NMDA受体信号通路在晕动症适应—脱适应过程中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晕动症是由于人体暴露于异常加速度环境所引起的多系统生理反应。反复暴露于该加速度环境,能使得晕动症症状减轻甚至消失,这就是适应现象。脱离加速度环境一定时间后,会出现脱适应现象。但是这种适应脱适应的周期性规律和其中枢机制却不清楚。众所周知,前庭系统是外界加速度信息的主要感受系统,前人的研究发现在前庭神经元中,谷氨酸是主要的神经递质,而NMDA受体也广泛地存在于前庭核的神经元中。大量的研究表明,NMDA受体介导的长时程增强是中枢学习记忆的神经基础,NMDA受体介导的胞内信号转导级联反应主要是通过谷氨酸激活NMDA受体后通过钙/钙调蛋白依赖型激酶II(Ca2+/CaMKII)途径,最终激活cAMP反应元件结合蛋白(CREB),而磷酸化的CREB也作为转录因子可进一步诱导及早基因c-fos以及脑源性神经生长因子(BDNF)等新基因的表达。我们的前期研究发现Fos蛋白能作为前庭核神经元激活的分子标志,并且谷氨酸能神经元前庭内脏投射通路能被旋转刺激所激活。另外,大量研究证实,海马是记忆相关的重要脑区,前庭与海马之间存在着广泛的联系,前庭系统的激活能影响海马的功能和海马相关的学习记忆能力。本研究首先观察了晕动症大鼠的行为学变化和适应-脱适应规律,进一步采用分子生物学方法观察NMDA受体信号通路在晕动症适应-脱适应过程中的变化,最后采用药理学手段阻断该信号通路,观察对晕动症适应-脱适应过程的影响。
     方法
     一、晕动症适应-脱适应动物模型的建立
     1、实验动物及分组550只健康雄性SD大鼠,体重220-250g。
     (1)长时刺激实验100只动物完全随机分为10组:旋转刺激4h组,静止对照4h组,1h旋转组,1h静止组,2h旋转组,2h静止组,3h旋转组,3h静止组,4h旋转组,4h静止组,每组10只。前2组记录每小时的实时行为学变化,后8组记录自发活动变化。
     (2)东莨菪碱干预实验90只动物完全随机分为9组:自由活动对照组,静止对照组,旋转对照组,东莨菪碱旋转组(ISco0.5mg/kg),东莨菪碱静止组I,东莨菪碱旋转组I(ISco1.0mg/kg),东莨菪碱静止组II,溶剂旋转组,溶剂静止组,每组10只。药物及溶剂组为刺激前30min给药(1ml/只,i.g.)。
     (3)双侧迷路切除实验40只动物完全随机分为4组:双侧迷路切除旋转组,双侧迷路切除静止组,假手术旋转组,假手术静止组,每组10只。手术后4周进行刺激实验。
     (4)适应规律实验40只动物完全随机分为2组:旋转刺激2h/d组、静止对照2h/d组,每组20只,每天进行模拟晕动刺激,实时观察行为学变化。100只动物完全随机分为10组:旋转刺激2h-1d组、2h-4d组、2h-7d组、2h-10d组、2h-13d组,和与各自时间对应的静止对照组,每组10只,记录自发活动变化。
     (5)脱适应规律实验180只动物完全随机分为18组:脱适应5d,7d,14d,21d,28d,35d组及相应天数刺激对照组,静止对照组,每组10只。脱适应组动物首先进行晕动刺激至适应,连续9d,每天2h,后正常饲养至相应脱适应天数,再进行一次2h晕动刺激,记录实时行为学变化和自发活动变化。
     2、双侧迷路切除手术及假手术3%戊巴比妥那麻醉后,将大鼠侧卧位置于手术显微镜下,剪开耳后皮肤,钝性分离软组织,暴露外耳道外壁,剪开外耳道,暴露鼓膜及鼓室,观察听小骨清晰后,寻找圆窗及卵圆窗,用五号注射器针头挑开鼓泡,除去部分骨质,用尖头镊探查内耳,剪除内耳骨部,挑出内耳,用左氧氟沙星粉剂敷于内耳,防止感染,缝合外耳道及耳后部皮肤,存活24h后,重新进行另一侧内耳切除手术。假手术过程与双侧内耳切除手术相同,区别在于剪除内耳骨部后,不触及内耳半规管。动物正常饲养恢复4周后,进行旋转刺激。
     3、模拟晕动症刺激及行为学测量晕动症模拟器根据Crampton等的报道仿制而成。将代谢盒放入晕动症模拟器的有机玻璃笼内,旋转刺激组大鼠无束缚的放置于代谢盒的铁丝网上进行旋转刺激。实时行为学测量:刺激结束后,立即计量铁丝网上的粪便颗粒数、尿液槽中的尿液量、饲料槽中饲料摄入量、高岭土槽中高岭土摄入量。高岭土摄入量(24h)测量:每天10:00自动动物代谢监测系统(CLAMS)自动记录。自发活动测量:采用DigBehav动物行为分析系统记录动物3min的运动。
     二、前庭核NMDA受体信号通路在晕动症适应-脱适应过程中的作用
     1、实验动物及分组128只健康雄性SD大鼠,体重220-250g。80只动物完全随机分为10组:旋转刺激组1d,4d,7d,10d,13d及相应的静止对照组,每组8只,用于进行western blot和实时定量PCR实验。48只动物完全随机分为6组:旋转刺激组1d,4d,7d,10d,13d及静止对照组,每组8只,用于进行免疫组织化学及免疫荧光组织化学实验。
     2、分子生物学实验采用Western blot法测定尾侧前庭核内NMDA R1受体、NMDA R2A/B受体、GABAAα1亚基、CaMKIIα亚基、磷酸化CaMKIIα亚基、CREB、磷酸化CREB蛋白含量。
     采用实时定量PCR法测定尾侧前庭核内Fos、Arc、BDNF mRNA表达水平。
     采用免疫组织化学法观察尾侧前庭核内Fos标记神经元数量。
     采用免疫荧光组织化学法观察尾侧前庭核内GABAAα1标记神经元、Arc标记神经元、GABAAα1/Arc共标记神经元数量。
     三、海马NMDA受体信号通路在晕动症适应-脱适应过程中的作用
     1、实验动物及分组260只健康雄性SD大鼠,体重220-250g。80只动物完全随机分为10组:旋转刺激组1d,4d,7d,10d,13d及相应的静止对照组,每组8只,用于进行western blot和实时定量PCR实验。30只动物完全随机分为6组:脱适应组1d,4d,7d,14d,21d及静止对照组(Sta),每组5只,用于进行western blot实验。150只动物完全随机分为15组:抑制剂组2d,4d,6d,8d,10d及相应生理盐水对照组、脱适应对照组,每组10只。
     2、双侧海马内微注射3%戊巴比妥那麻醉后,将大鼠头部固定于脑立体定位仪上,切开颅顶部皮肤,暴露前囟点,以前囟点为原点定位双侧海马中心部(AP3.8mm;ML2.3mm;DV3.0mm),打开颅骨,插入进样导管,牙科水泥固定导管于颅骨表面,左氧氟沙星粉剂敷于颅骨表面,缝合颅顶部皮肤,盖上导管帽。后正常饲养7d,前3d每天腹腔注射1ml左氧氟沙星注射液防治感染。乙醚麻醉大鼠后,打开导管帽,以注射管将0.5μl20nmol/μl KN-93缓慢注射至海马中心部,留针1min,缓慢拔针,盖上导管帽。
     3、行为学实验旋转刺激同第一部分,所有动物首先进行连续9d,每天2h的晕动刺激至适应;抑制剂组与生理盐水对照组动物每天双侧海马内微注射CaMKII抑制剂KN-93或生理盐水至相应脱适应天数后,进行2h晕动刺激记录实时行为学变化及自发活动变化;脱适应对照组正常饲养至相应脱适应天数后,进行2h晕动刺激记录实时行为学变化及自发活动变化。
     4、分子生物学实验采用Western blot法测定海马内NMDA R1受体、NMDA R2A/B、CaMKIIα亚基、磷酸化CaMKII α亚基、CREB、磷酸化CREB蛋白含量。采用实时定量荧光PCR法测定海马内Fos、Arc、BDNF mRNA表达水平。
     四、统计学分析采用SPSS v13.0软件进行统计分析。适应规律、脱适应规律、Western blot及PCR实验中,两因素多水平方差分析用来统计整个处理过程中旋转刺激、时间的主因素效应和交互作用效应有无显著性差异。当交互效应存在的情况下,单因素方差分析及Bonferroni检验用来分析相对应的时间点,旋转刺激组和静止对照组之间的差异。行为学指标筛选实验中,方差分析Bonferroni检验用来分析相对应的时间点,旋转刺激组和静止对照组之间的差异。免疫组织化学及免疫荧光组织化学实验中,单因素方差分析及Dunnett-t检验用来统计尾侧前庭核中标记神经元数目有无差别。
     结果
     一、晕动症适应-脱适应动物模型的建立
     1、长时刺激对晕动症行为学的影响统计分析显示,与静止对照组(Sta)相比,粪便颗粒数在刺激的第1、2小时增加(P<0.05),在第3、4小时下降至对照水平(P>0.05);自发活动量和活动次数均在第1、2小时降低(P<0.05),在第3、4小时上升到接近对照组水平(P>0.05);24h高岭土摄入量在4h中均增加(P<0.05)。尿液量无显著变化(P>0.05)。
     2、东莨菪碱对晕动症行为学的影响统计分析显示,与溶剂组相比,给予东莨菪碱0.5mg/kg和1.0mg/kg后,两个剂量均可以减少粪便颗粒数与24h高岭土摄入量,增加自发活动量和活动次数(P<0.05)。由于灌胃给予溶液的原因,使得所有动物的尿液量均增加(P<0.05)。
     3、双侧内耳切除术对晕动症行为学的影响统计分析显示,双侧迷路切除组动物的粪便颗粒数、24h高岭土摄入量、自发活动量和自发活动次数均与静止对照组无明显差别(P>0.05),与晕动刺激对照组有差别(P<0.05);假手术组动物各指标均与晕动刺激对照组无差别(P>0.05)。
     4、适应规律观察实验统计分析显示晕动刺激组和静止对照组动物的粪便颗粒数在晕动刺激第1天到第8天有显著差异(P<0.05),在第9天到第14天无差别(P>0.05);实时高岭土摄入量在晕动刺激第3天到第27天有显著差异(P<0.05),在第29天到第33天无差别(P>0.05);24h高岭土摄入量在晕动刺激第3天到第29天有显著差异(P<0.05),在第31天到第33天无差别(P>0.05)。与静止对照组相比,自发活动量和活动次数均在晕动刺激第1、4天降低(P<0.05),第7天恢复到对照组水平(P>0.05)。
     5、脱适应规律观察实验粪便颗粒数在脱适应5d仍维持在静止对照组水平(P>0.05),在脱适应7d达到旋转对照组水平。自发活动量和活动次数随着脱适应天数的增加而增加,在第21天显示与旋转对照组无明显差异(P>0.05),这说明其已经达到脱适应水平。其它指标也显示部分脱适应组与对照组有差别,但都没有规律性。
     二、前庭核NMDA受体信号通路在晕动症适应-脱适应过程中的作用
     1、晕动症适应过程中尾侧前庭核NR1、NR2A/B、GABAAα1蛋白水平和αCaMKII、CREB蛋白磷酸化水平的变化统计分析显示旋转刺激组动物的GABAAα1蛋白水平、αCaMKII蛋白磷酸化水平在晕动刺激第1、4天增加(P<0.05),第7天恢复到静止对照组水平(P>0.05);CREB蛋白磷酸化水平在晕动刺激第1、4、7、10天增加(P<0.05),第13天恢复到静止对照组水平(P>0.05);NR1和NR2A/B蛋白水平无显著变化(P>0.05)。
     2、晕动症适应过程中尾侧前庭核Fos、Arc和BDNFmRNA表达水平的变化统计分析显示旋转刺激组动物的Fos mRNA表达水平在晕动刺激第1、4天增加(P<0.05),Arc mRNA表达水平在晕动症第1、4天减少(P<0.05),均在第7天恢复到静止对照水平(P>0.05);BDNF mRNA表达水平无显著变化(P>0.05)。
     3、晕动症适应过程中Fos在尾侧前庭核神经元中表达的变化方差分析显示SpVe和MVe中的Fos标记神经元在旋转刺激组和对照组之间均有显著差别(P<0.01)。Dunnett-t test显示在晕动刺激第1、4、7天,Fos标记神经元增加(P<0.05),在刺激第10天起恢复到对照水平(P>0.05)。
     4、晕动症适应过程中GABAAα1和Arc在尾侧前庭核神经元中共表达方差分析显示Arc标记神经元、GABAAα1标记神经元和GABAAα1/Arc共标记神经元在旋转刺激组和对照组之间有显著差别(p<0.01)。Dunnett-t test显示在晕动刺激第1、4天,GABAAα1标记神经元增加(P<0.05),Arc标记神经元和GABAAα1/Arc共标记神经元减少(P<0.05),在刺激第7天起恢复到对照水平(P>0.05)。
     三、海马NMDA受体信号通路在晕动症适应-脱适应过程中的作用
     1、晕动症适应过程中海马NR1、NR2A/B蛋白水平和αCaMKII、CREB蛋白磷酸化水平的变化统计分析显示,旋转刺激组动物αCaMKII蛋白磷酸化水平在晕动刺激第1、4、7、10天无显著变化(P>0.05),第13天升高(P<0.05);CREB蛋白磷酸化水平在晕动刺激第1、4、7、10天缓慢增加(P>0.05),第13天与静止对照组相比显著升高(P<0.05);NR1和NR2A/B蛋白水平无显著变化(P>0.05)。
     2、晕动症适应过程中海马Fos、Arc和BDNF mRNA表达水平的变化统计分析显示,Fos、Arc、BDNF mRNA表达水平在旋转刺激组和静止对照组之间无明显差别(P>0.05)。
     3、晕动症脱适应过程中海马αCaMKII、CREB蛋白磷酸化水平变化统计分析显示,αCaMKII蛋白磷酸化水平在脱适应第1天无明显变化(P>0.05),在第4、7、14天升高(P<0.05),第21天恢复到对照水平(P>0.05)。统计分析显示, CREB蛋白磷酸化水平在晕动刺激第1、4天升高(P<0.05),第7、14、21天恢复到对照水平(P>0.05)。
