锥束X射线成像技术中若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锥束X射线成像技术因其轴向分辨率高、扫描速度快、X射线利用率高以及成像快速等优点,已被应用于活体小动物成像、人体乳腺癌诊断等医学领域,并成为医学成像研究领域中最为活跃的前沿课题。因此,研究如何提高锥束X射线成像质量具有重要的学术价值和应用研究价值。
     本文围绕锥束X射线成像中影响图像重建质量的若干关键因素和相应解决办法展开研究。论文主要包括三方面内容:
     第一,本文以3D Shepp-Logan模型为成像对象并根据X射线追踪技术建立了锥束X射线成像仿真平台来验证评价所发展的锥束三维重建算法。在此基础上,针对小动物的医学解剖成像在生物医学研究中的重要性,本文基于数字化标本放射影像系统搭建了封闭式锥束micro-CT成像系统,并通过自制小动物仿体成像实验对其进行评价。最后,为了更好地研究小动物成像,利用开放式锥束CT成像系统对活体小老鼠进行了成像实验。
     第二,针对基于FDK重建中投影数据的不完备性所引起的图像轴向重建精度下降的问题,本文提出了采用经验函数加权方法对FDK算法进行修正。该算法在无需增加原有单圆扫描轨迹的前提下,利用倒高斯函数因子对FDK重建算法进行预加权改进,从而有效地补偿了图像轴向重建精度的衰减。最后,通过模拟研究定量地评价了该算法对图像噪声的抑制作用,并利用实验验证了加权补偿算法的有效性。
     第三,对于成像系统几何误差引起的重建伪像以及图像失真问题,论文提出了基于校正仿体的系统几何误差的校正方法。该方法通过自制校正仿体预先提取出各投影角度下的投影矩阵,并利用投影矩阵修正对应投影角度下的物体空间与投影平面的错误映射关系。论文对成像系统旋转轴偏离X光轴的误差进行了校正实验。实验结果表明,本校正方法可有效地减小由系统几何误差引起的重建伪像和图像畸变,并可推广到类似三维医学成像系统。
     本文对影响锥束X射线成像质量的几个关键因素分别提出了相应的解决方案,因此对锥束X射线成像的研究具有较大的实际意义。
For great advantages such as high longitudinal resolution, rapid scanning speed,high x-ray utilization, cone-beam x-ray imaging has been widely utilized in vivoanimal imaging and the woman breast diagnosis. It has become the most activeadvanced research in medical imaging field. However, how to improve the cone-beamx-ray imaging quality has significant academic value and application value.
     Corresponding solutions to several key factors that affect the cone-beam x-rayimaging quality are investigated in this study. The paper is mainly composed by threeparts.
     Firstly, according to the ray tracing theory and the x-ray attenuation law, asimulation platform of cone-beam x-ray imaging based on Shepp-Logan model wasdeveloped to verify and evaluate the cone-beam reconstruction algorithm. On thisbasis, aiming at the significance of the small animals in biomedical anatomy imagingresearch, an enclosed cone-beam micro-CT system was built up with digital specimenradiography system, and then experiment was conducted with the self-made animalphantom to evaluate the imaging system. Finaly, to investigate the small animalimaging, the vivo mouse experiment was implemented using open cone-beam CTsystem.
     Secondly, in response to the axial intensity fall-off caused by the incompleteprojection data collection of the FDK-based reconstruction, an empirical weightedfunction was adopted to modify the original FDK algorithm. Under the condition ofnon-additional scanning trajectory, the reciprocal Gaussian function was employed asthe pre-weighted factor for FDK algorithm to effectively compensate the axialintensity of the reconstructed images. Then the noise suppression effect of themodified algorithm was quantitatively evaluated through the simulation investigationand the phantom experiment verified its compensation effect.
     Thirdly, to solve the reconstruction artifacts and image distortion resulted fromthe imaging system geometric error, a phantom-based calibration method wasintroduced for the elimation of the geometric misalignments in the study. Using ourcalibration phantom, the projection matrices of the cone-beam x-ray imaging systemwere previously acquired under all projection views. Then each extracted projection matrix can be employed for the corresponding projection view to calibrate themis-mappings between the object coordinates and the detector projections. Theverification experiment for the calibration effectiveness was performed under therotation axis horizontal-shift from the central x-ray. The experimental resultsdemonstrated that the phantom-based calibration method could effectively minimizethe reconstruction artifacts for the imaging system and hold potential to benefit other3D medical imaging applications.
