三种山茶属植物光合速率的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用Li-6400便携式光合作用测定仪,研究了普通油茶、多齿红山茶、扁果红山茶田间条件下的光合特性,光响应、CO2响应;并用spss软件对普通油茶、多齿红山茶、扁果红山茶光合速率与生理、环境因子进行相关性分析;同时对三种山茶属植物的的枝条不同叶位、不同冠层、不同方位、不同栽植密度的叶片光合速率进行了比较,结果表明:
     1.普通油茶、多齿红山茶、扁果红山茶光合速率日变化均为双峰曲线,首峰值大于次峰值,且有明显的“午休”现象。
     2.气孔导度的变化趋势基本与净光合速率的变化趋势成正相关,而胞间CO2浓度的日变化与净光合速率成负相关,蒸腾速率的日变化基本为单峰曲线,最高值多出现在13点前后。
     3.影响普通油茶日变化的主要因子是气孔导度、胞间CO2浓度以及光合有效辐射;影响多齿红山茶日变化的主要因子是蒸腾速率、气孔导度、胞间CO2浓度、光合有效辐射以及气温;影响扁果红山茶日变化的主要因子是气孔导度、胞间CO2浓度以及光合有效辐射。
     4.普通油茶的光补偿点48μmolm-2s-1,光饱和点1528μmolm-2s-1;CO2补偿点89μmolCO2mol-1,CO2饱和点1255μmolC02mol-1。
     多齿红山茶的光补偿点39μmolm-2s-1,光饱和点1399μmolm-2s-1,CO2补偿点114μmolCO2mol-1,CO2饱和点1240μmolCO2mol-1。
     扁果红山茶的光补偿点31μmolm-2s-1,光饱和点1286μmolm-2s-1;CO2补偿点102μmolC02mol-1,CO2饱和点1251μmolC02mol-1。
     5.三种山茶属植物枝条不同叶位的叶片其Pn变化有一定规律,中部成龄叶Pn最大,基部和梢部叶片Pn降低;树冠下层的叶片Pn值显著地低于中层和上层;树体不同方位(东、南、西、北四个方向的外围)的叶片Pn大小依次为南面>东面>西面>北面。
     6.不同栽植密度条件下的普通油茶的光合速率有着显著性的差异。在影响普通油茶净光合速率的关键因子中,疏植条件下的普通油茶的各项数据均要优于密植条件下的普通油茶
With the international advance Li-6400 portable photo synthesis, we studied photosynthetic characteristics, light response characteristics,CO2 response characteristics of Camellia oleifera Abel,C. polyodonta How ex Hu and C.compressa Chang et Wen ex Chang,and the Correlations in Photosynthetic rate between environment and physiolgical ecology parameters factors were also studied by SPSS.The Net photosynthetic rate of different positions, canopy layers and directions of leave were compared and the main results were obtained as follows:
     1. Diurnal change in net photosynthetic rate(Pn) in Camellia oleifera Abel, C. polyodonta How ex hu and C.compressa Change t Wen exchange was a "none-drop" bimodal curve.The first peak is more than the second,and there was obvious "midday rest" performance in the waving change.
     2. Diurnal change of stomatal conductivity (cond) are positively interrelated with net photosynthetic rate(Pn), while intercellular CO2 concentration(Ci) are negatively interrelated with net photosynthetic rate(Pn).Diurnal change of transpiration rate (tr)showed only one peak. The peak appeared at 13:00.
     3.Analytic results show that stomatal conductivity (cond)concentration(Ci) and photosynthetic active radiation(PAR) are main influencing factors of net photosynthetic rate in Camellia oleifera Abel;
     Transpiration rate (tr), stomatal conductivity (cond),intercellular CO2 concentration(Ci), photosynthetic active radiation(PAR) and Tleaf are main influencing factors of net photosynthetic rate in C. polyodonta How ex Hu;
     Stomatal conductivity (cond),intercellular CO2 concentration(Ci) and photosynthetic active radiation(PAR) are main influencing factors of net photosynthetic rate in C.compressa Chang et Wen ex Chang.
