整合生物标志物体系的建立及在疾病诊断和药物疗效评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,研究人员越多来越多的关注生物标志物在疾病诊断、药物疗效评价中的作用,特别是一些临床棘手问题,例如糖尿病肾病的早期诊断等。本文结合临床信息和多层次的实验室数据建立整合生物标志物体系,并通过人工智能、显著性分析和ROC分析等方法进行生物标志物的筛选以解决临床难题。
     1.定量测定技术在糖尿病肾病药物治疗和疾病诊断中的应用。针对糖肾方的疗效评价,本文利用正相HPLC-ESI-TOF/MS分析技术,测定了给药后不同时间的8种磷脂潜在生物标志物的含量。结果表明糖肾方可改善糖尿病肾病病人体内的磷脂代谢失调,并且与单独使用西医治疗相比有明显优势;但是对不同潜在生物标志物的调节作用和起效时间并不相同。针对现今生物标志物数量过多不利于临床应用,及存在数据非线性的情况,本文利用人工智能技术建立了一种标志物筛选和评价的方法,稳定性良好,总共筛选得到12个变量,预测准确率达到94.5%。并在糖肾方疗效评价中表现良好,可以作为疾病诊断及药物疗效评价指标筛选的一种新的数据挖掘方法。
     2.整合生物标志物体系建立及在糖尿病肾病中的应用。目前,糖尿病肾病的诊断主要依赖于蛋白尿的测定,但在早期糖尿病肾病中(1期和2期)并不出现持续蛋白尿。针对这个问题,本文建立了一个包含6个临床生化指标、41个定量代谢潜在生物标志物和5个重要基因潜在生物标志物的整合生物标志物体系,预测准确率为98.9%;进一步采用显著性分析和ROC分析进行标志物筛选,所得的肌苷(0.086~0.162mg/L)结合肾小球滤过率估算值eGFR指标(120mL/min/1.73m2)可以很好的区分糖尿病、糖尿病肾病1期和2期,对临床风险评估和早期诊断有非常重要的意义。所得的指标群(包括肌苷、腺苷、S-腺苷同型半胱氨酸和亚油酸)可表征疾病的发生发展过程,可考虑作为未来临床联合用药的疗效评价指标。
     3.定量代谢组学在药物联合应用疗效评价中的应用。针对异丙嗪治疗晕动症中存在的镇静副作用,本文提出了一个咖啡因和异丙嗪的联合用药方案,发现咖啡因+异丙嗪可以改善由异丙嗪镇静作用引起的认知功能下降;建立了同时测定咖啡因、异丙嗪及体内代谢物的HPLC-ESI-MS分析方法;然后利用这个方法对两个给药组中的重要化合物进行了测定,发现联合用药后异丙嗪体内代谢加快,其中表征异丙嗪体内代谢能力的异丙嗪/异丙嗪亚砜比值与咖啡因及其体内代谢物含量显著相关,这可能是联合用药后认知功能得到改善的原因之一;根据代谢组学数据建立OPLS-DA模型,得到了3个神经递质相关的代谢物,主要涉及多巴胺和肾上腺素的合成,这表明咖啡因可能通过调节多巴胺和肾上腺素相关的通路以改善认知功能下降的副作用。
Rencently, biomarkers become a hot topic in the study on disease diagnosis and drug effectiveness evaluation, especially in some thorny issues in clinic, like the early diagnosis of diabetic nephropathy, a renal complication of diabetes. In this dissertation, an integrated biomarker system was developed using clinical information and multilevel laboratory data. Then some screening methods, like artifical intelligence techniques, significance test and ROC analysis were applied to obtain the optimal biomarker for clinical challenges.
     1. Drug effectiveness evaluation and disease diagnosis research of diabetic nephropathy based on quantitative techniques. First, a normal phase HPLC-ESI-TOF/MS method was used to determine the concentrations of eight phospholipid potential biomarkers during the treatment with Tangshen Formula. Results pointed out that when compared to single conventional western medicnie treatment, this traditional Chinese formula showed superiority in improving the phospholipid metabolism disorder in patients with diabetic nephropathy. However, the improvement and the onset time was not the same among all the potential biomarkers. Secondly, due to the large number of biomarkers and nonlinearity of data, a stable biomarker screening and evluation method was developed based on artificial intelligence technology.12variables were selected and the predictive accuracy was94.53%. In addition, these variables could also be used in the effectiveness evaluation of Tangshen Formula. Therefore, this method could be an alternative choice of data mining in disease diagnosis and drug effectiveness evaluation.
     2. Development of integrated biomarker system and its application in diabetic nephropathy. The present method of diagnosing diabetic nephropathy mainly depends on the determination of proteinuria, however, it's very hard to perform the test in the early stage of this disease (stage1and2) for patients in this stage don't have persistent proteinuria. According to this, an integrated biomarker system incorporating six clinical biochemical indicators, forty-one metabolic potential biomarkers from quantitative metaoblomics and five key genes was estalished and was considered effective with a high total predictive accuracy (98.9%). Then significance test and ROC analysis were employed to select the most informative potential biomarkers. Inosine with a range of0.086-0.162mg/L combined with estimated glomerular filtration rate was selected to be a sufficient potential biomarker for early diagnosis. And the levels of inosine, adenosine, S-adenosylhomocysteine and linoleic acid showed significant changes during the process of diabetic nephropathy and may be used as possible evaluation indicators for future combination therapy.