     4、KN-93对晕动症脱适应行为学的影响统计分析显示,粪便颗粒数、自发活动量、活动次数在各时间点的生理盐水组和脱适应组之间均无差别(P>0.05)。抑制剂组动物的粪便颗粒数在脱适应6、8、10d增加(P<0.05),自发活动量在脱适应6、10d降低(P<0.05),活动次数在脱适应6、8、10d降低(P<0.05)。
     结论
     1、与异嗜高岭土行为比较,排便量和自发活动是大鼠晕动症判断较为敏感和可靠的指标,其中粪便颗粒计数操作简单,不易出现测量误差;晕动刺激后的自发活动也是晕动症敏感的行为学指标,综合运用这些指标有利于提高大鼠晕动症严重程度判断的准确性,是较为可靠的晕动症行为学实验方法;24h高岭土摄入量作为使用广泛的指标,也能反映大鼠晕动症症状,但其表现具有一定的延迟性。
     2、粪便颗粒数的适应时间为9d,脱适应时间为7d;自发活动量和活动次数的适应时间为7d,脱适应时间为21d。指标不一致的原因可能是由于中枢神经系统和自主神经系统反映的不一致性引起的,因此,晕动症完全适应时间为9d,完全脱适应时间为21d。
     3、在晕动症症状期(1、4d),大鼠尾侧前庭核中CaMKIIα、CREB活性和FosmRNA、蛋白表达水平升高,GABAAα1受体蛋白水平升高,Arc mRNA表达水平下降;在适应期(13d),CaMKIIα活性,Fos、Arc mRNA表达水平和Fos、GABAAα1受体蛋白水平均恢复到对照组水平。并且这些分子的改变与晕动症适应过程中行为学改变有明显相关性,说明大鼠尾侧前庭核中NMDA受体信号通路活性和GABAAα1受体水平的升高与晕动症适应的形成是相关的,可能为晕动症的适应提供了分子基础。
     4、在晕动症适应期,大鼠海马中CaMKIIα、CREB活性升高,并一直延续到脱适应期,并于晕动症脱适应行为学改变有一定相关性,采用CaMKIIα抑制剂KN-93预处理可以明显提前晕动症脱适应时间,说明大鼠海马中NMDA受体信号通路活性升高与晕动症适应的维持是相关的,在晕动症适应的维持中起一定作用。
Motion sickness (MS) refers to the normal universal physiological response tounusual perception of motion, whether real or apparent, and remains an important problemin modern traveling activities and virtual reality environments. Prolonged exposure to aprovocative motion stimulus leads to diminution and eventual disappearance of MSreactions. This character of MS was called habituation. Habituation effect would decreaseor even disappear with a long-term absence of stimulus. However, the periodical regularityand central mechanism of these MS characters still remains unclear.
     As we know, the vestibular system is the major receptor system of the outsideinformation of acceleration. Glutamate is a major excitatory neurotransmitter of primaryvestibular afferents and N-methyl-D-aspartate (NMDA) type ionotropic glutamatereceptors are abundantly localized in vestibular nucleus neurons. Many studies showed thatNMDA receptor-mediated LTP was the neural basis of learning and memory in the centralnervous system. Studies had also shown that NMDA receptor-mediated intracellular signaltransduction cascade mainly through the activation of NMDA receptors by glutamate, bycalcium/calmodulin-dependent kinase II (Ca2+/CaMKII) pathway, and ultimately activationof cAMP response element binding protein (CREB). Phosphorylation of CREB couldfurther induce the expression of immediate early gene c-fos and brain derived neurotrophicfactor (BDNF) gene and other new genes. In our previous study that Fos protein can beused as a specific molecular marker for activation of vestibular nucleus neurons and theglutamatergic vestibule-visceral projection pathway might be activated during FWLrotation. Moreover, a lot of studies had shown that many connections between thevestibular nucleus complexes were found, and activation of the vestibular system couldaffect hippocampal function and spatial memory. The aim of present study was designed toinvestigate the behavioral changes during repeated rotation treatment, and further examinewhether NMDA signaling pathway involves in motion sickness habituation andde-habituation in rat caudal vestibular nucleus and hippocampus, and finally examine theeffect of blocking the signaling pathway using pharmacological techniques on motion sicknesshabituation and de-habituation.
     1.Animal model of motion sickness habituation and dehabituation
     1.1Animals and grouping
     Adult male Sprague–Dawley (SD) rats weighing220–250g were used in thisexperiment.
     1.1.1Long-time experiment
     Twenty male SD rats were used in this experiment and divided into rotation group andstatic control group (n=10). They were used to measure the number of fecal granule, thevolume of urine and the amount of kaolin and food intake during the1st,2nd,3rd, and4thhour of consecutive4-hour treatment. Another eighty male rats were randomly divided intoeight groups including rotation groups which received1h,2h,3h and4h rotationstimulation respectively and correspondent static control group without rotation (n=10).Spontaneous activity of each group was measured immediately after treatment.
     1.1.2Scopolamine experiment
     Thirty male SD rats were used in this experiment. They were divided into threegroups: static control group, rotation control group, and free moving control group inwhich animals were maintained in individual cage without rotation and restraintstimulation (n=10).
     Sixty male SD rats were used in this experiment. They were randomly divided intosolvent control group, scopolamine I group (Sco0.5mg/kg) and scopolamine II group (Sco1.0mg/kg)(n=20), in which animals received solvent or scopolamine (i.g.) with the samevolume30minutes before each treatment session and then they were subdivided into staticand rotation groups, respectively (n=10in each subgroup).
     1.1.3Labyrinthectomy experiment
     Forty male SD rats were used in this experiment. They were randomly divided intobilateral labyrinthectomy group and sham-lesioned group (n=20), in which animalsreceived operation4weeks before experiment started. Then they were subdivided intostatic and rotation groups, respectively (n=10in each subgroup).
     1.1.4Habituation experiment
     Forty male rats were randomly divided into rotation treatment and static control group. (n=20). Animals in Rot group received daily2-hour static treatment for3days prior to thebeginning of the rotation sessions. Then they were rotated for2-hours per day at the sametime on the following days. Animals in static control group were treated similarly to theRot group except that they were not rotated. Defecation and urination responses and kaolinconsumption were measured daily during3-day prerotation and the following rotationsessions in all animals. To test the spontaneous activity during daily rotation sessions,another100male rats were used and assigned to5rotation groups receiving1,4,7,10and13daily2-hour rotation sessions, respectively and5corresponding Sta control groups(n=10).