     4. Camellia oleifera Abel's light compensation points are at 48μmolm-2s-1,light saturation points at 1528μmolm-2s-1,CO2 compensation points are at 89μmolCO2mol-1, CO2 saturation points at 1255μmolCO2mol-1;
     C. polyodonta How ex Hu's light compensation points ark at 39μmolm-2s-1,light points at 1399μmolm-2s-1:CO2 compensation points are at 114μmolCO2mol-1, CO2 saturation points at 11μmolCO2mol-1;
     C.compressa Chang et Wen ex Chang's light compensation points are at 31μmolm-2s-1,light saturation points at 1286μmolm-2s-1;CO2 compensation points are at 102μmolCO2mol-1, CO2 saturation points at 1251μmolCO2mol-1:
     5.On the same branch,the net photosynthetic rate(Pn) of different leaf position had a waving change, The net photosynthetic rate(Pn) of middle leaves was more than the bottom and the top, the net photosynthetic rate(Pn) of the bottom sites' leaf was remarkable lower than the middle and top, from the different direction of the south、east、west and north,the net photosynthetic rate was from the maximize one to the minimize.
     6.The Camellia oleifera Abel's Pn under different inseminate density have remarkable difference, and the data of Camellia oleifera Abel in loose planting is better than compact planting's in important physiological and environment factors.
引文
[1]何方,胡芳名主编.经济林栽培学(第二版)[M].北京:中国林业出版社.2004.1-8,326-339.
    [2]D.0.霍尔,K.K.拉奥著.光合作用(第二版)[M].北京:科学出版社.1984.1-9.
    [3]许大全.光合作用效率[M].上海:上海科技出版社,2000.1-15,29-67,99-194.
    [4]叶乃兴.茶树的叶色、光合色素与单叶净光合速率的相关分析[J].茶叶科学简报,1990(2).
    [5]杨建民,王中英.短枝型与普通型苹果叶片光合特性比较研究[J].中国农业科学,1994,27(4):31-36.
    [6]胡晓红,李志兵,陈晓莲,等.叶面施肥对苹果梨光合速率及叶绿素含量的影响[J].内蒙古农业科技,1995(5):12-13,16.
    [7]林金科,熊发顺,钟天英,等.适制乌龙茶品种叶绿素含量与净光合速率关系探讨[J].福建茶叶,1998(4):11-13.
    [8]刘弘,李保印,马杰,等.紫叶桃·绿叶桃光合特性及其影响因素研究[J].安徽农业科技,2004,32(2):318-320.
    [9]陈军,张军,雷忻,等.银杏与珊瑚属光合及蒸腾特性研究[J].延安大学学报,2004,23(1):75-78.
    [10]潘瑞炽,董愚得编著.植物生理学[M].北京:农业出版社,1983.8-52.
    [11]曾广文编著.植物生理学[M].成都:成都科学技术大学出版社,1998.10-39.
    [12]刘振岩,李震三编著.山东果树[M].上海:上海科学技术出版社,2000.16-43.
    [13]魏书銮,于继洲,宣有林,等.核桃叶片的叶绿素含量与光合速率关系的研究[J].北京农业科学,1994,12(5):31-33.
    [14]陶汉之,王镇恒.我国茶树光合作用研究进展及发展趋势[J].茶叶科学,1995,15(1):1-8.
    [15]阚文靖,苏冬梅,邱运亮,等.桉属七个树种光合作用特性的研究[J].热带林业,1995,23(2):75-81.
    [16]刘成连,战吉成,原永兵,等.水杨酸对苹果叶片光合作用的影响[J].园艺学报,1999,26(4):261-262.
    [17]苏冬梅,寥飞勇.夏季自然高温对桉树光合速率和暗呼吸速率的影响[J].生态科学,2001,20(1,2):21-24.
    [18]易干军,姜小文,霍合强,等.琯溪蜜袖光合特性的研究[J].园艺学报,2003,30(5):519-524.
    [19]Bjorkman O. Responses to different quantum flax densities [A]. In:Lange 0 L, Nobel P S, Osmond C B, Ziegler H (eds). Encyclopedia of plant Physiology [C]. Ns, Vol.12A:Interaction with the physical Environment. New York:Spring-Verlag,1981,57-107.
