分别表达鸡白细胞介素1β、白细胞介素2和骨髓单核细胞生长因子基因重组鸡痘病毒的构建及其对ND疫苗免疫效力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在免疫反应发生部位,细胞因子微环境对抗原诱导免疫反应的质量和进程起重要作用。细胞因子介导的免疫调节作用可在免疫反应的不同阶段进行,如抗原提呈阶段;特异性免疫反应的效应阶段:免疫记忆反应建立阶段等。利用病毒载体在体内表达细胞因子具有如下优点:可延长细胞因子在体内存在的时间;依赖病毒的组织噬性,可使细胞因子到达特定部位:表达的重组细胞因子可保持更好的生物活性。本研究克隆鸡的白细胞介素1β(IL-1β)、白细胞介素2(IL-2)和骨髓单核细胞生长因子(MGF)的基因编码区;分别构建表达这3种细胞因子的重组鸡痘病毒(rFPVs),通过检测它们在体外表达重组细胞因子的生物活性,证明rFPVs可以有效表达鸡IL-1β、IL-2和MGF;以SPF鸡和商品鸡为动物模型,研究rFPVs表达的鸡IL-1β、IL-2、IFN-γ和MGF对新城疫常规疫苗(LaSota)和基因工程疫苗(rFPV-HN)的免疫调节作用,探讨细胞因子发挥免疫佐剂作用的机理,以期开发一种新型的疫苗佐剂。
     1 鸡IL-1β、IL-2和MGF基因的克隆及序列分析
     在无菌条件下取出4周龄的SPF鸡脾脏,分离单核淋巴细胞,用含有伴刀豆蛋白(ConA)的培养液培养。分别在培养后的8h、24h、48h和72h收集脾淋巴细胞,提取细胞总RNA,分离纯化mRNA。根据GenBank上登录的鸡IL-1β(登录号:Y15006)、IL-2(登录号:AF00631)和MGF(登录号:X14477)cDNA序列,设计扩增鸡IL-1β、IL-2和MGF基因编码区的上、下游引物,在下游引物特异序列的5’端加上痘苗病毒转录终止信号的互补序列(AAA AAA AA),用RT-PCR方法扩增鸡的IL-1β、IL-2和MGF基因编码区。PCR产物经凝胶电泳分析,扩增出的鸡IL-1β、IL-2和MGF基因编码区片段大小分别为804bp、432bp和606bp,并且发现ConA刺激的脾细胞持续表达IL-1β、IL-2和MGF的时间并
    
    扬州大学博士学位论文
    不相同,其中表达IL一lp持续的时间最长,表达MGF持续时间最短。测得的序列
    与己发表的序列进行比较,发现鸡IL一1旦有4个核昔酸和1个氨基酸发生了变化,
    IL一2有4个核昔酸和3个氨基酸发生了变化,而MGF的核昔酸和氨基酸没有发生
    任何变化。这些位点的变化可能是同一种属不同品种间的正常变化,并不影响其
    生物活性。
    2分别表达鸡IL一lp、IL一2和MGF基因重组鸡痘病毒的构建及其表达
    产物生物活性的检测
     将扩增的鸡IL一1旦、IL一2和MGF基因编码区(带有痘苗病毒转录终止信号的
    互补序列)克隆到鸡痘病毒(FPv)转移载体PI 175中,构建重组质粒pll751LI
    p、Pll75ILZ和pll75MGF,使鸡IL一1日、IL一2和MGF基因编码区紧处于痘苗病
    毒早晚期启动子p跳的下游。重组质粒pll75ILI日、pll75ILZ和pll75MGF分别
    转染己感染FPV疫苗株282E4的鸡胚成纤维细胞中(CEF),与FPV 282E4株发
    生同源重组,通过蓝斑筛选和纯化,分别获得表达鸡IL一lp、IL一2和MGF基因
    的重组鸡痘病毒(rFPVs)rFPV一IL lp、rFPV一ILZ和:FPV一MGF。将获得的rFPVs
    分别感染单层CEF,72h收获细胞培养上清,经0.1林m滤膜除去其中的:FPvs;利
    用XTT用MS法检测细胞上清中的重组细胞因子,效价分别为1 .0 xl了U/ml、3.6
    x IO4uzml、2.1 x lo3U如l,证明吓Pvs可以很好地表达鸡IL一l日、IL一2和MGF。
    3 rFPvs表达的鸡IL一lp、IL一2、IFN一Y和MGF对新城疫疫苗免疫效力
    影响
     用表达鸡IL一lp、IL一2、IFN一Y和MGF的:FPVs(rFPV一IL lp、rFPV一ILZ、rFPV-
    IFNY和rFPV一MGF)接种不同日龄的SPF或商品鸡,同时免疫新城疫(ND)Lasota
    疫苗或基因工程疫苗rFPV.HN,通过检测免疫后的体增重、抗体水平、脾脏中
    CD矿T细胞和CDS+T细胞数量变化、攻毒后泄殖腔排毒率和保护率等相关免疫指
    标,比较各组差异,评价细胞因子发挥免疫调节的效果,以期开发安全有效的新
    型疫苗佐剂。
    3.1 rFPVs表达的鸡细胞因子抵抗FPV抑制SPF雏鸡体重增长的作用
     以SPF鸡为动物模型,FPV疫苗282E4(叭一FPV)可以明显抑制雏鸡早期体
    重的增长,而:FPV表达的IL一2或IFN一Y可以显著抵抗FPV抑制体重增长:在一
    定程度上,rFPV表达的IL一lp也表现出相似的作用,而接种表达MGF的:FPV试
    
    邵卫星:rFPVs表达的鸡IL一lp、IL一2、IFN一丫或MGF对NO疫苗免疫效力影响川
    验组鸡的体增重与野生鸡痘病毒(,比.FPV)对照组没有显著性差异。给鸡同时接
    种表达几一2或IFN一丫的rFPVs,IL一2和IFN一Y不能协同增强抗FPV抑制体重增长。
    可能是由于该组鸡接种的rFPV量最多,FPV的抑制体重增长的作用超过细胞因子
    的免疫调节作用。
    3.2 rFPVs表达的鸡细胞因子对ND疫苗诱导抗体生成的影响
     rFPV表达的IL一lp、IL·2或MGF不能显著促进接种Lasota疫苗(1 pDso)的
    SPF鸡产生抗NDV的HI抗体。用:FPV.HN免疫SPF鸡或NDV母源抗体低的商
    品鸡,同时接种表达细胞因子的rFPvs,rFPv表达的IL一lp或IFN一丫在免疫后期
    能促进抗HN间接ELISA抗体的滴度上升,而且产生抗体的整齐度好::FPV表达
    的IL一2或MGF不能显著促进抗体的生成。联合应用IL一2和IFN一Y的实验组鸡虽
    然产生抗HN间接ELISA抗体的滴度和整齐度比对照组好,但IL一2和IFN一Y对抗
    体的产生并没有表现出协同增强作用。
    33 rFPVs表达的鸡细胞因子对SPF鸡脾脏中CD4+T细胞?