     1.1.5De-habituation experiment
     In this experiment, de-habituation treatment procedure was divided into threedifferent phases—2h/d repeated rotation to achieve habituation, no-rotation to getde-habituation, and re-rotation to test MS symptoms. At first, animals were rotated for2h/d and MS symptoms were measured daily (n=60). When the MS symptoms of animalsrecovered to normal level, rotation treatment ended temporally and animals were assignedto several subgroups which were re-rotated on day5,7,14,21,28and35after habituationachieved, respectively (n=10in each subgroup). In the meantime, another120animalsmatched in age and body weight with de-habituation experiment subgroups were dividedinto5rotation control and5static control groups which were rotated or not on thecorresponding re-rotation day (n=10in each group).
     1.2Labyrinthectomy experiment and Sham lesion experiment
     Bilateral labyrinthectomy (BL) was performed under anesthesia4weeks beforeexperiment started. In brief, animals were initially anesthetized with sodium pentobarbital(40mg/kg, i.p.). Under an operating microscope, the mastoid was exposed by the retroauricular approach. Dental burr were then used to open the bony horizontal semicircularcanal. Then the membranous labyrinth was surgically removed with a small hook and thenthoroughly destroyed by injection of100%ethanol into the opened bony canal. Tympanicmembrane and ossicular chain remained intact during operation. At the end of surgery,antibiotic powder (Levofloxacin) was topically applied to the opened labyrinth to preventinfection and the temporal bone was sealed with dental cement. The operative wound wassutured and the animal was allowed to recover in the light. For the bilaterallabyrinthectomy, the second operation for controlateral labyrinth was performed24h after the first one. In sham-lesioned (SL) control animals, same procedures as above wereconducted excepted that only the bony horizontal semicircular canal was opened and innerear structure remained intact.
     1.3Rotation method and behavioral test
     Each conscious rat was rotated by a Forris-wheel like method. The rotation deviceused in the present experiment was modified based on that for cats by Crampton and Lucot.In brief, plexiglass containers suspended on a metal frame revolved about an axis parallelto the floor. Animals in static groups (Sta) were only enclosed in the restrainer for the sameperiod of time as rotation animals but not rotated. The consumption data of kaolin wascollected automated by the Comprehensive Lab Animal Monitoring System (CLAMS;Columbus Instruments, Columbus, OH) daily between10:00–11:00a.m. Spontaneousactivity test over the3min period was recorded using a computer-based event recorder andanalyzed by its software. This test was carried out immediately after the end of everyrotation or static treatment session.
     2. Effect of NMDA signaling pathway in vestibular nucleus neuronsduring habituation and de-habituation
     2.1Animals and grouping
     Adult male Sprague–Dawley (SD) rats weighing220–250g were used. Eighty animalswere used for western blot and real-time quantitative PCR (RT-PCR) test and randomlydivided into five rotation treatment (Rot) groups receiving1,4,7,10or13rotationsessions on a daily basis (2h/d), respectively, and five corresponding static control (Sta)groups (kept in the restrainer near the rotation device when Rot animals were being rotated)(n=8in each group). Forty eight animals were used for immunohistochemistry andimmunofluorescence study and divided into five Rot groups treated the same as above anda Sta group (kept in the restrainer for2h but not rotated)(n=8in each group).
     2.2Molecular biology experiment
     During habituation and de-habituation treatment procedure, the concentrations ofNMDA R1receptor (NR1), NMDA R2A/B receptor (NR2A/B), GABAAα1, calmodulinprotein kinaseIIα subunit (αCaMKII), phosphorylation of αCaMKII (p-αCaMKII), thenuclear transcription factor cAMP response element-binding (CREB), phosphorylation ofCREB (p-CREB) protein in the caudal vestibular nucleus were assessed by Western blot. Fos, Arc and brain-derived neurotrophic factor (BDNF) mRNA level in the caudalvestibular nucleus were assessed by real-time quantitative PCR. Fos expression in thecaudal vestibular nucleus were analyses by immunohistochemistry. During daily rotationtreatment sessions, co-expression of GABAAα1subunit with Arc in the caudal vestibularnucleus neurons was analyses by immunofluorescence.
     3. Effect of NMDA signaling pathway in hippocampal neurons duringhabituation and de-habituation
     3.1Animals and grouping
     Adult male Sprague–Dawley (SD) rats weighing220–250g were used. Eighty animalswere used for western blot and real-time quantitative PCR (RT-PCR) test and randomlydivided into five rotation treatment (Rot) groups receiving1,4,7,10or13rotationsessions on a daily basis (2h/d), respectively, and five corresponding static control (Sta)groups (kept in the restrainer near the rotation device when Rot animals were being rotated)(n=8in each group).
     Thirty animals were divided into five dehabituation groups receiving1,4,7,14or21no rotation sessions after habituation achieved, respectively, and a Sta group (n=5in eachgroup). One hundred and fifty animals were divided into five KN-93(KN) groupsreceiving2,4,6,8,10no rotation sessions after habituation achieved, and fivecorresponding sodium chloride control (SC) groups and five dehabituation control (dehab)groups (n=10in each group). On no rotation day, animals in KN and SC groups weremicroinjected KN-93and sodium chloride into the center of happocampus, respectively.
     3.2Microinjection
     Rats were anesthetized with diethyl ether and placed in a rodent stereotaxic apparatus.The skin over the skull was incised and burr holes were drilled manually. Needles wereinserted through the burr holes, animals were bilaterally implanted with indwelling guidecannulae stereotaxically aimed center of the hippocampus (coordinates AP3.8mm;ML2.3mm;DV3.0mm from bregma point). Animals were allowed to recover from surgeryduring7days before submitting them to any other procedure. At the time of drug delivery,a infusion cannula was tightly ftted into the guides. Infusions (0.5μl/side) were carried outover60s, frst on one side and then on the other; the infusion cannula was left in place for60additional seconds to minimize backfow.
     3.3Behaviour experiment
     Rotation produce was same as produce1.4. De-habituation treatment procedure weredescribed in3.1. Fecal granule, total distance and total activity were detected after rotation.
     3.4Molecular biology experiment
     During habituation and de-habituation treatment procedure, the concentrations of NR1,NR2A/B, αCaMKII, p-αCaMKII, CREB, p-CREB protein in the hippocampus wereassessed by Western blot. Fos, Arc and BDNF mRNA level in the hippocampus wereassessed by real-time quantitative PCR.
     4. Statistical analysis
     Statistical analysis was performed using the SPSS v13.0statistical program.Two-factorial analysis of variance (ANOVA) was performed using General Linear Protocolto examine whether there were any significant effect of rotation, time and/or interactioneffect of rotation×time throughout the whole treatment process. Bonferroni post hoc testwas used to analyze the difference between Rot and Sta group, when a significant rotation×time interaction effect was obtained. The data for each Rot group were expressed as foldchange of the mean±SEM relative to the mean of the corresponding Sta group inhabituation, de-habituation, western blot and RT-PCR experiments.
     In behavioral response experiment, ANOVA and bonferroni post hoc test was used toanalyze the difference between Rot and Sta group. In immunohistochemistry experiment,one-way ANOVA combined with Dunnett-t test was performed to analyze the number ofFos-LI, GABAAα1-LI, GABAAα1/Arc-LI neurons and Arc/neuron in the caudalvestibular nuclei (MVe and SpVe). All data presented were expressed as mean±SEM.Statistical significance was judged at p<0.05.
     Results
     1.Animal model of motion sickness habituation and dehabituation
     1.1Effect of long time on MS behavior index
     During4h rotation treatment, the number of fecal granule significantly increased inthe first and second hour (P<0.05) and decreased in the following third and fourth hourcompared with the static control group (P>0.05).24h kaolin consumption increasedthrough the4hours (P<0.05). Other indexes measured per hour showed no difference between rotation and static control data during the consecutive4h rotation (P>0.05). Inspontaneous activity test, the total activity and movement were significantly decreased in1h,2h rotation group compared with corresponding static control group (P<0.05), while itwas increased in3h and4h rotation group and showed no significant difference to staticgroup (P>0.05).
     1.2Effect of scopolamine on MS behavior index
     Anti-MS medication pretreatment experiment was signed by using a single dose ofscopolamine at0.5or1.0mg/kg (i.g.). Both doses showed effect on decrease in defecationand24h kaolin consumption compared with solvent controls (P<0.05), and they evenrecovered to static control level. However, agent application (solvent or scopolamine)slightly increased the urine volume probably due to the dieresis effect of the solute(P<0.05). In spontaneous activity test, compared to the static control,2h rotation led tosignificant decrease in exploring behavior and total activity (P<0.05). In the meantime,scopolamine treatment at both doses attenuated the reduction effect on spontaneousactivity after rotation compared to the rotation control group.
     1.3Effect of labyrinthectomy on MS behavior index
     In sham operated animals, compared with static control group, the number of fecalgranules and24h kaolin consumption were increased, and the total activity and movementwas decreased significantly (P<0.05), and reached to the level of rotation control group(P>0.05). In bilateral labyrinthectomy (BL) group, no obvious change of MS symptomsand spontaneous activity was observed after rotation compared with static control group(P>0.05).
     1.4Habituation effect on MS behavior index
     Statistical analysis found significant difference in number of fecal granules betweenRot and Sta groups from rotation session1to rotation session8(P<0.05), no differencewas found during9-14session (P>0.05). Statistical analysis revealed significant increase indaily24h kaolin consumption of Rot group from rotation session3to rotation session29(P<0.05), when compared with Sta group, while no difference was found when animalsreceived31rotation sessions (P>0.05). There is a significant decrease in total travelingdistance and total activity in animals receiving1and4rotation sessions when compared tocorresponding static controls (P<0.05). It recovered to static control level in animalsreceiving7,10and13rotation sessions (P>0.05).
     1.5De-habituation effect on MS behavior index
     After9days of2h/d rotation treatment, fecal granule recovered to base level inde-habituation (De-hab) group. It still remained at control level after5days withoutrotation, indicating that the animals maintained habituation state during these days(P>0.05). While, after7days without rotation, re-stimulation induced significant increasein fecal granule back to rotation control (Rot-con) level compared with static control group(P>0.05). Although, other behavior responses also showed some difference betweende-habituation and control groups on certain days after rotation paused, no character ortrend of de-habituation effect was observed. In spontaneous activity test, de-habituationeffect was observed in exploring behavior and total activity after21days without rotation,which recovered to rotation control level but lower than static control level indicated thatmotion sickness signs showed again.
     2. Effect of NMDA signaling pathway in vestibular nucleus neuronsduring habituation and de-habituation
     2.1Effect of daily rotation on NR1, NR2A/B and GABAAα1protein level andαCaMKII and CREB phosphorylation in the caudal vestibular nucleus
     In rat caudal vestibular nucleus, statistical analysis found that GABAAα1andp-αCaMKII/αCaMKII increased significantly in animals receiving1or4rotation sessions(P<0.05) compared with corresponding Sta controls and reduced to baseline level after7sessions (P>0.05). Compared with the Sta control animals, p-CREB/CREB increased inanimals exposed to1,4,7or10rotation sessions (P<0.05) and reduced to baseline levelafter13sessions (P>0.05). There was no significant effect of rotation or time on NR1andNR2A/B level in Rot groups during the whole process during the13rotation sessions(P>0.05).