    [20]孙谷畴,赵平,曾小平,等.柚树叶片光合作用对补增UV-B辐射的响应[J].广西植物,2001,21(2):72-76.
    [21]郑炳松,金爱武,程晓建,等.雷竹光合特性的研究[J].福建林学院学报,2001(4):359-362.
    [22]郭延品,陈屏昭,张良通,等.不同供磷水平对温州蜜柑叶片光合作用的影响[J].植物营养与肥料学报,2003,14(3):331-335.
    [23]孙谷畴,曾小平,赵平,等.空气CO2增高条件下荔枝叶片光合作用和超氧自由基产率[J].应用生态学报,2003,14(3):331-335.
    [24]张希财,贺军虎,王永熙.渭北旱区几种柿树光合特性及其适应的初步研究[J].陕西农业科学,2003(2):15-16,65.
    [25]康孟利,吴姗,任明兴,等.嫁接茶树及其接穗和砧木品种冬季光合日变化[J].茶叶,2003,29(4):202-205.
    [26]吴月燕.高湿和弱光对葡萄叶片某些光合特性的影响[J].园艺学报,2003,30(4):443-445.
    [27]Andrews T J, Lorimer G M. Rubisco:Structure, mechanism and prospects for improvement. In:Hatch M D, Boardman N K(eds) [A]. The Biochemisty of plants Vol 10. New York:Academic Press,1987,131-218.
    [28]Woodrow I E,Berry J A. Enzymatic regulation of photosynthetic CO2 fixation in C3 plants [J].Annu Rev plant Physiol Plant Mol Biol,1988,39:533-594.
    [29]Bermacchi C J, singsaas E L, Pimentel C, Portis A R, Long S P. Improved temperature response functions for models of Rubisco-limited photosynthesis [J]. Plant cell Environ,2001,24:253-259.
    [30]Stitt M, Schulze E D. Does Rubisco control the rate of photosynthesis and plant growth An exercise in molecular ecophysiology [J]. Plant cell Environ,1994,17:465-487.
    [31]赵毓桔.细胞分裂素的作用机理.见:余叔文主编.植物生理与分子生物学[M].北京:科学出版社,1992:340-353.
    [32]张华敏,刘愚,沈允钢.小麦叶绿体中细胞分裂素结合蛋白的功能[J].植物生理学报,1994,20(4):373-378.
    [33]李丙智,郭立,王林忠,等.TDZ对苹果叶片光合功能、开花座果及果实发育的影响[J].北京农学院学报,1999,14(3):11-14.
    [35]刘志民,马焕普,陈华君,等.PDJ对苹果属植物光合作用、内源ABA含量影响初探.园艺学报,1999,26(2):87-90.
    [36]Hartung W. The site of action of abscisic acid at the guard cell plasmalemma of valerianella locusta [J]. Plant cell and Environment,1983,6:427-428.
    [37]Lachno D R, Baker D A. Stress induction of abscisic acid in maize roots [J].Physiologia Plantarum,1986,68:215-221.
    [38]Zhang J, Daries W J. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil [J]. Plant cell and Environment,1989,12:78-81.
    [39]Zhang J, Schurr U, Davies W J. Control of stomatal behaviour by abscisic acid which apparently originatesin the roots [J]. Journal of the Environmental Botany,1987,38:1174-1181.
    [40]文晓鹏,杨胜学,罗充,等.板栗光合生理研究Ⅰ.板栗品种的光合性能及影响因子[J].贵州农学院学报,1994,13(2):39-44.
    [41]易干军,夏仁学,张庭冲,等.田间条件下板栗光合作用的研究[J].仲恺农业技术学院学报,1997,10(1):51-55.
    [42]林金科,詹梓金,赖明志.铁关音茶树的光合特性[J].茶叶科学,1999,19(1):35-40.
    [43]寥镜思,刘殊,陈清西,等.龙眼光合特性及其影响因子的研究[J].园艺学报,1996,23(1):1-7.
    [44]谢深喜,罗先实,吴月嫦,等.梨树叶片光合特性研究[J].湖南农业大学学报,1996,22(2):134-138.