Advances in understanding the cells and molecular interactions linking the innate immune system to adaptive immune response have revealed the critical role that cytokines serve in antigen presentation, cell activation and proliferation and the establishment of immune memory. Cytokines can enhance vaccine-induced immune responses at three levels: ?recruitment of immune reactive cells to inductive sites and activation of professional antigen presenting cells (APCs), (2) proliferation and differentiation of antigen specific T and B cells and enhancement of effector function and (3) transition of cells into the memory cell pool and lymphocyte homeostasis. As an alternative to the use of cytokine-inducing adjuvants, cytokines may also be used directly. Most cytokines have the ability to modify and re-direct immune responses. Virus vectors offer a very attractive means for the delivery of cytokines. Recombinant cytokines delivered by virus vectors can be expressed continuously and have a good biologic activity in
     vivo. In the present study, the genes of chicken interleukin 1 B (IL-1 B), interleukin 2 (IL-2) and myelomonocytic growth factor (MGF) were amplified by RT-PCR from spleen cells stimulated by ConA. We constructed recombinant fowlpox viruses (rFPVs) expressing chicken IL-1 3 , IL-2 and MGF. Four chicken cytokines (IL-1 P , IL-2, IFN- Y , MGF) expressed by rFPVs were evaluated for their adjuvant effects on immune responses in SPF chickens and commercial chickens vaccinated with suboptimal dose of La Sota virus or minimal immune dose of rFPV expressing Newcastle disease virus (NDV) HN gene (rFPV-HN). We hope to explore a novel vaccine adjuvant.
    
    
    1. Cloning of genes of chicken IL-1 0 , IL-2 and MGF
    Spleen cells from 4-wk-old chicken were cultured with ConA (10ulml) in RPMI 1640 containing 5% FCS at a concentration of 107 cells/ml. Cells were cultured for 8h, 24h, 48h or 72h respectively at 41 C in 5% CO2 incubator. Total RNAs were extracted from cells cultured for different times and mRNA were isolated from total RNA. The sequences of the PCR primers were designed on the basis of published cDNA sequences of chicken IL-1 B , IL-2 or MGF. The 5' end of downstream primers contained a sequence (AAAAAAAAA) which is the complement sequence of transcriptional terminal signal of vaccinia virus. The PCR reaction mixture was analyzed by agrose gel electrophoresis after amplification. The results showed that the purposed genes were obtained. At the same time we found that chicken IL-1 B , IL-2 or MGF was expressed by ConA-stimulated spleen cells at various time. The time of expression of IL-1 B was the longest and MGF was the shortest. The cloned sequences of chicken IL-1 3 had a change of four nucleotide sites and one amino acid site and the chicken IL-2 had a variation of four and three sites respectively compared with the published sequences. The change of these sites would be the normal variation in different species and have no effect on their biologic activity.