     Since corresponding solutions were proposed to overcome several key effects inthe cone-beam x-ray imaging. This study promotes the investigation of cone-beamx-ray imaging with crucial practical significance.
引文
[1]高上凯,医学成像系统(第2版),北京:清华大学出版社,2010.1~4
    [2]黄力宇,医学成像的基本原理,北京:电子工业出版社,2009.5~8
    [3]顾本立,万遂人,赵兴群等,医学成像原理(第1版),北京:科学出版社,2012.3~8
    [4]宗贤钧,朱跃龙,宗晔等译,生物医学中的核磁共振成像,(英)P. Manfield,P. G. Morris合著,浙江:浙江大学出版社,1987.2~6
    [5]李月卿,医学影像成像理论(第二版),北京:人民卫生出版社,2010.3~5
    [6] Jiang, Hsieh,计算机断层成像技术原理、设计、伪像和进展,北京:科学出版社,2006
    [7]庄天戈,CT原理与算法,上海:上海交通大学出版社,1992
    [8]张定华,锥束CT技术及其应用,陕西:西北工业大学出版社,2010
    [9]唐杰,张丽,高文焕,基于平板探测器的锥束CT系统综述,中国体视学与图像分析,2004,9(2):65~70
    [10] J. T. Dobbins III,D. J. Godfrey,Digital x-ray tomosynthesis: current state of theart clinical potential,Phys. Med. Biol.,2003,48(19):65~106
    [11] J. T. Dobbins III,Tomosynthesis imaging: At a translational crossroads,Med.Phys.,2009,36(6):1956~1967.
    [12] L. T. Niklason,B. T. Christian,L. E. Niklason,et al.,Digital tomosynthesis inbreast imaging,Radiology,1997,205:399~406
    [13] Park JM,Franken EA Jr,Garg M,Breast tomosynthesis: Present considerationsand future applications,Radiographics,2007,27:231~240
    [14] C. M. Hakim,D. M. Chough,M. A. Ganott,Digital Breast Tomosynthesis in theDiagnostic Environment: A Subjective Side-by-Side Review,Am. J. Roentgenoloy,2010,195:W172~W176
    [15] I. Reiser,R. M. Nishikawa,M. L. Giger,Computerized mass detection for digitalbreast tomosynthesis directly from the projection images,Med. Phys.,2006,33(2):482~491
    [16] Emil Y. Sidky,Xiaochuan Pan,Ingrid S. Reiser,Enhanced imaging ofmicrocalcifications in digital breast tomosynthesis through improvedimage-reconstruction algorithms,Med. Phys.,2009,36(11):4920~4932
    [17] Tao Wu,Richard H. Moore,Daniel B. Kopans,Voting strategy for artifactreduction in digital breast tomosynthesis,Med. Phys.,2006,33(7):2461~2471
    [18]张剑,陈志强,三维锥形束CT成像FDK重建算法发展综述,中国体视学与图像分析,2005,10(2):116~121
    [19]王本,王革,锥束CT重建算法,CT理论与应用研究,2001,10(2):1~8
    [20] Lei Zhu,Jared Starman and Rebecca Fahrig,An efficient estimation method forreducing the axial intensity drop in circular cone-beam CT,International Journal ofBiomedical Imaging,2008(2008)
    [21] Z. K. Chen and R. L. Ning,Volume fusion for two-circular-orbits cone-beamtomography,Appl. Opt.,2006,45(23):5960~5966
    [22] M. Karolczak,Wiesent,K. Engelke,and A. Lutz,Implementation of acone-beam reconstruction algorithm for the single-circle source orbit with embeddedmisalignment correction using homogeneous coordinates,Med. Phys.,2001,28(10):2050~2069
    [23] Predrag R. Bakic,Peter Ringer,Johnny Kuo,Analysis of Geometric Accuracyin Digital Breast Tomosynthesis Reconstruction, Proceeding of InternationalWorkshop Digital Mammography,2010(6136).62~69
    [24] H. Jiang,Three-dimensional artifact induced by projection weighting andmisalignment,Trans. Med. Imag.,1999,18(4):1375~1384
    [25]冀东江,三维锥束CT重建算法的研究:[硕士学位论文],重庆:重庆大学,2008
    [26] L. A. Feldkamp,L. C. Davis,J. W. Kress,Practical cone-beam algorithm,J. Opt.Soc. Am. A,1984,1(6):612~619
    [27] G. T. Gullberg,G. L. Zeng,P. E. Christian,Single photon emission tomographyof the heart using cone beam geometry and noncircular detector rotation, InProceedings of the11th Int. Conf. on Information Processing in Medical Imaging,1991.123~138.