    [45]刘应迪,李菁,石进校.美味猕猴桃净光合速率日变化与光合特性的初步研究[J].生命科学研究,1999,3(4):344-352.
    [46]白仲奎.板栗幼树叶片光合速率差异性研究[J].河北果树,1996,30(3):12-13.
    [47]Takagi N and Inoue J. Seasonal changes in berry growth and photosynthetic rate of leaves of Muscat of Alexan driagrapes [J].J.Japan. Soc. Hort. Sci,1982,51 (3):286-292.
    [48]Alleweldt G,Eibach RandRuhl E. Investigations on gas exchange in grapevine I. Influence of temperature, leaf age and time of day on net photosynthesis and transpiration. Horticultural Abstracts [J],1983,53:205.
    [49]陈兰华,等.甜橙光合性能的研究[J].西南农业大学学报,1986,8(4):135-140.
    [50]Frank Kappel and Flore J A. Effect of shade on photosynthesis, specific leaf weight, leaf chlorophyll content and morphotogy of young peach trees [J]. J. Amer. oc. Hort. Sci,1983,108(4):541-544.
    [51]John A Barden. Apple leaves, their morphotogy and photosynthetic potential [J]. Hortscience,1978,13(6):644-646.
    [52]杨万镒,等.密植苹果树光合速率研究[J].园艺学报,1988,(1):7-12.
    [53]张祝平,招晓东,叶耀雄,等.荔枝的光合特性[J].应用与环境生物学报,1995,1(3):226-231.
    [54]李新国,许大全,孟庆伟.银杏叶片光合作用对强光的响应[J].植物生理学报,1998,24(4):354-360.
    [55]林金科.茶树光合作用的年变化[J].福建农业大学学报,1999,28(1):38-42.
    [56]郭连旺,沈允刚,武海,等.杜仲光合特性的研究[J].植物学报,1996,38(4):283-286.
    [57]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Ann Rev Plant Physiol,1982,33:317-345.
    [58]Francis B L. Carbon dioxide and light responses of photosynthesis on cow-pea and pigeon pea during water deficit and recovery [J]. Plant Physiol,1987,85(4):990-995.
    [59]Wood B W. Fruiting affects photosynthesis and senescence of pecan [J]. J. Amer-Sov. Hort. Sci,1988,113(3):432-436.
    [60]彭永宏,章文才.猕猴桃的光合作用[J].园艺学报,1994,21(2):151-157.
    [61]周睿,夏宁,束怀瑞.苹果果实对叶片光合作用的调节[J].园艺学报,1995,22(3):293-294.
    [62]Wunsche J N, Palmer J W, Greer D H. Effect of crop load on fruiting and gas-ei change characteristics of Braeburn/M26 apple trees at full canopy [J]. Journal of the American society for Horticultural science, 2000,125(1):93-99.
    [63]冉辛拓,张新生.不同负载量对苹果光合速率及干物质生产的影响[J].华北农学报,2003,18(院庆专辑):131-132.
    [64]刘庆忠,刘鹏,赵红军,等.同源四倍体皇家嘎啦苹果的生物学及光合生理特性研究[J].中国农业科学,2002,35(12):1573-1578.
    [65]De Jon J M. CO2 assimilation characteristics of five Prunus tree fruit species [J]. Amen Soc. Hort. Sci,1983,108(2):303-307.
    [66]阚文靖,苏冬梅,邱运亮,等.桉属七个树种光合作用特性的研究[J].热带林业,1995,23(2):75-81.
    [67]杨吉华,王华田,张光灿,等.花椒光合特性及生物量分布规律的研究[J].林业科技通讯,1996(12):26-27.
    [68]彭方仁,杨小虎,黄宝龙.密植板栗树净光合作用生理生态的初步研究[J].南京林业大学,1998,22(3):6-10.
    [69]张国良,安连荣,代焕琴,等.柿幼树光合特性的研究[J].河北农业大学学报,2000,23(3):51-53,68.
    [70]杨文英,钱翌,刘天齐,等.新疆英吉沙县4种扁桃果树叶片光合速率及相对含水量和细胞膜透性的比较研究[J].新疆农业大学学报,2002,25(4):5-8.