    2. Construction of rFPVs expressing chicken IL-1B , IL-2 and MGF and assay of biologic activity of the product in vitro
    The sequences encoding chicken IL-1 B , IL-2 and MGF were inserted into FPV (282E4) using the transfer plasmid p1175 under the control of the FPV early/late promoter (PE/L)- The plasmid p1175 contains the E.coli LacZ gene under the control of the PFV late promoter (P11), enabling rapid identification of FPV recombinants. Primary CEF monolayers were infected with rFPVs expressing chicken IL-1 3 , IL-2 and MGF at a M.O.I of 1.0. Following incubation at 37C for 72h, culture supernatants were harvested and filtered through a 0.1 um filter to remove infectious FPV. The levels of chicken IL-1 3 , IL-2 or MGF in cell culture supernatants infected with rFPVs were determined according to the standard procedures of XTT/PMS method. The results showed that rFPVs expressed chicken IL-1 3 , IL-2 and MGF effectively.
    
    3. Influence of chicken IL-1 B, IL-2, IFN- Y and MGF expressed by rFPVs on vaccination of La Sota or rFPV-HN against Newcastle disease vir
引文
1.巴德年主编.当代免疫学技术与应用.北京:北京医科大学中国协和医科大学联合出版社,1998.49-71.
    2. Stacheli P, Puehler F, Schneider K, et al. Cytokines of birds: conserved of functions—a largely different look. J. Interferon Cytokine Res. 2001, 21: 993-1010.
    3.孙为民,王惠琴编著.细胞因子研究方法学.北京:人民卫生出版社,1999,20-86.
    4. Kaplan MH, Smith, DI, and Sundick, RS. Identification of G protein coupled receptor induced in activated T cells. J. Immunol. 1993, 151: 628-36.
    
    
    5. Schnetzler M, Oommen A, Nowak JS, et al. Characterization of chicken T cell growth factor. Eur. J. Immunol. 1983, 13: 560-6.
    6. Isaacs A, and Lindenmann J. Virus interference. I. The interferon. Proc. R. Soc. Lond. 1957, 147: 258-76.
    7. Kohase M, Moriya H, Sato, TA, et el. Purification and characterization of chick interferon induced by virus. J. Gen. Virol. 1986, 67: 215-8.
    8. Sekellick MJ and Marcus PI. Induction of high titer chicken interferon. Methods Enzymol. 1986, 119: 115-25.
    9. Sick C, Schyjtz U, Staehel P. A family of genes coding for two seroiogically distinct chicken intefferons. J. Biol. Chem. 1996, 271: 7635-9.
    10. Nanda I, Sick C, Munster U, et al. Sex chromosome linkage of chicken and duck type Ⅰ interferon of the Z chromosome in birds. Chromosome. 1998, 107: 204-10.
    11. Lowenthal JW, Staeheli P, Sehultz U, et al. Nomenclature of avian interferon proteins. J. Interferon Cytokine Res. 2001, 21: 119-27.
    12. Suresh M, Karaca K, Foster D, et al. Molecular and functional characterization of turkey interferon. J. Virol. 1995, 69: 8159-63.
    13. Schultz U, Kock J, Schlicht HJ, et al. Recombinant duck interferon: a new reagent to study the mode of interferon action against hepatitis B virus. Virology. 1995, 212: 641-9.
    14. Hughes AL, Roberts RM. Independent origin of IFN-α and IFN-β in birds and mammals. J. Interferon Cytokine Res. 2000, 20: 737-9.
    15. Schultz U, Rinderle C, Sekellick MJ, et al. Recombinant chicken interferon from Escherichia coli and transfected COS cells is biologically active. Eur. J. Biochem. 1995, 229: 73-6.
    16. Rebouk J, Gardiner K, Mormeron D, et al. Comparative genomic analysis of the interferon/interleukin-10 receptor gene cluster. Genome Res. 1999, 9: 242-50.
    17. Schumacher B, Bernasconi D, Schultz U, et al. The chicken Mx promoter contains an ISRE motif and confers interferon inducibility to a reporter gene in chick and monkey cells. Virology. 1994, 203: 144-8.
    18. Heuss LT, Heim MH, Schuktz U, et al. Biological efficacy and signal transduction through Stat proteins of recombinant duck interferon in duck hepatitis B virus infection. J. Gen. Virol. 1998, 79: 2007-12
    19. Jungwirth C, Rebbert M, Ozato K, et al. Chicken interferon consensus sequence-binding protein (ICSBP) and interferon regulatory factor (IRF) 1 genes reveal evolutionary conservation in the IRF gene family. Proc. Natl. Acad. Sci. USA. 1995, 92: 3105-09.