    [28] G. T. Gullberg,G. L. Zeng,A cone beam filtered backprojection reconstructionalgorithm for cardiac single photon emission computed tomography,IEEE Trans.Med. Imag.,1992,11(1):91~101
    [29] G. Wang, Lin,T. H. Cheng,A general cone-beam reconstruction algorithm,IEEE Trans. Med. Imag.,1993,12(3):486~295
    [30] Xiaohui Wang,Ruola Ning,A Cone-Beam Reconstruction Algorithm forCircle-Plus-Arc Data Acquisition Geometry,IEEE Trans. Med. Imag.,1999,18(9):815~824
    [31] S. W. Lee,G. Wang,Artifacts associated with implementation of the Grangeatformula,Med. Phys.,2002,29(12):2871~2880
    [32] S. W. Lee,G. Wang,A Grangeat-type half-scan algorithm for cone-beam CT,Med. Phys.,2003,30(4):689~700
    [33] Zikuan Chen,Ruola Ning,Filling the radon domain in computed tomography bylocal convex combination,Appl. Opt.,2003,42(35):7043~7051
    [34]郑晗,陈自宽,康雁,一种Grangeat圆轨迹锥束CT重建阴影区域填充方法,软件学报,2009,20(5):1166~1175
    [35] Anne Rougée,Catherine Picard,Cyril Ponchut,Geometrical calibration of x-rayimaging chains for three-dimensional reconstruction,Computerized Medical Imaging&Graphics,1993,17(4-5):295~300
    [36] H Jiang,H. Liu,G. Wang,W. Chen,A localization algorithm and error analysisfor stereo X-ray image guidance,Med. Phys.,2000,27(5):885~893
    [37] H. Jiang,H. Liu,L. Fajardo,Positional accuracy and sensitivity in X-raystereo-image guidance,Proc. SPIE.,1999(3595).178~185.
    [38] Karl Wiesent,K. Barth,N. Navab,Enhanced3-D-reconstruction algorithm forC-arm systems suitable for interventional procedures,IEEE Trans. Med. Imag.,2000,19(5):391~403
    [39] Xinying Wang,James G. Mainprize,Michael P. Kempston,Digital BreastTomosynthesis Geometry Calibration, Proc.SPIE,2007(6510):65103B-1~65103B-11
    [40] Kai Yang,Alexander L. C. Kwan,DeWitt F. Miller,A geometric calibrationmethod for cone beam CT systems,Med. Phys.,2006,33(6):1695~1706
    [41] Lorenz von Smekal, Marc Kachelrie, Elizaveta Stepina, Geometricmisalignment and calibration in cone-beam tomography,Med. Phys.,2004,31(12):3242~3266
    [42]徐可欣,高峰,赵会娟,生物医学光子学(第二版),北京:科学出版社,2010
    [43]余建明,牛延涛,CR、DR成像技术学,北京:中国医药科技出版社,2009
    [44]夏纪真,CR和DR成像技术,无损探伤,2007,31(1):1~7
    [45]唐杰,张丽,高文焕,基于平板探测器的锥束CT系统综述,中国体视学与图像分析,2004,9(2):65-70
    [46] H. Andersen,Algebraic Reconstruction in CT from Limited Views,IEEE Trans.Med. Imag.,1989,8(1):50~55
    [47] G. T. Hennan, L. B. Meyer, Algebraic reconstruction can be madecomputationally efficient,IEEE Trans. Med. Imag.,1993,12(3):600~609
    [48] A. C. Kak,M. Slaney,Principles of Computerized Tomographic Imaging,IEEEPress,1988
    [49] L. A. Sheep,Y. Vardi,Maximum likelihood reconstruction for emission andtomography,IEEE Trans. Med. Imag.,1982,1(2):113~122
    [50] H. Malcolm. Hudson,Richard. S. Larkin,Accelerated image reconstruction usingordered subsets of projection data,IEEE Trans. Med. Imag.,1994,13(4):601~609
    [51]高欣,新型迭代图像重建算法的理论研究与实现:[博士学位论文],浙江:浙江大学,2004
    [52]曾凯,陈志强,三维锥形束CT解析重建算法发展综述,中国体视学与图像分析,2003,8(2):124~128
    [53]康克军,毛希平,基于Radon变换导数的精确三维CT图像重建理论与改进方法介绍,核电子学与探测技术,1997,17(5):321~324