    [71]谢志兵,杨清平,黄云霞,等.猕猴桃叶片光合特性初探[J].林业科技,2003,28(3):49-50.
    [72]刘国琴,樊卫国,何篙涛,等.16个柑桔品种的光合特性[J].种子,2003,(5):12-14.
    [73]刘元铅,王开芳,杜华兵,等.11个李品种光合速率及蒸腾强度测试研究[J].山东林业科技,2004,(1):15-16.
    [74]刘鹏,刘庆忠,赵红军,等.核桃光合作用特性的初步研究[J].落叶果树,2003,(4):1-3.
    [75]陶俊,陈鹏,佘旭东.银杏光合特性的研究[J].园艺学报,1999,26(3):157-160.
    [76]束怀瑞.果树栽培生理学[M].北京:农业出版社,1995,14-18.
    [77]何俊萍,高志奎,王如英,等.香椿苗期光合作用特性的研究[J].园艺学报,1996,23(2):205-206.
    [78]游恺哲.喷灌对番荔枝光合作用的影响[J].园艺学报,1999,26(6):400-401.
    [79]Dick J K.1987, Gas exchange in orchard grow kiwifruit vines [M]. Msc thesis, University of Waikate, New Zealand.21-32.
    [80]Lai R.1987, Leaf fruit relationship in Kiwifurit. Ph. D thesis [M], Msaaey University, New Zealand.10-35.
    [8l]Grant J A and Ryugo K.1984, Influence of within-canopy shading on net photosynthetic rate, stomatal conductance and chlorophyll content of kiwifruit leaves [J]. Hortsci,19(6):834-836.
    [82]李六林,杨佩芳,田彩芳,等.树莓光合特性的研究[J].园艺学报,2003,30(3):314-316.
    [83]彭方仁,黄宝龙.密植板栗树光合特性的研究[J].浙江林学院,1997,14(2):151-154.
    [84]潘晓云,曹琴东,王根轩.扁桃与桃光合作用特性的比较研究[J].园艺学报,2002,29(5):403-407.
    [85]Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher planter[J]. Ann Rev Plant Phisiol,1980,31:491-543.
    [86]Ball J T, I E Woodrow and J A Berry. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, In:" progress in photosynthesis research" (J. Bigginsed) [M].Vol 4,Mortinus nijhoff, Publishers, New York,1986:221-224.
    [87]郑有飞,颜景义,万长建,等.小麦作物光合生产模拟研究[J].南京气象学院学报,1995,18(4):566-571.
    [88]Lieth J H and C C Pasion. A model for net photosynthesis of rose leaves as a function of photosynthetically active radiation, Leaf temperature and leaf age[J]. J. Amer. Soc. Hort. Sci,1990,115(3): 486-491.
    [89]徐小牛,李宏开.结香光合特性的研究[J].经济林研究,1994,12(2):21-24.
    [90]姜小文,张秋明,易干军,等.四季柚的光合特性研究[J].湖南农业大学学报,2003,29(5):397-401.
    [91]路丙社,白志英,董源,等.阿月浑子光合特性及其影响因子的研究[J].园艺学报,1999,26(5):287-290.
    [92]Lakso A N, Musselman R C. Effects of cloundiness on interior diffuse light in apple trees [J]. Am. Soc. Hort. Sci19,76:642-644.
    [93]Sage R F, Reid C D. Photosynthetic response mechanisms to environmental change in C3 plants. In:Wilkinson R E(ed)[A]. Plant-Enviroment Interactions New York:Marcel Dekker,1994:413-499.
    [94]Van Hasselt P R. Photooxidation of leaf pigment in cucumis leaf discuss during chilling [J].Acta Bot Neerl,1972,21:539-543.
    [95]Van Hasselt P R, Van Berlo H. Photooxidation. damage to the photosynthetic apparatus during chilling [J].Physiol plant,1980,50:52-56.
    [96]张放,唐小蕴.低温胁迫下对处于不同水分状态柑桔光合作用的影响[J].浙江大学学报(农业与生命科学版),2001,27(4):393-397.