    20. Zoller B, Redman-muller I, Nanda I, et al. Sequence comparison of avian interferon regulatory factors and identification of the avian CEC-32 cell as a quail cell line. J. Interferon Cytokine Res. 2000, 20: 711-7.
    21. Dijkmans R, Creemers J, billiau A. Chicken maerophage activation by interferon: do birds lack
    
    the molecular homologne of mammalian interferon-gamma? Vet. Immunol. Immunopathol. 1990, 26: 319-32.
    22. Digby MR, Lowenthal JW. Cloning and expression of the chicken interferon-gamma gene. J.Interferon Cytokine Res. 1995, 15: 939-45.
    23. Weining KC, Schultz U, Munster U, et al. Biological properties of recombinant chicken interferon-gamma. Eur. J.Immunol. 1996, 26: 2440-7.
    24. Gutterbach M, Nanda I, Brichekk PM, et al. Chromosomal localization of the genes encoding ALDH, BMP-2, R-FABP, IFN-γ, RXR-γ and VIM in chicken by fluorescent in situ hybridization. Cytogenet. Cell Genet. 2000, 88: 266-71.
    25. Sekellick MJ, Lowenthal JW, Oneil TE, et al. Chicken interferon types Ⅰ and Ⅱ enhance synergistically the antivirai state and nitric oxide secretion. J. Interferon Cytokine Res. 1998, 18: 407-14.
    26. Schulitz U, Chisari FV. Recombinant duck interferon gamma inhibits duck hepatitis B virus replication in primary hepatocytes. J Virol. 1999, 73: 3162-8.
    27. Huang A, Scougall CA, Lowenthal KW, et al. Structural and functional homology between duck and chicken interferon-gamma. Dev. Comp. Immunol. 2001, 25: 55-68.
    28. Kaiser P, Sonnemans D, Smith LM. Avian IFN-gamma genes: sequence analysis suggests probable cross-species reactivity among galliforms. J. Interferon Cytokine Res. 1998, 18: 711-9.
    29. Lepe-zuniga JL, Gery I. Intrleukin-1: uniqueness of its production and spectrum of activities. Lymphokines. 1984, 9: 109-25.
    30. Dinarello CA. Interleukin-1. Rev. Infect. Dis. 1984, 6: 51-95.
    31. Gery L, Gershon RK, Waksman BH. Potentiation of the T-lymphocyte response to mitogens. Ⅰ. The responding cell. J. Exp. Med. 1972, 136: 128-42.
    32. Krakauer T, Vilcek J, Oppenheim, JJ. Pro-inflammatory cytokines: TFN and IL-I families, chemokine, TGF-beta and others. In: Fundamental Immunology. W.E. Paul (ed.) Phiadelphia: Lippinnott-gaven Publishers.
    33. Dinarello CA. lntrleukin-1, intrleukin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol. 1998, 16: 457-99.
    34. Hayari Y, Schauenstein K, Globerson A. Avian lymphokines, Ⅱ: interleukin-1 activity in supernatants of stimulated adherent splenocytes of chickens. Dye. Comp. Immunol. 1982, 6: 785-9.
    35. Klasing KC, Peng, RK. Influence of cell sources, stimulating agents, and incubation conditions on release of intrleukin-1 from chicken macrophages. Dev. Comp. Immunol. 1987, 11: 385-94.
    36. Bombara C J, Taylor RL. Signal transduction events in chicken interleukin-1 production. Poult. Sci. 1991, 70: 1372-80.
    37. Qureshi MA, Marsh JA, Dietert RRL, et al. Profiles of chicken macrophage effector functions. Poult. Sic. 1994, 73: 1027-34.
    
    
    38. Cieszynski JA, Qureshi MA, Taylor RL. Calcium dependency of interleukin-1 secretion by a chicken macrophage cell line. Poult. Sci. 1999, 78: 70-4.
    39. Grieninger G, Oddoux C, Diamond L, et al. Regulation of fibrinogen synthesis and secretion by the chicken hepatocytie. Ann. NY Acad. SCI. 1989, 557: 257-70.
    40. Klasing KC. Effect of inflammatory agents and interleukin-1 on iron and zinc metabplishm. Am. J. Physiol. 1984, 247: R901-4.
    41. Klasing KC. Avian inflammatory response: mediation by macrophages. Poult. Sci. 1991, 70: 1176-86.
    42. Klasing KC, Laurain DE, PENG RK, et al. Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and intrleukin-1. J. Nutr. 1987, 117: 1629-37.