     3. Application of quantitative metabonomics in drug effectiveness evaluaiton of combination therapy. Promethazine is a effective drug against motion sickness, however, the sedative effects of promethazine can induce the decrease of cognitive funciton. In order to overcome this side effect, a combination therapy including caffeine and promethazine was proposed in this study. After the combination, the reduced cognitive function was improved. Then an HPLC-ESI-MS method was established to determine these two drugs and their metabolites simutaneously in all the subjects. The metabolism of promethazine was accelerated when combinaed with caffeine, and the concentraion ratio of promethazine to promethazine sulfoxide, a index of the metabolic capability, was significantly correlated with caffine and its metaoblites, which might be one of the reasons why cognitive function was improved after the combination. Besides, an OPLS-DA model was developed according to the metabonomic data, and3neurotransmitter metabolites involving dopamine and epinephrine synthesis were found significantly elevated after using caffine. Therefore, the improvement of decreased cogintive function induced by sedative effects of promethazine in combination therapy might be related with the changed endogenous metabolism including dopamine-, and epinephrine-associated pathways.
引文
[1]Sauer U, Heinemann M, Zamboni N. Genetics. Getting closer to the whole picture. Science.2007,316(5824):550-551
    [2]Kell D B, Brown M, Davey H M, et al. Metabolic footprinting and systems biology:the medium is the message. Nat Rev Microbiol.2005,3(7):557-565
    [3]Urbanczyk-Wochniak E, Luedemann A, Kopka J, et al. Parallel analysis of transcript and metabolic profiles:a new approach in systems biology. EMBO Rep.2003,4(10): 989-993
    [4]Lindon J C, Nicholson J K. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu Rev Anal Chem.2008,1:45-69
    [5]Han X, Gross R W. Shotgun lipidomics:electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev.2005,24(3):367-412
    [6]Clayton T A, Lindon J C, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature.2006,440(7087):1073-1077
    [7]Luo G A, Wang Y M, Liang Q L, et al. Systems biology for Traditional Chinese Medicine. New York:John Wiley & Sons, Inc..2012
    [8]Fan T W, Lorkiewicz P K, Sellers K, et al. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther.2012,133(3):366-391
    [9]Gika H, Theodoridis G. Sample preparation prior to the LC-MS-based metabolomics/metabonomics of blood-derived samples. Bioanalysis.2011,3(14): 1647-1661
    [10]Goodacre R, Vaidyanathan S, Dunn W B, et al. Metabolomics by numbers:acquiring and understanding global metabolite data. Trends Biotechnol.2004,22(5):245-252
    [11]Gamache P H, Meyer D F, Granger M C, et al. Metabolomic applications of electrochemistry/mass spectrometry. J Am Soc Mass Spectrom.2004,15(12):1717-1726
    [12]Weckwerth W. Metabolomics:an integral technique in systems biology. Bioanalysis. 2010,2(4):829-836
    [13]Lu W, Bennett B D, Rabinowitz J D. Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci.2008,871(2):236-242
    [14]Bristow A W, Webb K S, Lubben A T, et al. Reproducible product-ion tandem mass spectra on various liquid chromatography/mass spectrometry instruments for the development of spectral libraries. Rapid Commun Mass Spectrom.2004,18(13): 1447-1454
    [15]von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, et al. Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol.2004,134(2): 548-559
    [16]Liang X P, Wang Y, Liang Q L, et al. Pathogenesis of neural tube defects:the story beyond methylation or one-carbon unit metabolism. Metabolomics.2011
    [17]Yang N, Feng S, Shedden K, et al. Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification. Clin Cancer Res.2011, 17(10):3349-3359
    [18]Lanza I R, Zhang S, Ward L E, et al. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One.2010,5(5): e10538
    [19]Castillo S, Gopalacharyulu P, Yetukuri L, et al. Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemometrics and Intelligent Laboratory Systems.2011
    [20]Smith C A, Want E J, O'Maille G, et al. XCMS:processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem.2006,78(3):779-787
    [21]Katajamaa M, Miettinen J, Oresic M. MZmine:toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics.2006,22(5):634-636
    [22]Xia J, Psychogios N, Young N, et al. MetaboAnalyst:a web server for metabolomic data analysis and interpretation. Nucleic Acids Res.2009,37(Web server issue):W652-660
    [23]Lommen A. MetAlign:interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem.2009,81(8) 3079-3086
    [24]Wikoff W R, Gangoiti J A, Barshop B A, et al. Metabolomics identifies perturbations in human disorders of propionate metabolism. Clin Chem.2007,53(12):2169-2176
    [25]Benton H P, Wong D M, Trauger S A, et al. XCMS2:processing tandem mass spectrometry data for metabolite identification and structural characterization. Anal Chem.2008,80(16):6382-6389
    [26]Pluskal T, Castillo S, Villar-Briones A, et al. MZmine 2:modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics.2010,11:395
