances in agronomy, 1954, 6:67-94.
    [16]Hollis, J.M.R.J.A.Jones and R.C.Palmer. The effects of organic matter and particle size on the water-retention properties of some soils in the west midlands of England[J]. Geoderma, 1977, 17:225-238.
    [17]Saxton, K.E.W.J.Rawls, J.S.Romberger, R.I.Papendick. Estimation generalized soil water characteristics from texture[J]. Soil Sci.Soc.Am.J., 1986, 50(4):1031-1036.
    [18]周文佐.土壤有效含水量的经验估算研究[J].干旱区资源与环境,2003,17(4):88-95.
    [19]Veilhmeyer F, Hendrikson B. Methods of measuring field capacity and permanent wilting percentage of soils[J]. Soil Science, 1949, 68:75-94.
    [20]Macgillivray J, Donnen L D. Soil moisture conditions as related to the irrigation of truck crops onminerals soils[J]. Proceedings of American Society for Horticultural Science,1942,40:483-492.
    [21]Ayers A. The interrelationship of salt concentration and moisture content with growth of beans[J]. Journal of American Society of Agronomy, 1943, 35:769-810.
    [22]郭庆荣,李玉山.黄土高原南部土壤水分有效性研究[J].土壤学报,1994,31:236-243.
    [23]Furr J R, Reeve J O. Range of soil moisture percentage through which plants under permanent wilting in so soil from semiarid irrigated areas[J]. Journal of Agriculture Reasearch, 1945, 71: 149-179.
    [24]Blair G. Rate of elongation of sunflower plants in relation to available soil moisture[J]. Soil Science, 1950, 69:145-153.
    [25]沈善敏等.土壤水分对大豆有效性的初步研究[J].土壤通报,1964(2):35-39.
    [26]张光灿等.黄土高原干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究[J].应用生态学报,2003,14(6):858-862.
    [27]邵明安等.黄土区土壤水分有效性的动力学模式[J].科学通报,1987,18:1421-1423.
    [28]邵明安等.黄土区土壤水分有效性研究[J].水利学报,1987,8:38-44.
    [29]刘恩斌,董水丽.黄土高原主要土壤持水性能及抗旱性的评价[J].水土保持通报,1997,17(7):20~26.
    [30]刘胜,贺康宁,常国梁.黄土高原寒区青海云杉人工林地土壤水分物理特性研究[J].西部林业科学,2005,34(3):25-29.
    [31]孙中峰,张学培,刘卉芳,等.晋西黄土区坡面林地土壤持水性能研究[J].干旱地区农业研究,2004,21(4):333-337.
    [32]王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究[J].生态学报,1995,15(2):178-184.
    [33]孟秦倩,王健.黄土高原坡面刺槐林土壤水分有效性分析[J].灌溉排水学报,2008,27(4):74-76.
    [34]陈海滨,刘淑明,党坤良.黄土高原沟壑区林地土壤水分特征的研究[J].西北林学院学报,2004,19(1):5-8.
    [35]聂俊华,王一川等.山东省主要土壤类型持水性能的研究[M].山东农业大学学报,1991:279-288.
    [36]李国满,余崇祥等.湖南省红壤早土低吸力段持水性能研究[J].湖南农业科学,1994,30(1): 32-35.
    [37]张景略,苗付山.黄泛平原不同质地土壤的持水特性[J].土壤学报,1985,22(4):350-355.
    [38]赵渭生.浙江省金华地区六种红壤持水性能的初步研究[J].浙江农业大学学报,1989,15(4):377-382.
    [39]冯永军,聂俊华,张红.土壤持水性能及影响因素[J].山东农业大学学报,1996,27(3):298-302.
    [40]张航,徐明岗,张富仓等.陕西农业土壤持水性能及其与土壤性质的关系[J].干旱地区农业研究,1994,12(2):32-37.
    [41]吕国安等.丹江口库区石渣土土壤水分有效性研究[J].水土保持学报,2002,16(3):106-109.
    [42]单秀枝.土壤有机质含量对土壤水动力学参数的影响[J].土壤学报,1998,35(1):1-9.
    [43]Berman D. Hudson Soil organic matter and available water capacity[J]. Journal of Soil and Water Conservation, 1994, 49(2): 189-194.