    [97]王文江.果树光合作用研究概况[D].1990,4.
    [98]Ebukanson G J. Retardation of chloroplast ATPase activity in maize seedling by drought stress [J].Plant Physiol,1987,129:187-189.
    [99]Gimenez C, Mitchell V G; Lawlor D W. Regulation of photosynthetic rate of two sunflower hybrids under water stress [J]. Plant Physiol,1992, 98:516-524.
    [100]Speer M, Schmidt J E, Kaiser W M. Effect of water stress on photosynthesis and relater processes.In:Harwood J L,Walton T J(eds)[A]. Plant Membranes-Structure, Assembly and Function. London:The Biochemical Society,1988,209-221.
    [101]Bowes G. Facing inevitable:plants and increasing atmospheric CO2. [J].Annn Rev plant physiol Plant Mol Biol,1993,44:309-332.
    [102]Drake B q Gonzalez-Meler M A, Long S P. More efficient plant:a consequence of rising atmospheric CO2 [J].Annn Rev plant physiol Plant Mol Biol,1997,48:609-639.
    [103]Xu D-Q,Gifford R M, Chow W S. Photosynthetic acclimation in pea and Soybean to high atmospheric CO2 partial pressure [J]. Plant Physiol,1994,106; 661-671.
    [104]Wulff R D,Strain B R. Effect of CO2 enrichment on growth and photosynthesis in Desmodium Paniculatum [J].Can J Bot,1982,60: 1084-1091.
    [105]Peet M M, Huber S C, Patterson D T. Acclimation to high CO2 in monoecious cucumbers Ⅱ:Carbon exchange rates, enzyme activities, and starch and mutrient concentrations [J]. Plant Physiol,1986,80:63-67.
    [106]Delucia E H, Sasek T W Strain B R. Photosynthetic inhibition after long-term exposure to elevated. levels of atmospheric carbon dioxide [J]. Photosynth Res,1985,7:175-184.
    [107]Terry N, Tao I M. Nutritions and photosynthesis:iron and phosphorus as case studies. In plant growth interactions with nutrition and environment. Eds. Porter J R & Lawlor D W [J]. Canbridge University press,1991,54-59.
    [108]Fredeen A L, Raab T K, Rao I M, et al. Effects of phosphorus nutrition on photosynthesis in Glycine Max L. Merr [J]. planta,1990,181.
    [109]Rao I M, Arulanantham A R, Terry N. Leaf phosphate status, photosynthesis and carbon partitioning in sugar beat II. Diural changes in sugar phosphates, adenylates and nicotinamide nucleotides [J]. Plant Physiol,1989,90:820-826.
    [110]Rao I M, Terry N. Leaf phosphate status and photosynthesis in vivo in sugar beet I:changes in growth, photosynthesis and Calvin cycle enzymes [J]. Plant physiol,1989,90:814-819.
    [111]李延,刘星辉,庄卫民.植物Mg素生理的研究进展[J].福建农业大学学报,2000,29(1):74-80.
    [112]Morales F, Abadia A, Belkhodia R, Abada J. Iron deficiency-induced changes in the photosynthetic pigment composition of field-grown pear (Pyrus communis L) leaves [J]. Plant cell Environ,1994,17:1153.
    [113]Vassiliev I R, Kolber Z, Wyman K D,Mauzerall D, Shukla V K, Falkowski P G Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertiolecta [J]. Plant Physiol,1995, 109:963-972.
    [114]Darinsz Swietlik,Korcak R F, Miklos Fanst. Physiological and nutrition effects of K-Pretreatmeat and kcl sprays on water stressed and unstressed apple seedlings [J]. J. Amer. Soc. Hort. Sci,1982, 107(4):669-672.
    [115]Darinsz Swietlik, Korcak R F, Miklos Fanst. Effect of mineral nutrient sprays on photosynthesis and stomatal opening of water stressed and unstressed apple seedling II:Potassium sulfate sprays [J]. J. Amer. Soc. Hort. Sci,1982,107 (4):568-572.