     2.2Effect of daily rotation on Fos, Arc and BDNF mRNA transcription in thecaudal vestibular nucleus
     In rat caudal vestibular nucleus, statistical analysis revealed that compared with Stacontrol animals, c-fos mRNA increased in animals exposed to1and4rotation sessions(P<0.05). Arc mRNA decreased in animals exposed to1and4rotation sessions comparedwith corresponding Sta controls (P<0.05). No significant effect of rotation or time on BDNF mRNAlevel was found in Rot groups during the whole process (P>0.05).
     2.3Effect of daily rotation on Fos expression in the caudal vestibular nucleus
     One-way ANOVA revealed that there was an overall difference in the amount ofFos-LI neurons in the MVe and the SpVe among Rot and Sta control group (P<0.01).Bonferroni post hoc analysis found that the amount of Fos-LI neurons increased in theMVe and the SpVe of animals receiving1,4or7rotation sessions (P<0.05) and reduced tobaseline in animals receiving10,13rotation sessions (P>0.05).
     2.4Co-expression of GABAAα1subunit with Arc in the caudal vestibularnucleus neurons during repeated rotation session
     One-way ANOVA revealed that the amount of GABAAα1-LI and GABAAα1/Arc-LIneurons and Arc/neuron was significantly different between Rot and Sta control groups(P<0.01). Dunnett-t test analysis found that the number of GABAAα1-LI neurons in thecaudal vestibular nucleus were increased while GABAAα1/Arc-LI neurons and Arc/neuron were decreased in animals receiving1or4rotation sessions (P<0.05) andrecovered to Sta control level in animals receiving more than7rotation sessions (P>0.05).
     3. Effect of NMDA signaling pathway in hippocampal neurons duringhabituation and de-habituation
     3.1Effect of daily rotation on NR1and NR2A/B protein level and αCaMKIIand CREB phosphorylation in the hippocampus
     In rat hippocampus, statistical analysis found that p-αCaMKII/αCaMKII increasedsignificantly in animals receiving13rotation sessions (P<0.05) compared withcorresponding Sta controls, and on day1,4,7,10, it had no change (P>0.05).P-CREB/CREB increased slowly in animals exposed to1,4,7or10rotation sessions(P>0.05) and increased significantly on day13(P<0.05) compared with the Sta controlanimals. There was no significant effect of rotation or time on NR1and NR2A/B level inRot groups during the whole process during the13rotation sessions (P>0.05).
     3.2Effect of daily rotation on Fos, Arc and BDNF mRNA transcription in thehippocampus
     In rat hippocampus, there was no significant effect of rotation or time on Fos, Arc, BDNF mRNA level in Rot groups during the whole process during the13rotation sessions(P>0.05).
     3.3Effect of de-habituation on αCaMKII and CREB phosphorylation in thehippocampus
     In rat hippocampus, statistical analysis found that p-αCaMKII/αCaMKII increasedsignificantly in animals after5,7,14day without rotation (P<0.05) compared withcorresponding Sta controls, and reduced to baseline level after21days (P>0.05).Compared with the Sta control animals, p-CREB/CREB increased in animals after1,4daywithout rotation (P<0.05) and reduced to baseline level after7days (P>0.05).
     3.4Effect of KN-93on behavior response of MS de-habituation
     After9days of2h/d rotation treatment, fecal granule recovered to base level inKN-93(KN) group, sodium chloride control (SC) group and de-habituation control (Dehab)group. As the result of1.5, fecal granule in SC and Dehab group still remained at controllevel after2,4,6days without rotation, indicating that the animals maintained habituationstate during these days (P>0.05). While, after8days without rotation, re-stimulationinduced significant increase in fecal granule back to rotation control level compared withstatic control group (P>0.05). Fecal granule in KN group increased after6days withoutrotation, indicating that de-habituation time was6days. In spontaneous activity test,de-habituation effect was observed in exploring behavior and total activity after6dayswithout rotation, which lower than dehab control group (P<0.05) indicated that motionsickness signs showed again.
     Conclusions
     1. In the present study, defecation during simulated motion sickness stimulation is asensitive MS specific symptom of rats. It is also suggested that counting the number offecal granule excreted during MS stimulation in rats can be an easy and reliable method forevaluating MS closely related characterizations including habituation and de-habituation.In the meantime, spontaneous activity test immediately after MS stimulation is also aneffective assay indicative of MS development. These indexes could be used to enhance theefficiency for judgment of motion sickness symptom. Pica, which was widely used as aspecie relevant paradigm of motion sickness in rodents by examining the kaolin intakeduring24hours after MS stimulation for many years, did not increase when the rats was firstly exposed to rotation, and not recover as rapidly as other behavioral response.Because of it, pica did not fit to research habituation and de-habituation of motionsickness.
     2. In the present study, after repeated exposure to MS stimulation, defecation andspontaneous activity response were gradually alleviated and almost returns to control levelon treatment day9and7, respectively. When the stimulation paused for about7and21days after habituation achieved, defecation and spontaneous activity response wasre-activated back to the pretreatment level indicative of the retrieval of the susceptibility toMS stimulation. Although these two indexes were not consistent with each otherthoroughly on the judgment of habituation and de-habituation progress, it might reflect theasynchronous response of the autonomic nerve system and cerebrum during MSstimulation. In conclusion, habituation time of rat was9days, and de-habituation time was21days.
     3. The present study showed that repeated rotation stimulation lead to change inNMDA receptor signaling and GABAAα1receptor expression in caudal vestibular nucleusneurons. During sickness phrase, αCaMKII and CREB activity and Fos mRNA levelincreased; GABAAreceptor α1subunit protein level increased and Arc mRNA leveldecreased. During habituation phrase, αCaMKII activity, Fos and Arc mRNA and GABAAα1protein level recovered back to control level. These results suggested that activation ofNMDA receptor and increment of GABAAα1receptor level in caudal vestibular nucleusassociate with motion sickness habituation development, and may provide a kind ofbiological basis for habituation of motion sickness.
     4. In the present study, αCaMKII and CREB activity increased during habituationphrase, and lasted to de-habituation phrase. Microinjection of CaMKII inhibitor KN-93could obviously advance de-habituation time of motion sickness. These results suggestedthat activation of NMDA receptor in rat hippocampus associated with the maintenance ofhabituation, and may play a part in habituation of motion sickness.
引文
[1] Shupak A, Gorden CR. Motion sickness: advances in pathogenesis, prediction, prevention andtreatment. Aviat Space Environ Med,2006,77:1213-1223.
    [2] Heer M, Paloski WH. Space motion sickness: incidence, etiology and countermeasures. AutonNeurosci,2006,129:77-79.
    [3] Sugita N, Yoshizawa M, Abe M. Evaluation of adaptation to visually induced motion sickness basedon the maximum cross-correlation between pulse transmission time and heart rate. J NeuroengRehabil,2007,4:35-40.
    [4]马文领,郑璇,韩德条等.晕船适应和脱适应相关因素的调查与分析.中华航海医学与高气压医学杂志,2006,13:331-333.
    [5] Paul ZE, Thomas J, Laurence RY. Modeling sensory conflict and motion sickness in artificialgravity. Acta Astronaut,2008,62:224-231.
    [6] Cloutier A, Watt DG. Adaptation to motion sickness from torso rotation affects symptoms fromsupine head nodding. Aviat Space Environ Med,2007,78:764-769.
    [7] Chun SW, Choi JH, Kim MS, et al. Characterization of spontaneous synaptic transmission in ratmedial vestibular nucleus. Neuroreport,2003,14(11):1485-1488.
    [8] Grassi S, Frondaroli A, Dieni C. Neurosteroid modulation of neuronal excitability and synaptictransmission in the rat medial vestibular nuclei. Eur J Neurosci,2007,26:23-32.
    [9] Gittis AH, Lac SD. Intrinsic and synaptic plasticity in the vestibular system. Curr Opin Neurobiol,2006,16:385-390.
    [10] Manahan-Vaughan D, Von Haebler D, Winter C. A single application of MK801causes symptomsof acute psychosis, deflicits in spatial memory, and impairment of synaptic plasticity in rats.Hippocampus,2008,18:125-134.
    [11] Breakthrough of the year. The runners-up. Science,2007,318:1844-1849.
    [12] Miyamoto E. Molecular mechanism of neuronal plasticity: induction and maintenance of long-termpotentiation in the hippocampus. J Pharmacol Sci,2006,100:433-442.
    [13] Hawkins RD, Kandel ER, Bailey CH. Molecular mechanisms of memory storage in Aplysia. BiolBull,2006,210:174-191.
    [14] Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat RevNeurosci,2008,9:182-194.
    [15] Bruel-Jungerman E, Davis S, Laroche S. Brain plasticity mechanisms and memory: a party of four.Neuroscientist,2007,13:492-505.
    [16] Bekinschtein P, Cammarota M, Igaz LM, et al. Persistence of long-term memory storage requires alate protein synthesis-and BDNF-dependent phase in the hippocampus. Neuron,2007,53:261-277.
    [17] Bekinschtein P, Cammarota M, Katche C, et al. BDNF is essential to promote persistence oflong-term memory storage. Proc Natl Acad Sci USA,2008,105:2711-2714.
    [18] Lu Y, Christian K, Lu B. BDNF: A key regulator for protein synthesis-dependent LTP andlong-term memory? Neurobiol Learn Mem,2007,89:312-323.
    [19] Epema AH, Gerrits NM, Voogd J. Commissural and intrinsic connections of the vestibular nucleiin the rabbit: a retrograde labeling study. Exp Brain Res,1988,71:129–46.
    [20] Stahl JS, Simpson JI. Dynamics of rabbit vestibular nucleus neurons and the influence of thefloccules. J Neurophysiol,1995,73:1396-413.
    [21] Yamanaka T, Him A, Cameron SA, Dutia MB. Rapid compensatory changes in GABA receptorefficacy in rat vestibular neurons after unilateral labyrinthectomy. J Physiol,2000,523:413-24.
    [22] Gliddon CM, Darlington CL, Smith PF. GABAergic systems in the vestibular nucleus and theircontribution to vestibular compensation. Prog Neurobiol,2005,75:53–81.
    [23] Chebib M, Johnston GA.. The ‘ABC’ of GABA receptors: a brief review. Clin Exp PharmacolPhysiol,1999,26:937-40.