    43. Bornstein DL, Woods JW. Species specificity of leukocytic pyrogens. J. Exp. Med. 1969, 130: 707-21.
    44. Bernheim HA, Kluger MJ. Endogenous pyrogen-like substance produced by reptiles. J. Physiol. 1977, 267: 659-66.
    45. Hamby BA, Huggins EM Jr, Lachman LB, et al. Fish lymphocytes respond to human IL-1. Lymphokine Res. 1986, 5: 157-62.
    46. Weining KC, Sick C, Kaspers B, et al. A chicken homolog of mammalian intrluekin-1 beta: cDNA cloning and purification of active recombinant protein. Eur. J. Biochem. 1998, 258: 994-1000.
    47. Guida S, Heguy A, Melli M. The chicken IL-1 receptor: differential evolution of the cytoplasmic and extracellular domains. Gene. 1992, 111: 239-43.
    48. Wakdnabbm TA, Dubois S, Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Dev. Comp. Immunol. 2001, 14: 105-10.
    49. Waldmarm T, Tagaya Y, Bamford R. Interleukin-2, interleukin-15 and their receptors. Int. Rev. Immunol. 1998, 16: 205-26.
    50. Na A, Boone DL, Lodolce JP. The pleiptrpivc functions of interleukin-15: not so interleukin-2-like after all. J.Exp. Med. 2000, 191: 753-5.
    51. Fehniger TA, Caligiuri MA. Interleukin-15: biology and relevance to human disease. Blood. 2001, 97: 14-32.
    52. Schnetzler M, Oommen A, Nowak JS, et al. Characterization of chicken T cell growth factor. Eur. J. Immunol. 1983, 13: 560-6.
    53. Lawson S, Rothwell L, Kaiseer P. Turkey and chicken interleukin-2 cross-react in vitro proliferation assay despite limited amino acid sequence identity. J. Interferon Cytokine Res. 2000, 20: 161-70.
    54. Kaiser P, Maariani P. Promoter sequence, extro: intron structure, and synteny of genetic location show that a chicken cytokin with T-cell proliferation activity is IL-2 not IL-15. Immunogenetics. 1999, 49: 26-35.
    
    
    55. Tirunagaru VG, Sofer L, Cui J, et al. An expressed sequence tag database of T-cell-enriched activated chicken splenocytes: sequence analysis of 5251 clones. Uenomics. 2000, 66: 144-51.
    56. Waldmann TA, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine on NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol. 1999, 49: 1719-49.
    57. Lillehoj HS, Choi KD, Jenkins MC, et al. A recombinant Eimeria protein inducing interferon-gamma production: comparison of different gene expression systems and immunization strategies for vaccination against coccidiosis. Avian Dis. 2000, 44: 379-89.
    58. Kolodsick JE, Stepaniak JA, Hu W, et al. Mutational analysis of chicken interleukin 2. Cytokine. 2001, 13: 317-24.
    59. Schat KA, Cainek BW, Weinstock D. Cultivation and characterization of avian lymphocytes with natural killer cell activity. Avian Pathol. 1986, 15: 539-56.
    60. Valnio O, Ratcliffe MJ, Leanderson T. Chicken T-cell growth factor: use in the generation of a long-term cultured T-cell line and biochemical characterization. Scand J. Immunol. 1986, 23: 135-42.
    61. Lillehoj HS. Intestinal intraepithelial and splenic natural killer cell responses to eimerian infections in inbred chickens. Infect. Immun. 1989, 57: 1879-84.
    62. Lillehoj HS, Kaspers B, Jenkins MC, et al. Avian interferon and interleukin-2. A review by comparison with mammalian homologues. Poult. Sic. Rev. 1992, 4: 67-85.
    63. Choi KD, Lillehoj HS. Role of chicken IL-2 on gammadelta T-cells and Eimeria acervulina-induced changes in intestinal IL-2 mRNA expression and gammadelta T-cells. Vet. Immunol. Immunopathol. 2000, 73: 309-21.
    64. Lillehoj HS, Min W, Choi K, et al. Functional characterization of chicken cytokines homologous to mammalian IL-15 and IL-2. In schat, KA (Ed.). Recent progress in avian immunology, American Association of Avian Pathologists. Kennett Square, PA. In press.
    65. Choi KD, Lillenhoj HS, Song K.D, et al. Molecular and functional characterization of chicken IL-15. Dev. Comp. Immunol. 1999, 23: 165-77.
    66. Stepaniak JA, Shuster JE, Hu W, et al. Production and in vitro characterization of recombinant chicken intrleukin-2. J. Interferon Cytokine Res. 1999, 19: 515-26.
    67. Corbel C, Thomas JL,. Establishment of an IL-2-dependent, antigen nonspecific chicken T-cell line. Dev. Comp. Immunol. 1990, 14: 439-46.