    [27]Lindon J C, Holmes E, Nicholson J K. Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy. 2001,39(1):1-40
    [28]Berrueta L A, Alonso-Salces R M, Heberger K. Supervised pattern recognition in food analysis. J Chromatogr A.2007,1158(1-2):196-214
    [29]Bylesjo M, Eriksson D, Sjodin A, et al. Orthogonal projections to latent structures as a strategy for microarray data normalization. BMC Bioinformatics.2007,8:207
    [30]Llorach R, Urpi-Sarda M, Jauregui O, et al. An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. J Proteome Res.2009,8(11):5060-5068
    [31]Gowda G A, Zhang S, Gu H, et al. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn.2008,8(5):617-633
    [32]Nicholson J K, Lindon J C, Holmes E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica.1999,29(11):1181-1189
    [33]Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints:preferred definitions and conceptual framework. Clin Pharmacol Ther.2001,69(3):89-95
    [34]Mamas M, Dunn W B, Neyses L, et al. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxicol.2011,85(1):5-17
    [35]Rocconi R P, Matthews K S, Kemper M K, et al. The timing of normalization of CA-125 levels during primary chemotherapy is predictive of survival in patients with epithelial ovarian cancer. Gynecol Oncol.2009,114(2):242-245
    [36]Arn P H. Newborn screening:current status. Health Aff (Millwood).2007,26(2): 559-566
    [37]Chen J, Zhang X, Cao R, et al. Serum 27-nor-5beta-cholestane-3,7,12,24,25 pentol glucuronide discovered by metabolomics as potential diagnostic biomarker for epithelium ovarian cancer. J Proteome Res.2011,10(5):2625-2632
    [38]Liu J Y, Li N, Yang J, et al. Metabolic profiling of murine plasma reveals an unexpected biomarker in rofecoxib-mediated cardiovascular events. Proc Natl Acad Sci U S A.2010, 107(39):17017-17022
    [39]Wang T J. Multiple biomarkers for predicting cardiovascular events:lessons learned. J Am Coll Cardiol.2010,55(19):2092-2095
    [40]Manna S K, Patterson A D, Yang Q, et al. UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. J Proteome Res.2011,10(9):4120-4133[41] Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation.2007,115(8):949-952
    [41]Morrow D A, de Lemos J A. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation.2007,115(8):949-952
    [42]Brindle J T, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med. 2002,8(12):1439-1444
    [43]Kirschenlohr H L, Griffin J L, Clarke S C, et al. Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nat Med.2006,12(6):705-710
    [44]Alpert J S, Thygesen K, Antman E, et al. Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol.2000,36(3): 959-969
    [45]Kerr M. Diabetes Epidemic on 'Relentlessly Upward Trajectory'. http://www.medscape.com/viewarticle/749572. obtained at March 29,2011
    [46]Bright R. Cases and and observations illustrative of renal disease accompanied with the secretion of albuminous urine. Guy's Hospital Report.1836,10:338-340
    [47]Kimmelstiel P, Wilson C. Intercapillary Lesions in the Glomeruli of the Kidney. Am J Pathol.1936,12(1):83-98
    [48]Editorial. Diabetic nephropathy. Lancet.1951,2(6691):974
    [49]Cooper M E. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet. 1998,352(9123):213-219
    [50]Ziyadeh F N. Mediators of diabetic renal disease:the case for tgf-Beta as the major mediator. J Am Soc Nephrol.2004,15(Suppl 1):S55-57
    [51]Dronavalli S, Duka I, Bakris G L. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab.2008,4(8):444-452
    [52]Ichinose K, Kawasaki E, Eguchi K. Recent advancement of understanding pathogenesis of type 1 diabetes and potential relevance to diabetic nephropathy. Am J Nephrol.2007, 27(6):554-564
    [53]Raptis A E, Viberti G. Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes.2001,109(Suppl 2):S424-437
    [54]Singh D K, Winocour P, Farrington K. Mechanisms of disease:the hypoxic tubular hypothesis of diabetic nephropathy. Nat Clin Pract Nephrol.2008,4(4):216-226
    [55]Ziyadeh F N, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev.2008,4(1):39-45
    [56]Wolf G, Ziyadeh F N. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 1999,56(2):393-405
    [57]Wolf G, Ziyadeh F N. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol.2007,106(2):26-31
    [58]Friedman E A. Advanced glycation end-products in diabetic nephropathy. Nephrol Dial Transplant.1999,14(Suppl 3):1-9
    [59]Porte D, Jr., Schwartz M W. Diabetes complications:why is glucose potentially toxic? Science.1996,272(5262):699-700
    [60]Nishikawa T, Kukidome D, Sonoda K, et al. Impact of mitochondrial ROS production on diabetic vascular complications. Diabetes Res Clin Pract.2007,77(Suppl 1):S41-45
    [61]Trevisan R, Viberti G. Genetic factors in the development of diabetic nephropathy. J Lab Clin Med.1995,126(4):342-349
    [62]Gross J L, de Azevedo M J, Silveiro S P, et al. Diabetic nephropathy:diagnosis, prevention, and treatment. Diabetes Care.2005,28(1):164-176
    [63]Gall M A, Hougaard P, Borch-Johnsen K, et al. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. BMJ.1997,314(7083):783-788