    [24] Eleore L, Vassias I, Bernat I, Vidal PP, de Waele C. An in situ hybridization andimmunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intactand unilaterally labyrinthectomized rat. Exp Brain Res,2004,160:166–179.
    [25] KimMS, Kim JH, Lee MY, et al. Identification of phosphorylated form of cAMP/calcium responseelement binding protein expression in the brain stem nuclei at early stage of vestibularcompensation in rats. Neurosci Lett,2000,290:173-176.
    [26]蔡懿灵,马文领,李敏等.旋转刺激条件下大鼠行为变化的研究.航天医学与医学工程,2005,18:98-101.
    [27] Cai YL, Ma WL, Li M, et al. Glutamatergic vestibular neurons express Fos after vestibularstimulation and project to the NTS and the PBN in rats. Neurosci Lett,2007,417:132-137.
    [28] Brotchie PR, Anderson RA, Snyder LH, Goodman SJ. Head position signals used by parietalneurons to encode locations of visual stimuli. Nature,1995,375:232–235.
    [29] Stackman RW, Taube JS. Firing properties of head direction cells in the rat anterior thalamicnucleus: dependence upon vestibular input. J Neurosci,1997,17:4349–4358.
    [30] Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the thetarhythm of the hippocampus. Neuroscience,1997,81:893–926.
    [31] Stackman RW, Herbert AM. Rats with lesions of the vestibular system require a visual landmarkfor spatial navigation. Behav Brain Res,2002,128:27–40.
    [32] Russell N, Horii A, Smith PF, Darlington CL, Bilkey DK. Effects of bilateral vestibulardeafferentation on radial arm maze performance. J Vest Res,2003,13:9–16.
    [33] Russell N, Horii A, Smith PF, Darlington CL, Bilkey DK. The long-term effects of permanentvestibular lesions on hippocampal spatial fring. J Neurosci,2003,23:6490–6498.
    [34] Zheng Y, Goddard M, Darlington CL, Smith PF. Bilateral vestibular deafferentation impairsperformance in a spatial forced alternation task in rats. Hippocampus,2007,17:253–256.
    [35] Zheng Y, Darlington CL, Smith PF. Impairment and recovery on a food foraging task followingunilateral vestibular deafferentation in rat. Hippocampus,2006,16:368–378.
    [36] Takeda N, Morita M, Horii A. Neuro Mechanisms of motion sickness. J Med Invest,2001,48(1-2):44-59.
    [37] Rubin W. Vestibular mechanism, motion sickness, and drug therapy. Experimental and clinicalevaluations. Arch Otolaryngol,1964,80:431-439.
    [38] Yates BJ, Miller AD, Lucot JB. Physiologica1basis and pharmacology of motion sickness: anupdate [J]. Brain Res Bull,1998,47(5):395-406.
    [39] Cohen H, Cohen B, Raphan T, Waespe W. Habituation and adaptation of the vestibulo-ocularreflex: a model of differential control by the vestibulo-cerebellum. Exp Brain Res,1992,90:526–538.
    [40] Dai M, Kunin M, Raphan T, Cohen B. The relation of motion sickness to the spatial-temporalproperties of velocity storage. Exp Brain Res,2003,151:173–189.
    [41] Golding JF. Motion sickness susceptibility. Auton Neurosci,2006,129:67-76.
    [42] Reason JT, Brand JJ. Motion sickness. London: Academic Press,1975.
    [43] Wilpizeski CR, Lowry LD, Miller RA, Smith BD Jr, Goldman W. Adaptation and habituation ofmotion-induced vomiting in squirrel monkeys. Aviat Space Environ Med,1987,58: A22-A28.
    [44] Yen-Pik-Sang F, Billar J, Gresty MA, Golding JF. Effect of a novel motion desensitization trainingregime and controlled breathing on habituation to motion sickness. Percept Mot Skills,2005,101:244-256.
    [45] Yang TD, Pei JS, Yang SL, Liu ZQ, Sun RL. Medical prevention of space motion sickness-animalmodel of therapeutic effect of a new medicine on motion sickness [J]. Adv Space Res,2002,30(4):751-755.
    [46] Javid FA, Naylor RJ. The effect of the5-HT1A receptor agonist,8-OH-DPAT, on motion-inducedemesis in Suncus murinus [J]. Pharmacol Biochem Behav,2006,85(4):820-826.
    [47] Chan SW, Rudd JA, Lin G, Li P. Action of anti-tussive drugs on the emetic reflex of Suncusmurinus (house musk shrew)[J]. Eur J Pharmacol,2007,559(2-3):196-201.
    [48] Hickman MA, Cox SR, Mahabir S, Miskell C, Lin J, Bunger A, et al. Safety, pharmacokinetics anduse of the novel NK-1receptor antagonist maropitant (Cerenia) for the prevention of emesis andmotion sickness in cats [J]. J Vet Pharmacol Ther,2008,31(3):220-229.
    [49] Mitchell D, Krusemark ML, Hafner D. Pica: a species relevant behavioral assay of motion sicknessin the rat [J]. physiol behave,1977,18(1):125-130.
    [50] Horii A, Takeda N, Morita M, Kubo T, Matsunaga T. Motion sickness induced by sinusoidal linearacceleration in rats [J]. Acta Otolaryngol Suppl,1993,501:31.
    [51] Takeda N, Horii A, Uno A, Morita M, Mochizuki T, Yamatodani A, et al. A ground-based animalmodel of space adaptation syndrome [J]. J Vestib Res,1996,6(6):403-409.
    [52] Ossenkopp KP. Area postrema lesions in rats enhance the magnitude of body rotation-inducedconditioned taste aversions [J]. Behav NeuralBiol,1983,38(1):82-96.
    [53] Crampton GH, Lucot JB. Habituation of motion sickness in the cat [J]. Aviat Space Environ Med,1991,62:212-215.
    [54]苏波,张建鹏,冯伟华,杜鹏,任绪义,郭俊生.晕船适应与不适应大鼠脑干蛋白质双向电泳图谱的比较与鉴定[J].第二军医大学学报,2006,27(4):382-385.
    [55] Yu XH, Cai GJ, Liu AJ, Chu ZX, Su DF. A novel animal model for motion sickness and its firstapplication in rodents [J]. Physiol Behav,2007,92(4):702-707.
    [56] Crampton GH, Lucot JB. A stimulator for laboratory studies of motion sickness in rats [J]. AviatSpace Environ Med,1985,56(5):462-465.
    [57] Money KE. Motion sickness. Physiol Rev,1970,50:1-39.
    [58] Wood CD, Graybiel A. A theory of motion sickness based on pharmacological reactions. ClinPharmacol Ther,1970,11:621-629.
    [59] Sherman CR. Motion sickness: review of causes and preventive strategies [J]. J Travel Med,2002,9(5):251-256.
    [60] Kennedy RS, Graybiel A, McDonough RC, Beckwith FD. Symptomatology under storm conditionsin the North Atlantic in control subjects and in persons with bilateral labyrinthine defects. ActaOtolaryngol,1968,66:533-540.
    [61] Dumontheil I, Panagiotaki P, Berthoz A. Dual adaptation to sensory conflicts during whole-bodyrotations. Brain Res,2006,1072:119-132.
    [62] Ossenkopp KP, Rabi YJ, Eckel LA, Hargreaves EL. Reductions in body temperature andspontaneous activity in rats exposed to horizontal rotation: abolition following chemicallabyrinthectomy. Physiol Behav,1994,56:319-324.
    [63] Ossenkopp KP, Frisken NL. Defecation as an index of motion sickness in the rat. Physiol Psychol,1982,10:355-360.
    [64] McCaffrey RJ. Appropriateness of kaolin consumption as an index of motion sickness in the rat.Physiol Behav,1985,35:151-156.
    [65] Ossenkopp KP, Ossenkopp MD. Animal models of motion sickness: are nonemetic species anappropriate choice? Physiologist,1985,28: S61-S62.
    [66] Morita M, Takeda N, Hasegawa S, Yamatodani A, Wada H, Sakai S, et al. Effects ofanti-cholinergic and cholinergic drugs on habituation to motion in rats. Acta Otolaryngol,1990,110:196-202.
    [67] De Jonghe BC, Horn CC. Chemotherapy-induced pica and anorexia are reduced by commonhepatic branch vagotomy in the rat. Am J Physiol Regul Integr Comp Physiol,2008,294: R756-65.
    [68] De Jonghe BC, Lawler MP, Horn CC, Tordoff MG. Pica as an adaptive response: Kaolinconsumption helps rats recover from chemotherapy-induced illness. Physiol Behav,2009,97:87-90.
    [69] Constancio J, Pereira-Derderian DTB, Menani JV, De Luca LA. Mineral intake independent fromgastric irritation or pica by cell-dehydrated rats. Physiol Behav,2011,104:659-665.
    [70] Cabezos PA, Vera G, Marti′n-fontelles MI, Ferna′ndez-pujol R, Abalo R. Cisplatin-inducedgastrointestinal dysmotility is aggravated after chronic administration in the rat. NeurogastroenterolMotil,2010,22:797-e225.
    [71] Huffman MA. Animal self-medication and ethno-medicine: exploration and exploitation of themedicinal properties of plants. Proc Nutr Soc,2003,62:371-81.
    [72] Villalba JJ, Provenza FD, Hall JO, Lisonbee LD. Selection of tannins by sheep in response togastrointestinal nematode infection. J Anim Sci,2010,88:2189-2198.
    [73] Treisman M. Motion sickness, an evolutionary hypothesis. Science,1977,197:493-495.
    [74] Sanger GJ, Andrews PLR. Treatment of nausea and vomiting: Gaps in our knowledge. AutonNeurosci,2006,129:3-16.
    [75] Hornby PJ. Central neurocircuitry associated with emesis. Am J Med,2001,111:106s-112s.
    [76] Santucci D, Corazzi G, Francia N, Antonelli A, Aloe L, Alleva E. Neurobehavioral effects ofhypergravity conditions in adult mouse. Neuroreport,2000,11:3353-3356.
    [77] Gunny R, Yousry TA. Imaging anatomy of the vestibular and visual systems. Curr Opin Neurol,2007,20:3-11.
    [78] Miyamoto T, Fukushima K, Takada T, de Waele C, Vidal PP. Saccular stimulation of the humancortex: A functional magnetic resonance imaging study. Neurosci Lett,2007,423:68-72.
    [79] Brandt T, Betzet K, Yousry T, Dieterich MA, Schulze S. Rotational vertigo in embolic stroke ofthe vestibular and auditory cortices. Neurology,1995,45:42-44.