    68. Amrani DL, Mauzy-Melitz D, Mosesson, MW. Effect of hepatocyte-stimulating factor and glucicorticouds on plasma fibronectin levels. Biochem. J. 1986, 238: 365-71.
    69. Samad F, Bergtrom G, Eissa H, et al. Stimulation of chick hepatocyte fibronectin production by fibroblast-conditioned medium is due to interleujin6. Biochim. Biophys. Actc. 1993, 1181: 207-13.
    70. Rath NC, Huff WE, Bayyari GR, et al. Identification of transforming growth factor -beta and
    
    interkeukin-6 in chicken ascites fluid. Avian Dis. 1995, 39: 382-9.
    71. Ottaviani E, Franchini A, Franceschi C. Evolution of neurondocrine thymus: studies on POMC-derived peptides, cytokines and apoptosis in lower and higher vertebrates. J. Neuroimmunol. 1997, 72: 67-74.
    72. Schneider K, Klaas R, Kaspers B, et al. Chicken interleuin-6 cDNA structure and biological properties. Eur. J. Biochem. 2001, 268: 4200-6.
    73. Mathy NL, Bannert N, Norley SG, et al. Cutting edge: CD4 is not required for the functional activity of IL-16. J. Immunol. 2000, 164: 4429-32.
    74. Center DM, Kornfeld H, Ryan TC, et al. Interleuldn16: implications for CD4 functions and HIV-1 progression. Immunol. Today. 2000, 21: 273-80.
    75. Cruikshank WW, Kornfeld H, Center DM, et al. Interleukin-16. J. Leukocyte Biol. 2000, 67: 757-66.
    76. Okamura H, Tsutsui H, Komatsu T, et al. Cloning of a new eytokine that induces IFN-γ production by T cells. Nature. 1995, 378: 88-91.
    77. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997, 386: 619-23.
    78. Ahn HJ, Maruo S, Tomura M, et al. A mechanism underlying synergy between IL-12 and IFN-γ-inducing factor in enhanced prodution of IFN-γ. J. Immunol. 1997, 159: 2125-31.
    79. Batbulescu K, Becket C, Schmitt, E, et al. IL-12 and IL-18 differentially regulate the transcriptional activity of the human IFN-γ promoter in primary CD4~+T lymphocytes. J. Immunol. 1998, 160: 3642-7.
    80. Schneider K, Puehler F, Baeuerke D, et al. eDNA cloning of biologically active chicken interkeukin-18. J. Interferon Cytokine Res. 2000, 20: 879-83.
    81. Leutz A, Datum K, Sterneck E, et al. Molecular cloning of the chicken myelomonocytic growth factor reveals relationship to interleukin-6 and granulocyte colony-stimulating factor. EMBO J. 1989, 8: 175-81.
    82. Kim IJ, Karaca K, Pertile TL, et al. Enhanced expression of cytokine genes in spleen macrophages during acute infection with infectious bursal disease virus in chickens. Vet. Immunol. Immunopathol. 1998, 61: 331-41.
    83. Xing Z, Schat KA. Expression of eytokine genes in Marek's disease virus-infected chickens and chicken embryo fibroblast cultures. Immunology. 2000, 100: 70-6.
    84. York JJ, Strom AD, Connick TE. In vivo effects of chicken myelomonocytic growth factor: delivery via a viral vector. J. Immunol. 1996, 156: 2991-7.
    85. Woldman I, Mellitzer G, Kiesliner M, et al. Stat5 involvement in the differentiation response of primary chicken myeloid progenitor cells to chicken myelomonocytic growth factor. J. Immunol. 1997, 159: 877-86.
    86. Kingsley DM. The TGF-beta and new genetic tests of function in different organisms. Genes
    
    Dev. 1994, 8: 133-46.
    87. Jakowlew SB, Mathias A, Lillehoj HS, et al. Transforming growth factor-beta isoforms in the developing chicken intestine and spleen: increase in transforming growth factor-beta 4 with Coccidia infection. Vet. Immunol. Immunolpathol. 1997, 55: 321-39.
    88. Ganderillon O, Schmidt U, Beug H, et al. TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism. EMBO J. 1999, 18: 2764-81.
    89. Mukarnoto M, Kodama H. Regulation of early chicken thymocyte proliferation by transforming growth factor-beta from thymic stromal cells and thymocyties. Vet. Immunol. Immunolpathol. 2000, 77: 121-32.
    90. Ruddle NH. Tumor necrosis factor (TNF-alpha) and lymphotoxin (TNF-beta). Curr. Opin. Immunol. 1992, 4: 327-32.
    91. Qureshi MA, Miller L, Lillehonj HS, et al. Establishment and characterization of a chicken mononuclear cell line. Vet. Immunol. Immunopathol. 1990, 26: 237-50.