    [64]Stratton I M, Adler A I, Neil H A, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35):prospective observational study. BMJ.2000,321(7258):405-412
    [65]Ravid M, Brosh D, Ravid-Safran D, et al. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med.1998,158(9):998-1004
    [66]Mogensen C E. Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int.1987,31(2):673-689
    [67]Molitch M E, DeFronzo R A, Franz M J, et al. Nephropathy in diabetes. Diabetes Care. 2004,27(Suppl 1):S79-83
    [68]Forsblom C M, Groop P H, Ekstrand A, et al. Predictors of progression from normoalbuminuria to microalbuminuria in NIDDM. Diabetes Care.1998,21(11): 1932-1938
    [69]Murussi M, Baglio P, Gross JL, et al. Risk factors for microalbuminuria and macroalbuminuria in type 2 diabetic patients:a 9-year follow-up study. Diabetes Care. 2002,25(6):1101-1103
    [70]The Microalbuminuria Collaborative Study Group. Predictors of the development of microalbuminuria in patients with Type 1 diabetes mellitus:a seven-year prospective study. The Microalbuminuria Collaborative Study Group. Diabet Med.1999,16(11): 918-925
    [71]Gerstein H C, Mann J F, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. Jama.2001,286(4):421-426
    [72]Caramori M L, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk:is albumin excretion rate sufficient? Diabetes.2000,49(9):1399-1408
    [73]The Diabetes Control and Complications Trial Research Group. N Engl J Med.1993, 329(14):977-986
    [74]Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy:the Epidemiology of Diabetes Interventions and Complications (EDIC) study. Jama.2003,290(16):2159-2167
    [75]UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet.1998,352(9131):837-853
    [76]Tarnow L, Rossing P, Gall M A, et al. Prevalence of arterial hypertension in diabetic patients before and after the JNC-V. Diabetes Care.1994,17(11):1247-1251
    [77]UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes:UKPDS 38. UK Prospective Diabetes Study Group. BMJ.1998,317(7160):703-713
    [78]Chobanian A V, Bakris G L, Black H R, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama.2003,289(19):2560-2572
    [79]Lindholm L H, Ibsen H, Dahlof B, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE):a randomised trial against atenolol. Lancet.2002,359(9311): 1004-1010
    [80]Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus:results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet.2000,355(9200):253-259
    [81]Shichiri M, Kishikawa H, Ohkubo Y, et al. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care.2000,23(Suppl 2): B21-29
    [82]Bailey C J, Turner R C. Metformin. N Engl J Med.1996,334(9):574-579
    [83]Mogensen C E. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med.2003,254(1):45-66
    [84]Viberti G, Wheeldon N M. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus:a blood pressure-independent effect. Circulation.2002,106(6): 672-678
    [85]Thurman J M, Schrier R W. Comparative effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on blood pressure and the kidney. Am J Med. 2003,114(7):588-598
    [86]Gross J L, Zelmanovitz T, Moulin C C, et al. Effect of a chicken-based diet on renal function and lipid profile in patients with type 2 diabetes:a randomized crossover trial. Diabetes Care.2002,25(4):645-651
    [87]Ros E, Nunez I, Perez-Heras A, et al. A walnut diet improves endothelial function in hypercholesterolemic subjects:a randomized crossover trial. Circulation.2004,109(13): 1609-1614
    [88]Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med.2003,348(5):383-393
    [89]程立,张杨,陈雪功.糖尿病肾病中医研究现状.中医药临床杂志.2011,23(2):120-121
    [90]于健宁.糖尿病肾病中医研究进展.山东中医杂志.2001,20(11):698-671
    [91]吕仁和,王越,张子业.糖尿病肾病分期辨治568例临床分析.中国医药学报.1994,9(4):5-8
    [92]高彦彬,吕仁和,王秀琴.糖肾宁治疗糖尿病肾病的临床研究.中医杂志.1997,38(2):96-99
    [93]李青,张国娟,冯蓉.糖安康治疗糖尿病肾病临床研究.成都中医药大学学报.1999,22(1):23-2
    [94]于欢,黎莉,梁琼麟,等.代谢组学应用于糖肾方治疗糖尿病肾病的疗效评价.色谱.2011,29(4):320-324.
    [95]夏建飞,梁琼麟,钟宏福,等.糖肾方对糖尿病肾病患者嘌呤及嘧啶代谢的影响.中成药.2011,33(1):19-24
    [96]江芝婷,梁琼麟,王义明,等.糖肾方对糖尿病肾病患者同型半胱氨酸代谢的影响.中国中西医结合杂志.2011,31(8):1057-1061
    [97]Pang L Q, Liang Q L, Wang Y M, et al. Simultaneous determination and quantification of seven major phospholipid classes in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry and the application in diabetes nephropathy. J Chromatogr B Analyt Technol Biomed Life Sci.2008,869(1-2): 118-125
    [98]Zhu C, Liang Q L, Hu P, et al. Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy. Talanta. 2011,85(4):1711-1720
    [99]Noh H, King GL. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl.2007, (106):S49-53
    [100]张浩军,李平,赵静波,等.糖肾方对糖尿病肾病大鼠的保护作用.北京中医药大学学报.2009,32(4):244-251
    [101]Zhu C, Liang QL, Wei H. Phospholipidomic identification of potential biomarkers of diabetic mellitus and diabetic nephropathy. in:Metabolomics 2010, Amsterdam: Netherlands
    [102]黄敏,朱超,梁琼麟,等.中药糖肾方调节糖尿病肾病患者磷脂代谢研究.药学学报.2011,46(7):780-786
    [103]路晓光.L-FABP/GPx3/TGF-beta三种蛋白在2型糖尿病肾病中的作用及中医药干预研究.北京中医药大学博士论文.2011
    [104]黄敏,梁琼麟,王义明,等.神经管畸形相关磷脂代谢的研究进展.国际生殖健康/计划生育杂志.2011,30(3):159-163
    [105]Tan K C, Shiu S W, Wong Y. Plasma phospholipid transfer protein activity and small, dense LDL in type 2 diabetes mellitus. Eur J Clin Invest.2003,33(4):301-306