    [54] Sigurdur Helgason,Integral Geometry and Radon Transforms,Springer ScienceBusiness Media,2011
    [55] P. Grangeat,Evaluation of the3-D radon transform algorithm for cone-beamreconstruction,Proc. SPIE.,1991(1445).320~331
    [56] Alexander Katsevieh,Theoretically exact filtered backprojection-type inversionalgorithm for spiral CT,SIAM Appl. Math.,2002,62(6):2012~2026
    [57] Zou Y, Pan X C, Image reconstruction on PI-lines by use of filteredbackprojection in helical cone-beam CT,Phys. Med. Biol.,2004,49(12):2717~2731
    [58] Zou Y,Pan X C,Exact image reconstruction on PI-lines from minimum data inhelical cone-beam CT,Phys. Med. Biol.,2004,49(6):941~959
    [59] Pan X C,Xia D,Zou Y,A unified analysis of FBP-based algorithms in helicalcone-beam and circular cone-and fan-beam scans,Phys. Med. Biol.,2004,49(18):4349~4369
    [60] G. Wang,T. H. Lin,P. C. Cheng,Scanning Cone-beam ReconstructionAlgorithms for X-ray microtomography,Proc. SPIE.,1991(1556).99~113.
    [61] Grass M,3D cone-beam CT reconstruction for circular trajectories,Phys. Med.Biol.,2000,45(2):329~347
    [62]张剑,陈志强,三维锥形束CT成像FDK重建算法发展综述,中国体视学与图像分析,2005,10(1):116~121
    [63] Henrik Turbell,Cone-beam reconstruction using filtered backprojection,Sweden:Department of Electrical Engineering Link pings universitet,2001
    [64]曾凯,陈志强,张丽,圆轨道锥束重建精度与锥角关系的研究,CT理论与应用研究,2003,12(3):9~16
    [65]曾凯,陈志强,张丽,基于同心圆轨道的锥形束CT重建算法,清华大学学报(自然科学版),2004,44(6):725~727
    [66] Caroline Jacobson,Fourier Methods in3D-Reconstruction from Cone-beamData:Dissertations No.427,Sweden:Link ping Studies in Science and Technology,1996
    [67]王本,王革,锥束CT图像重建算法,CT理论与应用研究,10(2):1~8(2001)
    [68] Ge Wang,Ping-chin Cheng,Feldkamp-type Cone-beam Reconstrution: Revisit,Zoological Studies,1995,34(S):159~161
    [69] K. Zeng,Z. Chen,L. Zhang,G. Wang,A half-scan error reduction basedalgorithm for cone-beam CT,Journal of X-Ray Science and Technology,2004,12(2):73~82
    [70] Z. K. Chen,V.D. Calhoun,S.J. Chang,Compensating the intensity fall-off effectin cone-beam tomography by an empirical weight formula,Appl. Opt.,2008,47(32):6033~6039
    [71] Shouping Zhu,Jie Tian,Guorui Yan,Cone Beam Micro-CT System for SmallAnimal Imaging and Performance Evaluation,Int. J. Biomed. Imaging.,2009,2009:
    [72] Smith B.D.,Image reconstruction from cone-beam projection: necessary andsufficient condition and reconstruction methods,IEEE Trans. Med. Imag.,1985,MI-4:14~28
    [73] Tuy H. K.,An inversion for cone-beam reconstruction,SIAM Appl. Math.,1983,43:546~522
    [74] Grangeat P.,Mathematical framework of cone beam3d reconstruction via thefirst derivative of the radon transform,In:Herman GT, Louis AK and Natterer F, Eds.Mathematical Methods in Tomography,Springer Verlag,1990
    [75]毛希平,康克军,一种确定三维锥束CT精确重建域的方法,清华大学学报(自然科学版),2000,40(2):19~23
    [76] Clack R.,Defrise M.,Cone-beam reconstruction by the use of Radon transformintermediate functions,J. Opt. Soc. Am. A,1994,11:580~585