    [44]张宝林,陈阜.晋西旱塬地覆盖耕作农田土壤水分有效性研究[J].华北农学报,2005,20(3):57-61.
    [45]俞建荣.我国不同生态类型烟区土壤持水性能及水分有效性研究[M].河海大学,2007.
    [46]嵇庆才.江苏地区土壤持水性及水分有效性研究[M].扬州大学,2006.
    [47]李月梅,庞宁菊.青海省早作农田土壤主要物理性状及其持水特性研究[J].青海农林科技,2002(4):1-2.
    [48]窦建德.宁夏六盘山北侧5种典型植被的土壤持水性能研究[J].林业科学研究,2006,19(3):301~306.
    [49]王孟本,柴宝峰,等.黄土区人工林的土壤持水力与有效水状况[J].林业科学,1999,35(2):7-14.
    [50]梁伟等.黄土丘陵区退耕地土壤水分有效性及蓄水性能[J].水土保持通报.2006,26(4):38-40.
    [51]赵世伟,周印东,吴金水.子午岭次生植被下土壤蓄水性能及有效性研究[J].西北植物学报,2003,23(8):1389-1392.
    [52]周择福等.北京九龙山不同立地土壤蓄水量及水分有效性的研究[J].林业科学研究,1995,8(2):182-187.
    [53]苏以荣等.新垦红壤坡地土壤水分有效性研究[J].应用生态学,2003,14(4):8-13.
    [54]Cambardella C A, Moorman T B Parkin T B, et al. Field-scale variability of soil properties in central Iowa soils [J]. Soil Sci. Soc. Am. J., 1994, 58: 1501-1511.
    [55]Dirk Mallants’B inayakp. Spatial Variability of Hydraulic properties inamulti layered soil profile[J]. Soil Science, 1996, 161(3): 167-181.
    [56]Tsegaye T, Hill R L. Intensive tillage effects on spatial variability of soil physical properties[J]. Soil Science, 1998, 163(2): 143-154.
    [57]Hendrayanto, Ken’ichirou Kosugi, Taro Uchida, et al. Spatial Variability of Soil Hydraulic Properties in a Forested Hillslope [J]. Forest research, 1999, 4: 107-114.
    [58]Gilbert C.Sigua, Wayne H.Hudnall. Kriging analysis of soil properties [J]. Soils Sediments, 2008, 8:193–202.
    [59]吕军,俞劲炎.水稻土物理性质空间变异性研究[J].土壤学报,1990,27(1):8-15.
    [60]张建辉,何敏蓉等.丘陵区土地湿度的空间变异性研究[J].土壤通报,1996,27(2):61-62.
    [61]史海滨,陈亚新,蔡凯等.西辽河平原土壤墒的空间变异性与大面积区域预测预报研究[J].干旱区资源与环境,1997(4):36-40.
    [62]龚元石,廖超子等.土壤含水量和容重的空间变异及其分形特征[J].土壤学报,1998.35(1):10-15.
    [63]王云强等.黄土区不同土地利用方式坡面土壤含水率的空间变异性研究[J].农业工程学报,2006,(12):65-71.
    [64]刘作新,唐力生.褐土机械组成空间变异等级次序地统计学估计[J].农业工程学报,2003,19(3):27-32.
    [65]姚荣江,杨劲松,刘广明.黄河三角洲地区土壤容重空间变异性分析[J].灌溉排水学报,2006,25(4):11-15.
    [66]郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J].水土保持学报,2004,18(3):53-56.
    [67]姜娜,邵明安,雷廷武.黄土高原六道沟小流域坡面土壤入渗特性的空间变异研究[J].水土保持学报2005,19(1):14-17.
    [68]Wei JB, Xiao DN, Zeng H. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China[J]. Environ Geol, 2008, 53: 1663–1672.
    [69]Francisca Lopez-Granados, Montserrat Jurado-Exposito. Spatial variability of agricultural soil parameters in southern Spain [J]. Plant and soil, 2002, 246: 97-105.
    [70]黄元仿,周志宇,苑小勇.干旱荒漠区土壤有机质空间变异特征[J].生态学报,2004,24(12):2776-2781.