    92. Klasing KC. Avian leukocytic cytokines. Poult. Sci. 1994, 73: 1035-45.
    93. Rautenschlein S, Subramanian A, Sharma JM. Bioactivities of a tumor necrosis-like factor released by chicken macrophages. Dev. Comp. Immunol. 1999, 23: 629-40.
    94. Onagbesan OM, Mast J, Goddeeris B, et al. Effect of TNF-alpha on LH and IGF-Ⅰ modulated chicken granulose cell proliferation and progesterone production during follicular development. J. Reprod. Fertil. 2000, 120: 433-42.
    95. Fu YX, Chaplin DD. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 1999, 17: 399-433.
    96. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000, 12: 121-7.
    97. Sick C, Schneider K, Staeheli P, et al. Novel chicken CXC and CC chemokines. Cytokine. 2000, 12: 181-6.
    98. Lowenthal JW, Lambrecht B, van den Berg TP, et al. Avian cytokines—the natural approach to therapeutics. Dev. Comp. Immunol. 2000, 24: 355-65.
    99. Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type Ⅰ interferon in vivo. Science. 1996, 272: 1947-50.
    100. Le Bon A, Schiavooni G, D'agostino G. et al. Type Ⅰ interferons potently enhance humoral immunity and can promote iostype switching by stimulating dendritic cells in vivo. Immunity. 2001, 14: 461-70.
    101. Kemal K, Jagdev MS, Barbara J.W, et al. Recombinant fowlpox viruses co-expressing chicken type Ⅰ IFN Newcastale disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chicken following in ovo or posthatch administration of recombinant viruses. Vaccine. 1998, 16: 1496-503.
    
    
    102. Zhou H, Buitehuls AJ, Weigend S, et al. Candidate gene promoter polymorphisms and antibodies responses kinetics in chickens: Interferon-γ, lnterleukin-2 and Immunogiobulin light chain. Poultry Science. 2001, 80: 1679-89.
    103. Lowenthal JW, O'Neil TE, Broadway M, et al. Coadministration of IFN-gamma enhances antibody responses in chickens. J Interferon Cytokine Res. 1998, 18: 617-22.
    104. Lilleboj HS, Lillehoj, EP. Avian coccidiosis, a review of acquired intestinal immunity and vaccination strategies. Avian Dis. 2000, 44: 408-25.
    105. Min W, Lillehoj HS. Burnside J, et al. Adjuvant effect of IL-1β, IL-2, IL-8, IFN-α, IFN-γ, TGF-β 4 and Lymphotactin on DNA vaccination against Eimeria acervulira. Vaccine. 2002, 20: 267-74.
    106. Schijns VECJ, Weining KC, Nuijten P, et al. Immunoadjuvant activities of E. coli and plasmid expressed recombinant chicken IFN-α/β in 1-day and 3-week old chickens. Vaccine. 2000, 18: 2147-54.
    107.孙建和,陆苹.禽细胞因子的新功能——免疫治疗和疫苗佐剂.生物工程学报.2003,02.141-146.
    108. Rautenschlein S, Sharma JM, Winslow B J, et al. Embryo vaccination of turkeys against Newcastle disease infection with recombinant fowlpox virus constructs containing interferons as adjuvants. Vaccine. 1999, 18: 426-33.
    109.宋晓华,金红,李嫒等.重组白细胞介素2的抗病毒机制及在兽医中的应用.预防兽医学进展.2000,3:1-5.
    110. Hu W, Kolodsick JE, Stepaniak JA et al. Enhanced humoral immune responses to Marks disease virus glycoprotein B by co-injection of recombinant chicken IL-2.6th Avian Immunology Research Group meeting, Ithaca, NY[Abstract]. 2001.
    111.洪云平.细胞因子及期在兽医上的应用.预防兽医学进展.2000,2:4-6.
    112.王克坚,殷震.白细胞介素类细胞因子的免疫佐剂作用.预防兽医学进展.2000,2:30-3.
    113. Leong KH, Ramsay AJ, Boyle DB, et al. Selective induction of immune response by cytokines co-expressed in recombinant Fowlpox Virus. J. Virol. 1994, 68: 8125-30.
    114. Ramsay AJ, Husband AJ, Ramshaw IA, et al. The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science. 1994, 264: 561-3.
    115. Larsen DL, Dybdahl-Sissoko N, Mcgregor MW, et al. Co-administration of DNA encoding interleukin-6 and hemagglutinin confers protection from Influenza virus challenge in mice. J. Virol. 1998, 72: 1704-8.
    116. Lee SW, Youn JW, Seong BL, et al. IL-6 induces long-term protective immunity against a lethal challenge of influenza virus. Vaccine. 1999, 17: 490-6.