    [80] Takeda N, Tanaka-Tsuji M, Sawada T, Koizuka I, Kubo T. Clinical investigation of the vestibularcortex. Acta Otolaryngol (Stockh) Suppl,1995,520:110-112.
    [81] Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH. Motion sickness: only one provocativeconflict? Brain Res Bull,1998,47:481-487.
    [82] Guedry FE, Rupert AR, Reschke MF. Motion sickness and development of synergy within thespatial orientation system A hypothetical unifying concept. Brain Res Bull,1998,47:475-480.
    [83] Abe C, Tanaka K, Awazu C, Chen H, Morita H. Plastic alteration of vestibulo-cardiovascularreflex induced by2weeks of3-G load in conscious rats. Exp Brain Res,2007,181:639–646.
    [84] du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG. Learning and memory in the vestibulo-ocularreflex. Annu Rev Neurosci,1995,18:409-441.
    [85] Kenyon RV, Young LR. M.I.T. Canadian vestibular experiments on the Spacelab-1mission:5.Postural responses following exposure to weightlessness. Exp Brain Res,1986,64:335-346.
    [86] Miles FA, Lisberger SG. Plasticity in the vestibulo-ocular reflex-a new hypothesis. Annu RevNeurosci,1981,4:273–299.
    [87] Cai YL, Wang JQ, Chen XM, Li HX, Li M, Guo JS. Decreased Fos protein expression in rat caudalvestibular nucleus is associated with motion sickness habituation. Neurosci lett,2010,480:87-91.
    [88] Darlington CL, Lawlor P, Smith PF, Dragunow M. Temporal relationship between the expressionof fos, jun and krox-24in the guinea pig vestibular nuclei during the development of vestibularcompensation for unilateral vestibular deafferentation. Brain Res,1996,735:173-176.
    [89] Dutia MB. Mechanisms of vestibular compensation: recent advances. Curr Opin Otolaryngol HeadNeck Surg,2010,18:420-424.
    [90] KimMS, Jin BK, Chun SW, Lee MY, Lee SH, Kim JH et al. Effect of MK801on cFos-like proteinexpression in the medial vestibular nucleus at early stage of vestibular compensation inuvulonodullectomized rats. Neurosci. Lett,1997,231:147–150.
    [91] Kim MS, Kim JH, Jin YZ, Kry D, Park BR. Temporal changes of cFos-like protein expression inmedial vestibular nuclei following arsanilate-induced unilateral labyrinthectomy in rats. NeurosciLett,2002,319:9–12.
    [92] Kaufman GD. Fos expression in the vestibular brainstem: What one marker can tell us about thenetwork. Brain Res Rev,2005,50:200-211.
    [93] Flavell SW, Greenberg ME. Signaling mechanisms linking neuronal activity to gene expressionand plasticity of the nervous system. Annu Rev Neurosci,2008,31:563-590.
    [94] Messaoudi E, Kanhema T, Soule J, Tiron A, Dagyte G, da Silva B, et al. Sustained Arc/Arg3.1synthesis controls long-term potentiation consolidation through regulation of local actinpolymerization in the dentate gyrus in vivo. J Neurosci,2007,27:10445-10455.
    [95] Maingay MG, Sansom AJ, Kerr DR, Smith PF, Darlington CL. The effects of intra-vestibularnucleus administration of brain-derived neurotrophic factor (BDNF) on recovery from peripheralvestibular damage in guinea pig. Neuroreport,2000,11:2429-2432.
    [96] Bolger C, Sansom AJ, Smith PF, Darlington CL. An antisense oligonucleotide to brain-derivedneurotrophic factor delays postural compensation following unilateral labyrinthectomy in guineapig. Neuroreport,1999,10:1485-1488.
    [97] Eleore L, Vassias I, Bernat I, Vidal PP, de Waele C. An in situ hydridization andimmunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intactand unilaterally labyrinthectomized rat. Exp Brain Res,2004,160:166–179.
    [98] Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABA(A) receptors:immunocytochemical distribution of13subunits in the adult rat brain. Neuroscience,2000,101:815-850.
    [99] Barnard EA. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis ofsubunit structure and receptor function. International Union of Pharmacology XV Pharmacol Rev,1998,50:291-313.
    [100] Bramham CR, Worley PF, Moore MJ, Guzowski JF. The immediate early gene arc/arg3.1:regulation, mechanisms, and function. J Neurosci,2008,28:11760-11767.
    [101] Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, et al. The Arc of synapticmemory. Exp Brain Res,2010,200:125-140.
    [102] Rodriguez JJ, Davies HA, Silva AT, De Souza IE, Peddie CJ, Colyer FM, et al. Long-termpotentiation in the rat dentate gyrus is associated with enhanced Arc/Arg3.1protein expression inspines, dendrites and glia. Eur J Neurosci,2005,21:2384-2396.
    [103] Shepherd JD, Bear MF. New views of Arc, a master regulator of synaptic plasticity. Nat Neurosci,2011,14:279-284.
    [104] Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, et al. Arc/Arg3.1mediateshomeostatic synaptic scaling of AMPA receptors. Neuron,2006,52:475-484.
    [105] Gao M, Sossa K, Song L, Errington L, Cummings L, Hwang H et al. A specific requirement ofArc/Arg3.1for visual experience-induced homeostatic synaptic plasticity in mouse primary visualcortex. J Neurosci,2010,30:7168-7178.
    [106] Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, et al. Arc/Arg3.1Interactswith the Endocytic Machinery to Regulate AMPA Receptor Trafficking. Neuron,2006,52:445-459.
    [107] Chaudhuri A. Neural activity mapping with inducible transcription factors. Neuroreport,1997,8:v–ix.
    [108] Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in spinal cord neurons following sensorystimulation. Nature,1987,328:632-634.
    [109] Cameron SA, Dutia MB. Lesion-induced plasticity in rat vestibular nucleus neurons dependent onglucocorticoid receptor activation. J Physiol,1999,518:151-158.
    [110] Chen B, Yu D, Chen Z, Yin S. Fos expression in the rat vestibular nucleus complex after pluggingthe three semicircular canals. Audiol Neurootol,2009,14:209-213.
    [111] Cirelli C, Pompeiano M, D'Ascanio P, Arrighi P, Pompeiano O. c-fos Expression in the rat brainafter unilateral labyrinthectomy and its relation to the uncompensated and compensated stages.Neuroscience,1996,70:515-546.
    [112] Kaufman GD, Anderson JH, Beitz AJ. Brainstem Fos expression following acute unilaterallabyrinthectomy in the rat. Neuroreport,1992,3:829-832.
    [113] Kitahara T, Nakagawa A, Fukushima M, Horii A, Takeda N, Kubo T. Changes in fos expressionin the rat brainstem after bilateral labyrinthectomy. Acta Otolaryngol,2002,122:620-626.
    [114] Kitahara T, Takeda N, Saika T, Kubo T, Kiyama H. Effects of MK801on Fos expression in therat brainstem after unilateral labyrinthectomy. Brain Res,1995,700:182-190.
    [115] Hasegawa S, Takeda N, Morita M, Horii A, Koizuka I, Kubo T, Matsunaga T. Vestibular, centraland gastral triggering of emesis. A study on individual susceptibility in rats. Acta Otolaryngol,1992,112:927-931.
    [116] Horn CC, De Jonghe BC, Matyas K, Norgren R. Chemotherapy-induced kaolin intake is increasedby lesion of the lateral parabrachial nucleus of the rat. Am J Physiol Regul Integr Comp Physiol,2009,297: R1375-1382.
    [117] Sutton RL, Fox RA, Daunton NG. Role of the area postrema in three putative measures of motionsickness in the rat. Behav Neural Biol,1988,50:133-152.
    [118] Aleksandrov VG, Bagaev VA, Nozdrachev AD. Gastric related neurons in the rat medialvestibular nucleus. Neurosci Lett,1998,250:66–68.
    [119] Ruggiero DA, Mtui EP, Otake K, Anwar M. Vestibular afferents to the dorsal vagal complex:substrate for vestibular-autonomic interactions in the rat. Brain Res,1996,743:294–302.
    [120] Shiba K, Siniaia MS, Miller AD. Role of ventral respiratory group bulbospinal expiratory neuronsin vestibular-respiratory reflexes. J Neurophysiol,1996,76:2271–2279.
    [121] Uchino Y, Kudo N, Tsuda K. Iwamura Y. Vestibular inhibition of sympathetic nerve activities.Brain Res,1970,22:195–206.
    [122] Xu, F, Zhuang J, Zhou TR, Gibson T, Frazier DT. Activation of different vestibular subnucleievokes differential respiratory and pressor responses in the rat. J Physiol,2002,544:211–223.
    [123] Cai YL, Ma WL, Wang JQ, Li YQ, Li M. Excitatory pathways from the vestibular nuclei to theNTS and the PBN and indirect vestibulo-cardiovascular pathway from the vestibular nuclei to theRVLM relayed by the NTS. Brain Res,2008,1240:96-104.
    [124] Harris JA. Using c-fos as a neural marker of pain. Brain Res Bull,1998,45:1–8.
    [125] Sharp FR, Sagar SM, Swanson RA. Metabolic mapping with cellular resolution: c-fos vs.2-deoxyglucose. Crit Rev Neurobiol,1993,7:205–228.
    [126] Smith PF, Horii A, Russell N, Bilkey DK, Zheng Y, Liu P, Kerr DS, Darlington CL. The effectsof vestibular lesions on hippocampal function in rats. Prog Neurobiol,2005,75:391-405.
    [127] VanElzakker M, Fevurly RD, Breindel T, Spencer RL. Environmental novelty is associated with aselective increase in Fos expression in the output elements of the hippocampal formation and theperirhinal cortex. Learn Mem,2008,15:899-908.
    [128] Ochiishi T, Yamauchi T, Terashima T. Regional differences between the immunohistochemicaldistribution of Ca2+/calmodulin-dependent protein kinase II α and β isoforms in the brainstem ofthe rat. Brain Res,1998,790:129-140.
    [129] Chen LW, Lai CH, Law HY, Yung KKL, Chan YS. Quantitative study of the coexpression of Fosand N-methyl-D aspartate (NMDA) receptor subunits in otolith-related vestibular nuclear neuronsof rats. J Comp Neurol,2003,460:292-301.
    [130] Nelson AB, Gittis AH, du Lac S. Decreases in CaMKII activity trigger persistent potentiation ofintrinsic excitability in spontaneously firing vestibular nucleus neurons. Neuron,2005,46:623-631.
    [131] Capocchi G, Della Torre G, Grassi S, Pettorossi VE, Zampolini M. NMDA-mediated long termmodulation of electrically evoked field potentials in the rat medial vestibular nuclei. Exp Brain Res,1992,90:546-550.