    [71]LI Xiaoyan, ZHANG Shuwen, WANG Zongming, et al. Spatial Variability and Pattern Analysis of Soil Properties in Dehui City of Jilin Province [J]. Geographical Sciences, 2004, 14(4): 503-511.
    [72]贾恒义,雍绍萍,王富乾.神木试区的土壤资源[A].中国科学院水利部西北水土保持研究所集刊,1993(18):36-46.
    [73]杨勤科,郑粉莉,张竹梅.神木试区土地资源与利用[A].中国科学院水利部西北水土保持研究所集刊,1993(18):47-56.
    [74]侯庆春.神木试区自然条件及环境整治综合分析[A].中国科学院水利部西北水土保持研究所集刊,1993,第18集:136-137.
    [75]毛飞,任三学,刘庚山等.中子仪测量农田土壤水分精度的比较研究[J].中国生态农业学报,2005,13(4):103-106.
    [76]陈洪松,邵明安.中子仪的标定及其在坡地土壤水分测量中的应用[J].干旱地区农业研究,2003,21(2):68-76.
    [77]查轩,黄少燕.植被破坏对黄土高原加速侵蚀及土壤退化过程的影响[J].山地学报,2001,19(2):109-114.
    [78]杨弘,李忠,裴铁璠等.长白山北坡阔叶红松林和暗针叶林的土壤水分物理性质[J].应用生态学报,2007,18(2):272-276.
    [79]张社奇,王国栋,时新玲.黄土高原油松人工林地土壤水分物理性质研究[J].干旱地区农业研究,2005,25(1):60-64.
    [80]李志,刘文兆,王秋贤.黄土塬区不同地形部位和土地利用方式对土壤物理性质的影响[J].应用生态学报,2008,19(6):1303-1308.
    [81]梁伟,白翠霞,孙保平等.黄土丘陵沟壑区退耕还林(草)区土壤水分-物理性质研究[J].中国水土保持,2006(3):17-19.
    [82]刘孝利,李凤民,曾昭霞等.黄土高原地区不同草地退耕模式水分利用效率的比较[J].生态学报,2007,27(7):2847-2855.
    [83]彭文英,张科利,陈瑶.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报,2005,20(2):272-278.
    [84]袁东海,李道林,何方等.几种不同类型粘盘黄褐土水分特性的研究[J].安徽农业大学学报,1999,26(2):200-204.
    [85]沈思渊,席承藩.淮北主要土壤持水性能及其与颗粒组成的关系[J].土壤学报,1990,27(1):34-41.
    [86]陈志雄,汪仁真.中国几种土壤的持水性质[J].土壤学报,1979,16(3):277-281.
    [87]吴文强,李吉跃,张志明.北京西山地区人工林土壤水分特性的研究[J].北京林业大学学报,2002,24(4):51-55.
    [88]成向荣,黄明斌,邵明安.神木水蚀风蚀交错带主要人工植物细根垂直分布研究[J].西北植物学报,2007,27(2):321-327.
    [89]李笑吟,毕华兴,张建军等.晋西黄土区土壤水分有效性研究[J].水土保持研究,2006,13(5):205-208.
    [90]杜阿朋,于澎涛,王彦辉等.六盘山北侧叠叠沟小流域土壤物理性质空间变异的研究[J].林业科学研究,2006,19(5):547-554.
    [91]梁伟,白翠霞,孙保平等.黄土丘陵沟壑区退耕还林(草)区土壤水分-物理性质研究[J].中国水土保持,2006(3):17-19.
    [92]庞学勇,包维楷,张咏梅等.岷江柏林下土壤物理性质及其地理空间差异[J].应用与环境生物学报,2004,10(5):596~601.
    [93]连纲,郭旭东,傅伯杰等.黄土高原小流域土壤容重及水分空间变异特征[J].生态学报,2006,26(3):647-654.
    [94]傅伯杰,陈利顶,邱扬等.黄土丘陵小流域土壤物理性质的空间变异[J].地理学报,2002,57(5):587-594.
    [95]李根明,孙虎,耿海波等.南水北调中线水源区土地利用变化对土壤物理性质影响的研究[J].农业系统科学与综合研究,2008,24(2):143-147.