    [106]Wang C, Kong H, Guan Y, et al. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem.2005,77(13):4108-4116
    [107]Wenk M R. The emerging field of lipidomics. Nat Rev Drug Discov.2005,4(7): 594-610
    [108]Han X, Yang J, Yang K, et al. Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes:a shotgun lipidomics study. Biochemistry.2007,46(21):6417-6428
    [109]朱超,黄敏,梁琼麟,等.糖肾方对自发性Ⅱ型糖尿病鼠磷脂代谢的影响.高等学校化学学报.2011,32(7):1512-1518
    [110]庞丽琼.糖尿病肾病相关磷脂代谢研究.清华大学硕士论文.2008
    [111]Zhang J, Xie X, Li C, et al. Systematic review of the renal protective effect of Astragalus membranaceus (root) on diabetic nephropathy in animal models. J Ethnopharmacol.2009,126(2):189-196
    [112]Ai P, Yong G, Dingkun G, et al. queous extract of Astragali Radix induces human natriuresis through enhancement of renal response to atrial natriuretic peptide. J Ethnopharmacol.2008,116(3):413-421
    [113]Ahmed M S, Hou S H, Battaglia M C, et al. Treatment of idiopathic membranous nephropathy with the herb Astragalus membranaceus. Am J Kidney Dis.2007,50(6): 1028-1032
    [114]Toda S, Shirataki Y. Inhibitory effects of Astragali Radix, a crude drug in Oriental medicines, on lipid peroxidation and protein oxidative modification by copper. J Ethnopharmacol.1999,68(1-3):331-333
    [115]赖雁妮,俞茂华,游利,等.黄芪多糖对糖尿病大鼠物质代谢和肾功能的影响.辽宁实用糖尿病杂志.2001,9(4):19-21
    [116]陈蔚,陈雯洁,夏燕萍,等.黄芪多糖对糖尿病仓鼠脂代谢紊乱及心肌PPAR-alpha表达的影响.复旦学报(医学版).2010,37(2):197-201
    [117]袁菊丽,姜红波.山茱萸的主要化学成分及药理作用.化学与生物工程.2011,28(5):7-9
    [118]许惠琴,郝海平,皮文霞,等.山茱萸环烯醚萜总苷对糖尿病大鼠肾皮质糖化终产物及其受体mRNA表达的影响.中药药理与临床.2003,19(4):9-12
    [119]许惠琴,朱荃.山茱萸环烯醚萜总苷对实验性糖尿病肾病变的保护作用.南京中医药大学学报.2003,19(6):342-345
    [120]皮文霞.中药山茱萸及其治疗糖尿病微血管并发症有效部位的药学研究.南京中医药大学.1999
    [121]李娟娥,王磊,秦灵灵,等.鬼箭羽对2型糖尿病大鼠糖脂代谢及脂肪细胞因子的影响.中医药导报.2010,16(11):1-3
    [122]李路丹,谢梦洲,赵蒙蒙,等.鬼箭羽对2型糖尿病血瘀证大鼠血糖及血液流变学的影响.中南大学学报(医学版).2011,36(2):128-132
    [123]李玉杰,龚慕辛,来媛媛,等.鬼箭羽不同提取部位对糖尿病大鼠药理作用的研究.北京中医大学学报.2010,33(3):179-182
    [124]Huang Y T, Wang G F, Chen C F, et al. Fructus aurantii reduced portal pressure in portal hypertensive rats. Life Sci.1995,57(22):2011-2020
    [125]Kurowska E M, Manthey J A. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. J Agric Food Chem.2004,52(10):2879-2886
    [126]Liu J C, Chan P, Hsu F L, et al. The in vitro inhibitory effects of crude extracts of traditional Chinese herbs on 3-hydroxy-3-methylglutaryl-coenzyme A reductase on Vero cells. Am J Chin Med.2002,30(4):629-636
    [127]Kim J H, Chung H S, Kang M, et al. Anti-diabetic effect of standardized herbal formula PM021 consisting of Mori Folium and Aurantii Fructus on type Ⅱ diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Diabetes Res Clin Pract.2011,93(2): 198-204
    [128]Yang C Y, Wang J, Zhao Y, et al. Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components. J Ethnopharmacol.2010,130(2):231-236
    [129]张恒远,金建生.三七治疗肾脏病的药理与临床研究进展.医学综述.2006,12(23): 1466-1467
    [130]程甦,屠庆年,陆付耳.三七总苷对糖尿病大鼠早期肾脏高滤过及血管内皮功能的影响.医学导报.2005,24(6):467-470
    [131]Xia J F, Liang Q L, Liang X P, et al. Ultraviolet and tandem mass spectrometry for simultaneous quantification of 21 pivotal metabolites in plasma from patients with diabetic nephropathy. J Chromatogr B Analyt Technol Biomed Life Sci.2009, 877(20-21):1930-1936
    [132]Jiang Z, Liang Q, Luo G, et al. HPLC-electrospray tandem mass spectrometry for simultaneous quantitation of eight plasma aminothiols:application to studies of diabetic nephropathy. Talanta.2009,77(4):1279-1284
    [133]Krogh A. What are artificial neural networks? Nat Biotechnol.2008,26(2):195-197
    [134]Shao Q, Rowe R C, York P. Comparison of neurofuzzy logic and neural networks in modelling experimental data of an immediate release tablet formulation. Eur J Pharm Sci. 2006,28(5):394-404
    [135]Bourquin J, Schmidli H, van Hoogevest P, et al. Application of artificial neural networks (ANN) in the development of solid dosage forms. Pharm Dev Technol.1997, 2(2):111-121
    [136]Khan J, Wei JS, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med.2001,7(6): 673-679
    [137]Temurtas H, Yumusak N, Temurtas F. A comparative study on diabetes disease diagnosis using neural networks. Expert Systems with Applications.2009,36: 8610-8615
    [138]Mogensen C E, Christensen C K, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes.1983,32(Suppl 2):64-78
    [139]Mogensen C E. Early glomerular hyperfiltration in insulin-dependent diabetics and late nephropathy. Scand J Clin Lab Invest.1986,46(3):201-206
    [140]Craig K J, Donovan K, Munnery M, et al. Identification and management of diabetic nephropathy in the diabetes clinic. Diabetes Care.2003,26(6):1806-1811
    [141]van der Kloet F M, Tempels F W, Ismail N, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics.2012,8(1):109-119
    [142]Kato H, Si H, Hostetter T, et al. Smadl as a biomarker for diabetic nephropathy. Diabetes.2008,57(6):1459-1460
    [143]Albani S, Colomb J, Prakken B. Translational medicine 2.0:from clinical diagnosis-based to molecular-targeted therapies in the era of globalization. Clin Pharmacol Ther.2010,87(6):642-645