    [132] Grassi S, Frondaroli A, Dieni C, Scarduzio M, Pettorossi VE. Long-term potentiation in the ratmedial vestibular nuclei depends on locally synthesized17beta-estradiol. J Neurosci,2009,29:10779-10783.
    [133] Pettorossi VE, Dieni CV, Scarduzio M, Grassi S. Long-term potentiation of synaptic response andintrinsic excitability in neurons of the rat medial vestibular nuclei. Neuroscience,2011,187:1-14.
    [134] Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic andbehavioural memory. Nat Rev Neurosci,2002,3:175-190.
    [135] Fields RD, Eshete F, Stevens B, Itoh K. Action Potential-Dependent Regulation of GeneExpression: Temporal Specificity in Ca21, cAMP-Responsive Element Binding Proteins, andMitogen-Activated Protein Kinase Signaling. J Neurosci,1997,17:7252-7266.
    [136] Chen X, Herbert J. Regional changes in c-fos expression in the basal forebrain and brainstemduring adaptation to repeated stress: correlations with cardiovascular, hypothermic and endocrineresponses. Neuroscience,1995,64:675-685.
    [137] Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and time course of immediateearly gene expression in rat brain following acute stress. Neuroscience,1995,64:477-505.
    [138] Illing RB, Michler SA, Kraus KS, Laszig R. Transcription factor modulation and expression inthe rat auditory brainstem following electrical intracochlear stimulation. Exp Neurol,2002,175:226-244.
    [139] Shiromani PJ, MagneraM, Winstona S, Charness ME. Time course of phosphorylated CREB andFos-like immunoreactivity in the hypothalamic supraoptic nucleusafter salt loading. Brain Res MolBrain Res,1995,29:163-171.
    [140] Bartsch D, Ghirardi M, Skehel PA, Karl KA, Herder SP, Chen M, et al. Aplysia CREB2represseslong-term facilitation: relief of repression converts transient facilitation into long-term functionaland structural change. Cell,1995,83:979-992.
    [141] Chen A, Muzzio IA, Malleret Gl, Bartsch D, Verbitsky M, Pavlidis P, et al. InducibleEnhancement of Memory Storage and Synaptic Plasticity in Transgenic Mice Expressing anInhibitor of ATF4(CREB-2) and C/EBP Proteins. Neuron,2003,39:655-669.
    [142] Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses.Science,2001,294:1030-1038.
    [143] Robertson LM, Kerppola TK, Vendrell M, Luk D, Smeyne RJ, Bocchiaro C, et al. Regulation ofFos expression in transgenic mice requires multiple interdependent transcription control elements.Neuron,1995,14:241-252.
    [144] Kuczewski N, Porcher C, Ferrand N, Fiorentino H, Pellegrino C, Kolarow R et al. Backpropagating action potentials trigger dendritic release of BDNF during spontaneous networkactivity. J Neurosci,2008,28:7013-7023.
    [145] Suzuki A, Fukushima H, Mukawa T, Toyoda H, Wu LJ, Zhao MG, et al. Upregulation ofCREB-mediated transcription enhances both short-and long-term memory. J Neurosci,2011,31:8786-8802.
    [146] Taubenfeld SM, Wiig KA, Monti B, Dolan B, Pollonini G, Alberini CM. Fornix-dependentinduction of hippocampal CCAAT enhancer-binding protein [beta] and [delta] co-localizes withphosphorylated cAMP response element-binding protein and accompanies long-term memoryconsolidation. J Neurosci,2001,21:84-91.
    [147] Simonato M, Bregola G, Armellin M, Del Piccolo P, Rodi D, Zucchini S, et al. Dendritic targetingof mRNAs for plasticity genes in experimental models of temporal lobe epilepsy. Epilepsia,2002,43:153-158.
    [148] Tongiorgi E, Armellin M, Giulianini PG, Bregola G, Zucchini S, Paradiso B, et al. Brain-derivedneurotrophic factor mRNA and protein are targeted to discrete dendritic laminas by events thattrigger epileptogenesis. J Neurosci,2004,24:6842-6852.
    [149] Bramham CR. Local protein synthesis, actin dynamics, and LTP consolidation. Curr OpinNeurobiol,2008,18:524-531.
    [150] Dynes JL, Steward O. Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. JComp Neurol,2007,500:433-447.
    [151] Bramham CR, Wells DG. Dendritic mRNA: transport, translation and function. Nat Rev Neurosci,2007,8:776-789.
    [152] Kawashima T, Okuno H, Nonaka M, chi-Morishima A, Kyo N, Okamura M, et al. Synapticactivity-responsive element in the Arc/Arg3.1promoter essential for synapse-to-nucleus signalingin activated neurons. Proc Natl Acad Sci USA,2009,106:316-321.
    [153] Pintchovski SA, Peebles CL, Kim HJ, Verdin E, Finkbeiner S. The serum response factor and aputative novel transcription. factor regulate expression of the immediate-early gene Arc/Arg3.1inneurons. J Neurosci,2009,29:1525-1537.
    [154] Gruart A, Munoz MD. Involvement of the CA3-CA1synapse in the acquisition of associativelearning in behaving mice. J Neuros,2006,26(4):1077-1087.
    [155] Whitlock JR, Heynen AJ. Learning induces long-term potentiation in the hippocampus. Science,2006,313:1093-1097.
    [156] Pastalkova E, Serrano P, Pinkhasova D, et al. Storage of spatial information by the maintenancemechanism of LTP. Science,2006,313:1141-1144.
    [157] McNaughton BL, Mizumori SJY, Barnes CA, Leonard BJ, Marquis M, Green EJ. Corticalrepresentation of motion during unrestrained spatial navigation in the rat. Cerebral Cortex,1994,4:27–39.
    [158] Vertes RP, Kocsis B. Brainstem-diencephalo-septo hippocampal systems controlling the thetarhythm of the hippocampus. Neuroscience,1997,81:893–926.
    [159] Cuthbert PC, Gilchrist DP, Hicks SL, MacDougall HG, Curthoys IS. Electrophysiologicalevidence for vestibular activation of theguinea pig hippocampus. Neuroreport,2000,11:1443–1447.
    [160] Vitte E, Derosier C, Caritu Y, Berthoz A, Hasboun D, Soulie D. Activation of the hippocampalformation by vestibular stimulation: a functional magnetic resonance imaging study. Exp Brain Res,1996,112:523–526.
    [161] Lynch M A. Long-term potentiation and memory [J]. Physiol Rev,2004,84:87-136.
    [162] Vaynman S, Ying Z, Gomez P. Interplay between brain-derived neurotrophic factor signaltransduction modulators in the regulation of the effects of exercise on synaptic plasticity [J].Neuroscience,2003,122:657-657.
    [163] Tsien JZ. Linking hebbs’ coincidence-detection to memory formation[J]. Current Opinion inNeurobiology,2000,10:266-273.
    [164] Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory [J]. BehavBrain Res,2003,140:1-47.
    [165] Yoshihara T, Ichitani Y. Hippocampal N-methyl-D-aspartater receptor mediated encoding andretrieval processes in spatial working memory: delayinterposed radial maze performance in rats [J].Neuroscience,2004,129:1-10.
    [166] Melik E, Babar E, Ozen E, et al. Hypofunction of the dorsal hippocampal NMDA receptorsimpairs retrieval of memory to partially presented foreground context in a singal-trial fearconditioning in rats [J]. Eur Neuro psychop harmacol,2006,16:241-247.
    [167] Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1NMDA receptordependent synaptic plasticity in spatial memory [J]. Cell,1999,87:1327-1338.
    [168] Shimizu E, Tang YP, Rampon C, et al. NMDA receptor dependent synaptic reinforcement as acrucial process for memory consolidation [J]. Science,2000,290:1170-1174.
    [169] Sakimura K. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptorepsilon1subunit [J]. Nature,1995,373:151-155.
    [170] Kubayer, Pde Koninck, AS Leonard, et al. Interaction with the NMDA receptor locks CaMKⅡ inan active conformation [J]. Nature,2001,411(6839):801-805.
    [171] Fukunaga K, Muller D, Miyamoto E. Increased phosphorylation of Ca2+/calmodulin-dependentprotein kinase II and its endogenous substrates in the induction of long-term potentiation. J BiolChem,1995,270:6119-6124.
    [172] Ouyang Y, Kantor D, Harris KM, Schuman EM, Kennedy MB. Visualization of the distribution ofautophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in theCAl area of the hippocampus. J Neurosci,1997,17:5416-5427.
    [173] Silva AJ, Stevens CF, Tonegawa S, et a1. Deficient hippocampal long-term potentiation inalpha-calcium-calmodulin kinase II mutant mice [J]. Science,1992,257:201-206.
    [174] Colbran RJ. Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependentsynaptic plasticity. J Neurosci,2004,24:8404–8409.
    [175] Guzowski JF, Mcgaugh JL. Antisense Oligodeoxy-nucleotide-mediated Disruption ofHippocampal cAMP Response Element binding Protein Levels Impairs Consolidation of Memoryfor Water Maze Training [J]. Proc Natl Acad Sci USA,1997,94(6):2693-2698.
    [176] Taubenfeild SM, Wiig KA, Bear MF, et al. A Molecular Correlate of Memory and Amnesia in theHippocampus [J]. Nat Neurosci,1999,2(4):309-310.
    [177] Bourtchuladze R, Frengurlli B, Blendy J, et al. Deficient Long-term Memory in Mice with aTargeted Mutation of the cAMP-responsive Element-binding Protein [J]. Cell,1994,79(1):59-68.
    [178] Pittenger C, Huang YY, Paletzki RF, et al. Reversible Inhibition of CREB/ATF TranscriptionFactors in Region CA1of the Dorsal Hippocampus Disrupts Hippocampus dependent SpatialMemory [J]. Neuron,2002,34(37):447-462.
    [179] Shen H, Tong L, Balazs R, Cotman CW. Physical Activity Elicits Sustained Activation of theCyclic AMP Response Element binding Protein and Mitogen-activated Protein Kinase in the RatHippocampus [J]. Neurosci,2001,107(2):219-229.
    [180] Molteni R, Ying Z, Gomez-Pinilla F. Differential Effects of Acute and Chronic Exercise onPlasticity-related Genes in the Rat Hippocampus Revealed by Microarray [J]. Eur J Neurosci,2002,16:1107-1116.
    [181] Molteni R, Wu A, Vaynman S, et al. Exercise Reverses the Harmful Effects of Consumption of aHigh-fat Diet on Synaptic and Behavioral Plasticity Associated to the Action of Brain-derivedNeurotrophic Factor [J]. Neurosci,2004,123:429-440.