    [116]邓义才,倪耀源,陈乃荣.钾对荔枝光合作用和呼吸作用的影响[J].华南农业大学学报,1994,15(4):80-84.
    [117]刘成明,秦煊南.铁锰元素对温州蜜柑光合生理的影响及营养诊断研究[J].西南农业大学学报,1996,18(1):29-33.
    [118]李延,刘星群,庄卫民.缺镁对龙眼光合作用的影响[J].园艺学报,2001,28(2):101-106.
    [119]Merwin I A, Stiles W C. Orchard groundcover management; impacts on apple tree growth and productivity and soil nutrient availability and uptake [J]. J.Amer. Soc.Hort.Sci,1994,119:216-222.
    [120]彭永宏,章文才.栽培方式对猕猴桃叶幕微气候与光合特性的影响[J].华中农业大学学报,1994,13(2):175-182.
    [121]Schechter I,Proctor JTA,Elfving DC.Apple fruit removal and limb girdling affect fruit and leaf characteristics [J]. J. Amer Soc. Hort. Sci,1994,119(2):157-162.
    [122]贾梯.矮化砧苹果树叶片构造及光合作用的研究[J].北京农学院学报,1995,10(20):23-28.
    [123]姜小文,易干军,张秋明.果树光合作用研究进展[J].湖南环境生物职业技术学院学报,2003,9(4):302-308.
    [124]周慧芳,郭延平,林建勋,等.NaHS03对枇杷和毛叶枣叶片光合速率的促进作用[J].果树学报,2003,20(3):239-241.
    [125]胡宏伟,郭志华,王峥峰,等.稀土元素对咖啡叶绿素和光合强度的影响[J].生态科学,1998,17(1):10-14.
    [126]李凯荣,张胜利,李晓军.天然油菜内酯对核桃叶片水分和光合速率的影响[J].园艺学报,2003,30(6):715-718.
    [127]王乃江,赵忠,李鹏,等.天然芸苔素内酯对大扁杏光合作用和抗旱性的影响[J].水土保持研究,2000,7(1):89-92.
    [128]Galston A W, Kant-sawhney R. Polyamine in plant physiology [J]. Plant Physiol,1990,94:406-410.
    [129]刘成连,战吉兵,原永兵,等.水杨酸对苹果叶片光合作用的影响[J].园艺学报,1999,26(4):261-262.
    [130]吕芳德,徐德聪,潘晓杰.果树光合作用的研究进展[J].湖南林业科技,2003,30(3):34-38.
    [131]温商霖,刘英军.葡萄田间光合作用的研究[J].园艺学报,1989,16(3):168-172.
    [132]杨建民,张林平,张国良,等.大石早生李幼树光合特性研究[J].河北农业大学学报,1998,21(2):34-38.
    [133]张玉洁.香椿幼树光合作用及其影响因子研究[J].林业科学研究,2002,15(4):432-436.
    [134]张国良,王文凤,杨建民,等.骆驼黄杏幼树的光合特性[J].果树科学,1999,16(3):224-226.
    [135]扈惠灵,韩德全,周俊国.山楂光合作用的研究[J].河南职业技术师范学院学报,1997,25(2):36-40.
    [136]张盹明,王继和,马全林,等.干旱沙区2种梨树光合特性的研究[J].西北植物学报,2001,21(1):94-100.
    [137]王红霞,张志华,玄立春.果树光合作用研究进展[J].河北农业大学学报,2003,26(增刊):49-52.
    [138]吕忠恕.果树生理[M].上海:上海科学技术出版社,1982.21-86.
    [139]Schulze E D,Hall A E. Stamatal responses,water loss and CO2 assimilation rates of plants in contrasting environments. In:Lange 0 L, Nobel P S, Osmond C B, Ziegler H(eds) [A]. Physiological Plant Ecology Ⅱ. Encycl Plant Physiol(NS) Vol 12B. Berlin Heideberg:Springer-Verlag,1982,181-230.
    [140]牛洪斌,白润娥,张宪.水分胁迫对欧李光合速率日变化的影响[J].湖北民族学院学报(自然科学版),2000,18(2):15-17.