    [144]Nosadini R, Tonolo G. Relationship between blood glucose control, pathogenesis and progression of diabetic nephropathy. J Am Soc Nephrol.2004,15(Suppl 1):S1-5
    [145]Levey A S, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med.2006,145(4):247-254
    [146]Ma Y C, Zuo L, Chen J H, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol.2006,17(10): 2937-2944
    [147]Perrone R D, Madias N E, Levey A S. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem.1992,38(10):1933-1953
    [148]Levey A S, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease:evaluation, classification, and stratification. Ann Intern Med. 2003,139(2):137-147
    [149]Phillips W T, Schwartz J G, McMahan C A. Reduced postprandial blood glucose levels in recently diagnosed non-insulin-dependent diabetics secondary to pharmacologically induced delayed gastric emptying. Dig Dis Sci.1993,38(1):51-58
    [150]Liljeberg H, Bjorck I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr.1998,52(5): 368-371
    [151]de Zeeuw D, Remuzzi G, Parving H H, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy:lessons from RENAAL. Kidney Int.2004, 65(6):2309-2320
    [152]Yates A. Letter:Myasthenia associated with penicillamine treatment. Br Med J.1975, 2(5965):274
    [153]Executive summary:Standards of medical care in diabetes--2010. Diabetes Care.2010, 33(Suppl 1):S4-10
    [154]Hirsch I B, Brownlee M. Beyond hemoglobin Ale--need for additional markers of risk for diabetic microvascular complications. Jama.2010,303(22):2291-2292
    [155]王勇.基于液质联用技术的代谢组学在病理、营养及毒理研究中的应用.华东理工大学博士论文.2009
    [156]Han L D, Xia J F, Liang Q L, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta.2011,689(1): 85-91
    [157]Park H C, Choi S R, Kim B S, et al. Polymorphism of the ACE Gene in dialysis patients: overexpression of DD genotype in type 2 diabetic end-stage renal failure patients. Yonsei Med J.2005,46(6):779-787
    [158]何永鑫.糖尿病肾病相关基因表达研究.清华大学硕士论文.2009
    [159]Scott L J, Mohlke K L, Bonnycastle L L, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science.2007,316(5829): 1341-1345
    [160]Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature.2007,445(7130):881-885
    [161]Lajer M, Tarnow L, Fleckner J, et al. Association of aldose reductase gene Z+2 polymorphism with reduced susceptibility to diabetic nephropathy in Caucasian Type 1 diabetic patients. Diabet Med.2004,21(8):867-873
    [162]Pettersson-Fernholm K, Forsblom C, Hudson BI, et al. The functional -374 T/A RAGE gene polymorphism is associated with proteinuria and cardiovascular disease in type 1 diabetic patients. Diabetes.2003,52(3):891-894
    [163]Hodgkinson A D, Sondergaard K L, Yang B, et al. Aldose reductase expression is induced by hyperglycemia in diabetic nephropathy. Kidney Int.2001,60(1):211-218
    [164]Morgan D O, Edman J C, Standring D N, et al. Insulin-like growth factor Ⅱ receptor as a multifunctional binding protein. Nature.1987,329(6137):301-307
    [165]Lovati E, Richard A, Frey B M, et al. Genetic polymorphisms of the renin-angiotensin-aldosterone system in end-stage renal disease. Kidney Int.60(1): 46-54
    [166]Miller J A, Thai K, Scholey J W. Angiotensin II type 1 receptor gene polymorphism and the response to hyperglycemia in early type 1 diabetes. Diabetes.2000,49(9):1585-1589
    [167]Solini A, Dalla Vestra M, Saller A, et al. The angiotensin-converting enzyme DD genotype is associated with glomerulopathy lesions in type 2 diabetes. Diabetes.2002, 51(1):251-255
    [168]Neugebauer S, Baba T, Watanabe T. Methylenetetrahydrofolate reductase gene polymorphism as a risk factor for diabetic nephropathy in NIDDM patients. Lancet.1998, 352(9126):454
    [169]何永鑫,李雪,范雪梅,等.糖尿病肾病患者AR基因表达量测定.高等学校化学学报.2010,31(2):293-295
    [170]van der Heide J J, Bilo H J, Donker J M, et al. Effect of dietary fish oil on renal function and rejection in cyclosporine-treated recipients of renal transplants. N Engl J Med.1993, 329(11):769-773
    [171]Donadio J V, Jr., Larson T S, Bergstralh E J, et al. A randomized trial of high-dose compared with low-dose omega-3 fatty acids in severe IgA nephropathy. J Am Soc Nephrol.2001,12(4):791-799
    [172]Fechete R, Heinzel A, Perco P, et al. Mapping of molecular pathways, biomarkers and drug targets for diabetic nephropathy. Proteomics Clin Appl.2011,5(5-6):354-366
    [173]Zhao L, Gao H, Lian F, et al. (1)H-NMR-based metabonomic analysis of metabolic profiling in diabetic nephropathy rats induced by streptozotocin. Am J Physiol Renal Physiol.2011,300(4):F947-956
    [174]Suhre K, Meisinger C, Doring A, et al. Metabolic footprint of diabetes:a multiplatform metabolomics study in an epidemiological setting. PLoS One.2010,5(11):e13953
    [175]Tam F W, Riser B L, Meeran K, et al. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy. Cytokine.2009,47(1):37-42
    [176]Pezzolesi M G, Katavetin P, Kure M, et al. Confirmation of genetic associations at ELMO1 in the GoKinD collection supports its role as a susceptibility gene in diabetic nephropathy. Diabetes.2009,58(11):2698-2702
    [177]De Cosmo S, Prudente S, Lamacchia O, et al. PPARgamma2 P12A polymorphism and albuminuria in patients with type 2 diabetes:a meta-analysis of case-control studies. Nephrol Dial Transplant.2011,26(12):4011-4016