    [182] Huang YY, Martin KC, Kandel ER. Both PKA and MAPK are required in the amygdala for themacromolecular synthesis-depended late phase of LTP. J neurosci,2000,20:6317-6325.
    [183] Yin JC, Tully T. CREB and the formation of long-term memory. Curr Opin Neurobiol,1996,2:264-268.
    [184] Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. Neuron,1998,20:465-468.
    [185] Impey S, Obrietan K, Wong ST, et a1. Crosstalk between ERK and PKA is required for Ca2+stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron,1998,2:869-883.
    [1] Oman CW. Motion sickness: a synthesis and evalution of the sensory conflict theory. Can J PhysiolPharmacol1990;68(2):294-303.
    [2] Rine RM, Schubert MC, Balkany TJ. Visual-vestibular habituation and balance training for motionsickness. Phys Ther1999;79:949.
    [3]王尔贵,薛龙增,张炳新,等.晕动病的病因及防治.听力及语言学杂志2002;1(4):276-279.
    [4] Flanagan MB, May JG, Doble TG. Optokinetic nystagmus, vection, and motion sickness. AviatSpace Environ Med2002;73(11):1067-1073.
    [5] Mitchell D, Krusemark ML, Hafner D. pica: a species relevant behavioral assay of motion sicknessin the rat. physiol behav1977;18(1):125-130.
    [6] Horii A, Takeda N, Morita M, et al. Motion sickness induced by sinusoidal linear acceleration in rats.Acta Otolaryngol Suppl1993;501:31.
    [7] Takeda N, Horii A, Uno A, et al. A ground-based animal model of space adaptation syndrome. JVestib Res1996;6(6):403-409.
    [8] McCaffery RJ. Appropriateness of kaolin consumption as an index of motion sickness in the rat.Physiol Behav1985;35(2):151-156.
    [9] Ossenkopp KP, Ossenkopp MD. Motion sickness in guinea pigs indexed by body rotation-inducedconditioned taste aversions. Physiol Behav1990;47(3):467-470.
    [10] Ossenkopp KP. Area postrema lesions in rats enhance the magnitude of body rotation-inducedconditioned taste aversions. Behav NeuralBiol1983;38(1):82-96.
    [11] Roy MA, Brizzee KR. Motion sickness-induced food aversions in the squirrel monkey. PhysiolBehav1979;23:39-41.
    [12] Fox RA, Corcoran M, Brizzee KR. Conditioned taste aversion and motion sickness in cats andsquirrel monkeys. Can J Physiol Pharmacol1990;68(2):269-278.
    [13] Ossenkopp KP, Tu GS. Motion sickness in quail: body-rotation-induced conditioned fluid aversionsin c. Coturnix japonica. J Comp P sychol1984;98:189-193.
    [14] Fox RA, Lauber AH, Daunton NG, et al. Off-vertical rotation produces conditioned taste aversionand suppressed drinking in mice. Aviat Space Environ Med1984;55:632-635.
    [15] Hu S, Willoughby LM, Lagomarsino JJ, et al. Optokinetic rotation-induced taste aversions correlatewith over-all symptoms of motion sickness in humans. Percept Mot Skills1996;82:859-864.
    [16] Lucot JB. Effects of N-methyl-D-aspartate antagonists on different measures of motion sickness incats. Brain Res Bull1998;47(5):407-11.
    [17]. Suri KB, Crampton GH, Daunton NG. Motion sickness in cats: a symptom rating scale used inlaboratory and flight tests. Aviat Space Environ Med1979;50:614-618.
    [18] Yang TD, Pei JS, Yang SL, Liu ZQ, Sun RL. Medical prevention of space motion sickness--animalmodel of therapeutic effect of a new medicine on motion sickness. Adv Space Res2002;30(4):751-5.
    [19] Crampton GH, Lucot JB. Habituation of motion sickness in the cat. Aviat Space Environ Med1991;62:212-215.
    [20] Ueno S, Matsuki N, Saito H. Suncus murinus: a new experimental model in emesis research. LifeSci1987;41(4):513-8.
    [21] Ueno S, Matsuki N, Saito H. Suncus murinus as a experimental model for motion sickness. Life Sci1988;43(5):413-20.
    [22] Matsuki N, Ueno S, Kaji T, et al. Emesis induced by cancer chemotherapeutic agents in the suncusmurinus: a new experimental model. Jpn J Pharmacol1988;48(2):303-6.
    [23] Sam TS, Cheng JT, Johnston KD, et al. Action of5-HT3receptors antagonists and dexamethasoneto modify cisplatin-induced emesis in suncus murinus(house musk shrew). Eur J Pharmacol2003;472(1-2):135-45.
    [24] Ikegaya Y, Matsuki N. Vasopressin induces emesis in Suncus murinus. Jpn J Pharmacol2002;89(3):324-6.
    [25] Javid FA, Naylor RJ. The effect of serotonin and serotonin receptor antagonists on motion sicknessin Suncus murinus. Pharmacol Biochem Behav2002;73(4):979-89.
    [26] Chan SW, Rudd JA, Lin G, Li P. Action of anti-tussive drugs on the emetic reflex of Suncusmurinus (house musk shrew). Eur J Pharmacol2007;559(2-3):196-201.
    [27] Ordy JM, Brizzee KR. Motion sickness in the squirrel monkey. Aviat Space Environ1980;51(3):215-23.
    [28] Matsunami K.[Squirrel monkey--an ideal primate (correction of prmate) model of spacephysiology]. Biol Sci Space1997;11(2):87-111.
    [29] Wilpizeski CR, Lowry LD, Miller RA, Smith BD Jr, Goldman W. Adaptation and habituation ofmotion-induced vomiting in squirrel monkeys. Aviat Space Environ Med1987;58(9Pt2): A22-8.
    [30]岳旺,李国荣,南胜.呕吐模型动物研究进展.山东医药工业1999;18(1):32-34.
    [31]徐先荣,张改华,傅桂琴,张霞,薛善益,丁大连.豚鼠运动病模型的建立及其客观评判指标.空军总医院学报1996;12(1):8-10.
    [32] Lathers CM, Mukai C, Smith CM, Schraeder PL. A new goldfish model to evaluatepharmacokinetic and pharmacodynamic effects of drugs used for motion sickness in differentgravity loads. Acta Astronaut2001;49(3-10):419-40.
    [33]康光全,孙学川,游继平等.抗眩晕操.解放军体育学院学报2001;20(2):94-95.
    [34] Parker DE, Reschke MF, Arrott AP, et al. Otolith tilt-translation reinterpretation followingprolonged weightlessness: implications for preflight training. Aviat Space Environ Med1985;56(6):601-605.
    [35] Reschke MF, Parker DE, Harm DL, et al. Ground-based training for the stimulus rearrangementencountered during spaceflight. Acta Otolaryngol Suppl1988;460:87-93.
    [36]吴兴裕,常耀明主编.航空卫生学.第四军医大学出版社.西安.2003.
    [37]于立身主编.前庭功能检查技术.人民军医出版社.北京.1994.
    [38] Kennedy RS, Fowlkes JE, Berbaum KS, et al. Use of a motion sickness history questionnaire forprediction of simulator sickness. Aviat Space Environ Med1992;63(7):588-593.
    [39] Kolev OI, Tibbling L. Vestibular and cardiac reactions to open-sea exposure. J Vestib Res1992;2(2):153-157.
    [40] Warwick-Evans LA, Church RE, Hancock C, et al. Electrodermal activity as an index of motionsickness. Aviat Space Environ Med1987;58(5):417-423.
    [41] Gordon CR, Jackman Y, Ben-Aryeh H, et al. Salivary secretion and seasickness susceptibility.Aviat Space Environ Med1992;63(5):356-359.
    [42] Gordon CR, Ben-Aryeh H, Spitzer O, et al. Seasickness susceptibility, personality factors, andsalivation. Aviat Space Environ Med1994;65(7):610-614.
    [43] Gordon CR, Spitzer O, Doweck I, et al. The vestibulo-ocular reflex and seasickness susceptibility. JVestib Res1996;6(4):229-233.
    [44] Cheung B, Vaitkus P. Perspectives of electrogastrography and motion sickness. Brain Res Bull1998;47(5):421-431.
    [45] Levine ME, Chillas JC, Stern RM, et al. The effects of serotonin (5-HT3) receptor antagonists ongastric tachyarrhythmia and the symptoms of motion sickness. Aviat Space Environ Med2000;71(11):1111-1114.
    [46] Pethybridge RJ. Sea sickness incidence in Royal Navy ship(R). Institute of Naval Medicine1982;(INM report)37,82.
    [47]吴爱平,林衔亮,付桂强,侯建萍,黄继华.抗眩晕预适应强化训练对预防晕船的作用.海军医学杂志2007;28(1):12-13.
    [48]马文领,郑璇,韩德条,郭俊生.晕船适应和脱适应相关因素的调查与分析.中华航海医学与高气压医学杂志2006;13(6):331-333.
    [49]刘民航,郭俊生,蔡建明,李敏,李华青,季红光,王海明.某陆军部队海上抗晕船适应性锻炼研究.解放军预防医学杂志2004;22(2):93-96.
    [50]杨明,张玉琴,王培智.晕车的影响因素与对策研究.襄樊职业技术学院学报2007;3(3):25-27.
    [51]甘仲霖,苏红卫,张青碧,陈志群,郑燕.与晕车有关的汽车内环境因素研究.泸州医学院学报2003;26(4):314-316.
    [52]高蓉.1500名民航旅客晕机情况调查及防治措施探讨.民航医学2000;10(4):8-10
    [53]戴文权,孙新环,张立,于立身.检验飞行中飞行学员晕机反应的动态观察.航空军医1996;24(6):346-348.
    [54]雷亚.高性能歼击机飞行员严重空晕反应1例.航空军医2002,30(4):162.
    [55]王林杰,张丹,董卫军.航天前、中、后空间运动病研究.航天医学与医学工程2003;16(5):382-386.
    [56] Matsnev EI, Yakovleva IY, Tarasov IK, Alekseev VN, Kornilova LN, Mateev AD, Gorgiladze GI.Space motion sickness: phenomenology, countermeasures, and mechanisms. Aviat Space EnvironMed1983;54(4):312-7.
    [57]张瑞萍,孙学川,张波.模拟船舱环境对红细胞乙酰胆碱酯酶活性和抗运动病能力变化的影响.中国应用生理学杂志2005;21(4):479-480.
    [58] Wood CD, Stewart JJ, Wood MJ, et al. Habituation and motion sickness. J Clin Pharmacol1991;31(9):920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700