    [77] Wang G, L in TH, Cheng PC. Error analysis on the generalized Feldkampcone-beam algorithm,Journal of Scanning Microcopy,1995,17:361~370
    [78]卢孝强,孙怡.基于乘性正则化的有限角度CT重建算法,光学学报,2010,30(5):1285~1290
    [79] A. Pogany,D. Gao,S. W. Wilkins,Contrast and resolution in imaging with amicrofocus x-ray source,Review of Scientific Instruments,1997,68(7):2774~2782
    [80] T. E. Gureyev,S. W. Wilkins,On X-ray phase imaging with a point source,J.Opt. Soc. Am. A,1998,15:579~585
    [81]姜庆军,肖湘生,刘士远,相干X射线相衬成像的初步研究:离体大白鼠肝脏、肺脏成像实验,中国医学影像技术,2003,19(9):1116~1117
    [82] T. E. Gureyev,A. Roberts,K. A. Nugent,Partially coherent fields, thetransport-of-intensity equation, and phase uniqueness,J. Opt. Soc. Am. A,1995,12(9):1942~1946
    [83] A. Peterzol,A. Olivo,L. Rigon,The effects of the imaging system on the validitylimits of the ray-optical approach to phase contrast imaging,Med. Phys.,2005,32(12):3617~3627
    [84]陈敏,肖体乔,骆玉宇,微聚焦管硬X光位相衬度成像,物理学报,2004,53(9):2953~2957
    [85] S. Zabler,P. Cloetens,J. P. Guigay,Optimization of phase contrast imagingusing hard x rays,Review of Scientific Instruments,2005,76(7):073705~073707
    [86] Th. Mertelmeier, J. Ludwig, B. Zhao, Optimization of TomosynthesisAcquisition Parameters: Angular Range and Number of Projections,Lecture Notes InComputer Science,2008(5116).220~227
    [87] Brian E. Nett, Joseph Zambelli, Cyril Riddell, Circular tomosynthesisimplemented with a clinical interventional flat-panel based C-Arm: initialperformance study,Proc. SPIE.,2007(6510).65101N
    [88] Yi Sun, Ying Hou, Fengyong Zhao,A calibration method for misaligned scannergeometry in cone-beam computed tomography,NDT&E Int.,2006,39(6):499~513
    [89] Predrag R. Bakic,Peter Ringer,Johnny Kuo,Analysis of Geometric Accuracyin Digital Breast Tomosynthesis Reconstruction, Proceeding of InternationalWorkshop Digital Mammography,2010(6136).62~69
    [90] A. Rougee,C. Picard,Y. Trousset,Geometrical calibration for3D X-rayimaging,Proc. SPIE.,1993(1897).161~169
    [91] D. Zhang,M. Donovan,H. Liu,A convenient alignment approach for x-rayimaging experiments based on laser positioning devices,Med. Phys.,2008:35(11):4907~4910
    [92]王召巴,旋转中心偏移对CT重建图像质量的影响,兵工学报,2001,22(3):323~326
    [93]晏骥,江少恩,苏明等,X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测,物理学报,2012,61(6):068703-1~068703-9
    [94] R. Hartley,A. Zisserman,Multiple View Geometry in Computer Vision(2nded.),Cambridge University Press(2003)
    [95] X. H. Li,D. Zhang,B. Liu,A generic geometric calibration method fortomographic imaging systems with flat-panel detectors-A detailed implementationguide,Med. Phys.,2010,37(7):1695~1706
    [96] X. H. Li,D. Zhang,B. Liu,Sensitivity Analysis of a Geometric CalibrationMethod using Projection Matrices for Digital Tomosynthesis Systems,Med. Phys.,2011,38(1):202~209
    [97]闫蓓,王斌,李媛,基于最小二乘法的椭圆拟合改进算法,北京航空航天大学学报,2008,34(3):295~298
    [98]韩冰,上官晋太,李艳玲,基于最小二乘法的一种椭圆中心定位方法,长治学院学报,2009,26(5):66~68
    [99]张虎,达飞鹏,邢德奎,光学测量中椭圆圆心定位算法研究,应用光学,2008,29(6):905~911

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700