    [178]Zerhouni E. Medicine. The NIH Roadmap. Science.2003,302(5642):63-72
    [179]Alberts B. The art of translation. Science.2009,326(5950):205
    [180]Soreide K. Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research. J Clin Pathol.2009,62(1):1-5
    [181]Zweig M H, Campbell G. Receiver-operating characteristic (ROC) plots:a fundamental evaluation tool in clinical medicine. Clin Chem.1993,39(4):561-577
    [182]Cook N R. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation.2007,115(7):928-935
    [183]Pepe M S, Zheng Y, Jin Y, et al. Evaluating the ROC performance of markers for future events. Lifetime Data Anal.2008,14(1):86-113
    [184]Rudberg S, Persson B, Dahlquist G. Increased glomerular filtration rate as a predictor of diabetic nephropathy--an 8-year prospective study. Kidney Int.1992,41(4):822-828
    [185]Fong D S, Aiello L, Gardner T W, et al. Retinopathy in diabetes. Diabetes Care.2004, 27(Suppl 1):S84-87
    [186]Zhang X, Saaddine J B, Chou C F, et al. Prevalence of diabetic retinopathy in the United States,2005-2008. Jama.2010,304(6):649-656
    [187]Abbott C A, Carrington A L, Ashe H, et al. The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. Diabet Med.2002,19(5):377-384
    [188]Davies M, Brophy S, Williams R, et al. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care.2006,29(7):1518-1522
    [189]Savage S, Estacio R O, Jeffers B, et al. Urinary albumin excretion as a predictor of diabetic retinopathy, neuropathy, and cardiovascular disease in NIDDM. Diabetes Care. 1996,19(11):1243-1248
    [190]Parving H H, Oxenboll B, Svendsen P A, et al. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh).1982,100(4):550-555
    [191]Brazionis L, Rowley K, Sr., Itsiopoulos C, et al. Homocysteine and diabetic retinopathy. Diabetes Care.2008,31(1):50-56
    [192]Huang E J, Kuo W W, Chen Y J, et al. Homocysteine and other biochemical parameters in Type 2 diabetes mellitus with different diabetic duration or diabetic retinopathy. Clin Chim Acta.2006,366(1-2):293-298
    [193]Xia J F, Wang Z H, Liang Q L, et al. Correlations of six related pyrimidine metabolites and diabetic retinopathy in Chinese type 2 diabetic patients. Clin Chim Acta.2011, 412(11-12):940-945
    [194]House A A, Eliasziw M, Cattran D C, et al. Effect of B-vitamin therapy on progression of diabetic nephropathy:a randomized controlled trial. Jama.2010,303(16):1603-1609
    [195]Liang X P, Liang Q L, Xia J F, et al. Simultaneous determination of sixteen metabolites related to neural tube defects in maternal serum by liquid chromatography coupling with electrospray tandem mass spectrometry. Talanta.2009,78(4-5):1246-1252
    [196]Shupak A, Gordon C R. Motion sickness:advances in pathogenesis, prediction, prevention, and treatment. Aviat Space Environ Med.2006,77(12):1213-1223
    [197]Rine R M, Schubert M C, Balkany T J. Visual-vestibular habituation and balance training for motion sickness. Phys Ther.1999,79(10):949-957
    [198]Chouker A, Kaufmann I, Kreth S, et al. Motion sickness, stress and the endocannabinoid system. PLoS One.2010,5(5):e10752
    [199]Reavley C M, Golding J F, Cherkas L F, et al. Genetic influences on motion sickness susceptibility in adult women:a classical twin study. Aviat Space Environ Med.2006, 77(11):1148-1152
    [200]Fero K E, Jalota L, Hornuss C, et al. Pharmacologic management of postoperative nausea and vomiting. Expert Opin Pharmacother.2011,12(15):2283-2296
    [201]Hindmarch I, Shamsi Z, Stanley N, et al. A double-blind, placebo-controlled investigation of the effects of fexofenadine, loratadine and promethazine on cognitive and psychomotor function. Br J Clin Pharmacol.1999,48(2):200-206
    [202]Estrada A, LeDuc P A, Curry I P, et al. Airsickness prevention in helicopter passengers. Aviat Space Environ Med.2007,78(4):408-413
    [203]Wood C D, Stewart J J, Wood M J, et al. Effectiveness and duration of intramuscular antimotion sickness medications. J Clin Pharmacol.1992,32(11):1008-1012
    [204]Nuotto E. Psychomotor, physiological and cognitive effects of scopolamine and ephedrine in healthy man. Eur J Clin Pharmacol.1983,24(5):603-609
    [205]Buckey J C, Jr., Alvarenga D L, MacKenzie T A. Chlorpheniramine and ephedrine in combination for motion sickness. J Vestib Res.2007,17(5-6):301-311
    [206]李晓京,文治洪,胡文东,等.航天警戒作业模拟及脑力负荷评价系统的设计与实现.医疗卫生装备.2004,(9):24-25
    [207]翟志刚.盐酸异丙嗪和咖啡因联合应用的工效学及药代动力学研究.清华大学硕士论文.2009
    [208]Le D C, Morin C J, Beljean M, et al. Electrophoretic separations of twelve phenothiazines and N-demethyl derivatives by using capillary zone electrophoresis and micellar electrokinetic chromatography with non ionic surfactant. J Chromatogr A.2005, 1063(1-2):235-240
    [209]Aranda M, Morlock G. Simultaneous determination of riboflavin, pyridoxine, nicotinamide, caffeine and taurine in energy drinks by planar chromatography-multiple detection with confirmation by electrospray ionization mass spectrometry. J Chromatogr A.2006,1131(1-2):253-260