    117. Vancott JL, Franco MA, Greenberg HB, et al. Protective immunity to Rotavirus shedding in the absence of interleukin-6: Th1 cells and immunoiobulin A develop normally. J. Virolo. 2000, 74: 5250-6.
    
    
    118. Lowenthal JW, O'Neil TE, David A, et al. Cytoldne therapy: a natural alternative for disease control. Vet. Immunol. Immunopathol. 1999, 72: 183-8.
    119. Marcus PI, van der Heide L, Sekellick MJ. Interferon action on avian viruses. Ⅰ. Oral administration of chicken interferon-α ameliorates Newcastle disease. J. Interferon Cytokine Res. 1999, 19: 881-5.
    120. Jarosinski KW, Jia W, Sekellick MJ, et al. Cellular responses in chickens treated with IFN-α orally with recombinant Marks disease virus expressing IFN-α. J. Interferon Cytokine Res. 2001, 21: 287-96.
    121. Plachy J, Weining KC, Kremmer E, et al. Protective effect of type Ⅰ and type Ⅱ interferons toward Rouse Sarcoma Virus-induced tumors in chickens. Virology. 1999, 256: 85-91.
    122. Miyamoto T, Lillehoj HS, Sohn EJ, et al. Production and Charaterization of monoclonal antibodies detecting chicken intedeukin-2 and the development of an antigen capture enzyme-linked immunosorbent assy. Vet. Immunol. Immunopath. 2001, 80: 245-57.
    123. Djeraba A, Musset E, Lowenthal JW, et al. Protective effect of avian myelomonocytic growth factor in infection with Marek's disease virus. J. Virol. 2002, 76: 1062-70.
    124. Yun CH, Lillehoj HS, Choi LD. Eimeria tenella infection induces local gamma interferon production and intestinal lymphocyte subpopulation changes. Infect. Immunol. 2001, 68: 1282-8.
    125. Laurent F, Mancaddola R, Lacroix S, et al. Analysis of chicken mucosal immune response to Eimeria tennella and Eimeria macima infection by quantitative reverse transcription-PCR. Infect. Immunol. 2001, 69: 2527-34.
    126. Choi KD, Lillehoj HS. Role of chiclen IL-2 on gamma-delta T-cell and Emieria acerllina-induced changes in intestinal IL-2 mRNA expression and gamma-delta T-cells. Vet. Immunol. Immunopathol. 2000, 73: 309-21.
    127. Yun CH, Lillehoj HS, Zhu J, et al. Kinetic differences in intestinal and systemic interferon-gamma and antigen-specific antibodies in chickens experimentally infected with Emieria maxima. Avian Dis. 2000, 44: 305-21.
    128. Lynagh GR, Bailey M, Kaiser P. Interleukin-6 is produced during both murine and avian Eimeria infections. Vet. Immunol. Immunopathol. 2000, 76: 89-102.
    129. Morgan RW, Sorer L, Anderson AS, et al. Induction of host gene expression following infection of chicken embryo fibroblasts with oncongenic Marke's disease virus. J. Virol. 2001, 75: 533-9.
    130. Kaiser P, Rothwell L, Galyov EE, et al. Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella entertidis and Salmonella gallinarum. Microbiology. 2000, 146: 3217-26.
    131. Novak R, Ester K, Savic V, et al. Immune status assessment by abundance of IFN-α and IFN-γ mRNA in chicken blood. J. Interferon Cytokine Res. 2001, 21: 645-51.
    132. Sekellick M J, Ferrandino AF, Hopkins DA, et al. Chicken interferon gene: cloning, expression, and analysis. J. Interferon Res. 1994, 14: 71-9.
    
    
    133. Klasing KC, Peng RK. Soluble type-Ⅰ interleukin-1 receptor blocks chicken IL-1 activity. Dev. Comp. Immunol. 2001, 25: 345-52.
    134. Leutz A, Beug H, Graf T. Purification and characterization of cMGF, a novel chicken myelomonocytic growth factor. EMBO J. 1984, 3: 3191-7.
    135. Plachy J, Weining KC, Kremmer E, et al. Protective effects of type Ⅰ and type Ⅱ interferons toward Rous sarcoma virus-induced tumors in chickens. Virology. 1999, 256: 85-91.
    136. Serotec Laboratories, Oxford English (http://www.serotec.com)
    137. Siatskas C, Lowenthal JW, Obranovich TD, et al. Avian cytokines. In: Immunology Methods Mannual. Ⅰ. Lefkovits (ed) San Diego: Academic Press, pp. 2255-68.
    138. Lambrecht B, Gonze M, Meulemans G, et al. Production of antibodies against chicken interferon-gamma: demonstration of neutralizing activity and development of a quantitative ELISA. Vet Immunol Immunopathol. 2000, 74: 137-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700