    [96]苑小勇,黄元仿,高如泰等.北京市平谷区农用地土壤有机质空间变异特征[J].农业工程学报,2008,24(2):70-76.
    [97]王轶浩,王彦辉,谢双喜等.六盘山分水岭沟土壤水文物理性质空间变异[J].中国水土保持科学2008,6(4):33-40.
    [98]王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000,20(6):945-950.
    [99]刘孝利,李凤民,曾昭霞等.黄土高原地区不同草地退耕模式水分利用效率的比较[J].生态学报,2007,27(7):2847-2855.
    [100]黄冠华.土壤水力特性空间变异的试验研究进展[J].水科学进展,1999,10(4):450-457.
    [101]薛绪掌,张仁铎,桂胜祥.测定尺度对所测土壤导水参数及其空间变异性的影响[J].水土保持通报,2001,21(3):47-51.
    [102]贾晓红等.流沙固定过程中土壤性质变异初步研究[J].水土保持学报,2003,17(1):178-182.
    [103]Trangmar B B, Yost R S, Uehara G. Application of geostatistics to spatial studies of soil properties[J]. Advances in Agronomy, 1985, 48: 45-94.
    [104]Webster R. Quantitative spatial analysis of soil in field [J] .Advance in Soil Science, 1985(3): 1-70.
    [105]Byers, E., and D. B. Stephans Statistical and stochastic analysis of hydraulic conductivity and particle size in a fluvial sand [J]. Soil Sci. Soc. Am. J. 1983, 47, 1027-1081.
    [106]Carvollo H O, et al. Spatial variability of in situ unsaturated hydraulic conductivity in Maddock sandy loam[J]. Soil Sci, 1976, 121(1): 1-8.
    [107]LeB lanc D R, et al. Large2scale natural gradient t racer test in sand and gravel, Cape Cod, Massachuseets, Experimental disign and observed t racer movement [J]. Water Resour.Res, 1991, 29(5): 895-910.
    [108]Nielsen D R, J W Biggar, K T Erh. Spatial variability of field measured soil water properties [J]. Hilgardia, 1973, 42(7): 215-260.
    [109]陈洪松.坡面尺度土壤特性的空间变异性[J].水土保持通报,2004,24(6):45-48.
    [110]王峰,陈家宙,代晓燕.亚热带红壤丘陵区坡地土壤性质空间变异特征[J].亚热带水土保持,2007,19(2):1-4,29.
    [111]余新晓,张建军,朱金兆等.黄土地区防护林生态系统土壤水分条件的分析与评价[J].林业科学,1996,32 (4) :289-296.
    [112]孙长忠,黄宝龙,陈海滨等.黄土高原人工植被与其水分环境相互作用关系的研究[J].北京林业大学学报,1998,20(3):7-14.
    [113]陈云明,刘国彬,候喜录.黄土丘陵半干旱区人工沙棘林水土保持和土壤水分生态效益分析[J].应用生态学报,2002,13(11):1389-1393.
    [114]王志强,刘宝元,海春兴.晋西北黄土丘陵区不同植被类型土壤水分分析[J].干旱区资源与环境,2002,16(4):53-58.
    [115]胡梦珺,刘文兆.黄土丘陵沟壑区灌木林地土壤水分有效性及盈亏分析[J].甘肃农业科技,2004,4:41-45.
    [116]王进鑫,黄宝龙,罗伟祥.黄土高原人工林地水分亏缺的补偿与恢复特征[J].生态学报,2004,24(11):2395-2401.
    [117]王力,邵明安,张青峰.陕北黄土高原土壤干层的分布和分异特征[J].应用生态学报,2004,15(3):436-442.
    [118]仇化民,邓振镛,方德彪.甘肃省东部旱作区土壤水分变化规律的研究[J].高原气象,1996,15(3):334-341.
    [119]姜娜,邵明安,雷廷武等.水蚀风蚀交错带典型土地利用方式土壤水分变化特征[J].北京林业大学学报,2007,29(6):134-137.
    [120]樊军,王全九,邵明安.黄土高原水蚀风蚀交错区土壤剖面水分动态的数值模拟研究[J].水科学进展,2007,18(5):683-688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700