    [210]Verenitch S S, Lowe C J, Mazumder A. Determination of acidic drugs and caffeine in municipal wastewaters and receiving waters by gas chromatography-ion trap tandem mass spectrometry. J Chromatogr A.2006,1116(1-2):193-203
    [211]Caubet M S, Comte B, Brazier J L. Determination of urinary 13C-caffeine metabolites by liquid chromatography-mass spectrometry:the use of metabolic ratios to assess CYP1A2 activit. J Pharm Biomed Anal.2004,34(2):379-389
    [212]Zhang Y, Mehrotra N, Budha N R, et al. A tandem mass spectrometry assay for the simultaneous determination of acetaminophen, caffeine, phenytoin, ranitidine, and theophylline in small volume pediatric plasma specimens. Clin Chim Acta.2008, 398(1-2):105-112
    [213]Martin M J, Pablos F, Gonzalez A G. Simultaneous determination of caffeine and non-steroidal anti-inflammatory drugs in pharmaceutical formulations and blood plasma by reversed-phase HPLC from linear gradient elution. Talanta.1999,49(2):453-459
    [214]Begas E, Kouvaras E, Tsakalof A, et al. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Biomed Chromatogr.2007,21(2):190-200
    [215]Tanaka E, Nakamura T, Terada M, et al. Simple and simultaneous determination for 12 phenothiazines in human serum by reversed-phase high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci.2007,854(1-2): 116-120
    [216]Georgia K A, Samanidou V F, Papadoyannis I N. Use of novel solid-phase extraction sorbent materials for high-performance liquid chromatography quantitation of caffeine metabolism products methylxanthines and methyluric acids in samples of biological origin. J Chromatogr B Biomed Sci Appl.2001,759(2):209-218
    [217]Schoenmakers P J. Optimization of chromatographic selectivity:a guide to method development. Elsevier Science Publishing Company Inc., New York.1986
    [218]Gilbert-Lopez B, Garcia-Reyes J F, Mezcua M, et al. Multi-residue determination of pesticides in fruit-based soft drinks by fast liquid chromatography time-of-flight mass spectrometry. Talanta.2010,81(4-5):1310-1321
    [219]Wu L, Mashego M R, van Dam J C, et al. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem.2005,336(2):164-171
    [220]Chu S, Metcalfe C D. Analysis of paroxetine, fluoxetine and norfluoxetine in fish tissues using pressurized liquid extraction, mixed mode solid phase extraction cleanup and liquid chromatography-tandem mass spectrometry. J Chromatogr A.2007,1163(1-2): 112-118
    [221]Rosing H, Man W Y, Doyle E, et al. Bioanalytical liquid chromatographic method validation. A review of current practices and procedures. Journal of Liquid Chromatography Related Technologies.2000,23(3) 329-354
    [222]Misangyi V F, LePine J A, Algina J, et al. The adequacy of repeated-measures regression for multilevel research. Organ Res Methods.2006, (9):5-28
    [223]Girden E R. ANOVA:repeated measures. Sage, Newbury Park, California.1992
    [224]Paul M A, MacLellan M, Gray G. Motion-sickness medications for aircrew:impact on psychomotor performance. Aviat Space Environ Med.2005,76(6:) 560-565
    [225]Bisht M, Bist S S. An update on pharmacotherapy of vertigo. J Chem Pharm Res.2010, (2):381-386
    [226]Schmid R, Schick T, Steffen R, et al. Comparison of Seven Commonly Used Agents for Prophylaxis of Seasickness. J Travel Med.1994,1(4):203-206
    [227]Song Q, Putcha L. Quantitation of promethazine and metabolites in urine samples using on-line solid-phase extraction and column-switching. J Chromatogr B Biomed Sci Appl. 2001,763(1-2):9-20
    [228]Taylor G, Houston J B, Shaffer J, et al. Pharmacokinetics of promethazine and its sulphoxide metabolite after intravenous and oral administration to man. Br J Clin Pharmacol.1983,15(3):287-293
    [229]University of Lausanne. Pharmacokinetics:Chapter 2, Pharmacokinetic parameters: hepatic clearance, http://sepia.unil.ch/pharmacology/index.php?id=64. obtained at March 30,2012
    [230]Bates G O L, Lopes O, van Woerkom A E, et al. Tardive dyskinesia in psychosis: probing abnormal metabolism with promethazine. Acta Psychiatrica Scandinavica.1999, 99(4):294-299
    [231]黎莉.疾病及药物干预的代谢组学方法及应用研究.华东理工大学博士论文.2010
    [232]Kanehisa Laboratories. Tyrosine metabolism-Homo sapiens (human). http://www.genome.jp/dbget-bin/get_pathway?org_name=hsa&mapno=map00350. obtained at April 4,2012
    [233]Dong W X, Ni X L. Norepinephrine metabolism in neuron:dissociation between 3,4-dihydroxyphenylglycol and 3,4-dihydroxymandelic acid pathways. Acta Pharmacol Sin.2002,23(1):59-65
    [234]trenkoski-Nix L C, Ermer J, DeCleene S, et al. Pharmacokinetics of promethazine hydrochloride after administration of rectal suppositories and oral syrup to healthy subjects. Am J Health Syst Pharm.2000,57(16):1499-1505
    [235]Kavanagh J J, Grant G D, Anoopkumar-Dukie S. Low dosage promethazine and loratadine negatively affect neuromotor function. Clin Neurophysiol.2012,123(4): 780-786
    [236]B Garrett B E, Griffiths R R. The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav.1997,57(3):533-541
    [237]Ferre S. Role of the central ascending neurotransmitter systems in the psychostimulant effects of caffeine. J Alzheimers Dis.2010,20(Suppl 1):S35-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700