    [141]阮成江,李代琼.半干旱黄土丘陵区沙棘的光合特性及其影响因子[J].植物资源与环境学报,2000,9(1):16-21.
    [142]娄利华,罗韧,杨清钰.香桂、元宝枫、银荆光合特性研究[J].四川林业科技,2001,22(2):67-70.
    [143]黄勇.绿竹种源的光合特性研究[J].福建林业科技,2003,30(3):50-53,72.
    [144]王庆江,温陟良,贾彦丽.赞皇大枣树叶片光合特性的研究[J].河北农业大学学报,2002,25(增刊),120-121.
    [145]蔡楚雄,邓雄,曹洪麟,等.8个芒果品种的光合作用比较研究[J].广东农业科学,2003(2):13-16.
    [146]彭方仁,杨小虎.银杏幼苗光合特性的研究[J].江苏林业科技,1998,25(2):12-14,25.
    [147]文晓鹏,罗允,李磊,等.影响板栗田间净光合的主要因子[J].西南农业学报,1999,12(3):107-111.
    [148]郭卫东,李嘉瑞.猕猴桃光合产物输出与分配规律的研究[J].园艺学报,1995,22(3):240-244.
    [149]胡仕碧,赵强.巨峰葡萄开花前至落果期14C-光合产物的运转分配及与落花结果的关系[J].河北农业大学学报,1997,20(4):55-60.
    [150]陈俊伟,张上隆,张良诚,等.柑橘果实遮光处理对发育中的果实光合产物分配、糖代谢与积累的影响[J].植物生理学报,2001,27(6):499-504.
    [151]刘平,温陟良,彭士琪,等.库-源关系对枣树14C-光合产物分配的影响[J].林业科学,2003,39(4):37-42.
    [152]温陟良,张良诚,陈志辉,等.环剥及外源激素对柑桔光合产物运转、分配的影响[J].河北农业大学学报,1997,20(3):67-73.
    [153]Grappadelli L C, Costa G, Caruso T, Marcom L D, etal. Relationship between centres of mobilization and the allocation of carbon in fruits [J].Rivista di fruit icolturaediort of loricolture.1999,61 (7):85-89.
    [154]Moss D N. Studies on increasing photosynthesis in crop plants. In:Burris R H,Black C C(eds)[A]. C02 Metablism and plant Productivity Baltimore University Park Press,1976,31-34.
    [155]Gifford R M. Barriers to increasing crop productivity by genetic improvement in photosynthesis. In:Biggins J(ed)[A]. Progress in Photosynthesis Research Vol W. Dordrecht:Martinus Nijhoff Publishers,1987,377-384.
    [156]Nelson C J. Genetic associations between photosynthetic characteristics and Yield:Review of the evidence [J]. Plant Physiol, Biochem,1988,26:543-554.
    [157]Xu D-Q, Shen Y-K. Photosynthetic efficiency and crop yield. In:pressarakli M (ed). Handbook of plant and crop Physiolgy (New Edition) [A]. New York:Marcel Dekker,2002,821-834.
    [158]Bray E A. Molecular response to water deficit [J]. Plant Physiol,1993, 34(5):388-392.
    [159]吴林,李亚东,刘洪章.水分逆境对沙棘生长和叶片光合作用的影响[J].吉林农业大学学报,1996,18(4):45-49.
    [160]Fernandaz R T, Perry R L, Flore J A. Drought response of young apple trees on three rootstocks Ⅱ. Gas change chlorophyll fluorescence, water relations, and leaf abscisic acid [J]. J. Amer. Soc. Hort. Sci, 1997,122(6):841,848.
    [161]Marler T E, Michelbart M V Drought, leag gas exchange, and chlorophyll fluorescence of field-grown papaya [J]. J. Amer. Soc. Hort. Sci,1998, 123(4):714-718.
    [162]卢从明,张其德,匡廷云.水分胁迫对光合作用影响的研究进展[J].植物学通报,1994,11(增刊):9-14.
    [163]徐迎春,李绍华,柴成林,等.水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律研究[J].果树学报,2001,18(1):1-6.
    [164]张川红,沈应柏,尹伟伦.盐胁迫对国槐和核桃幼苗光合作用的影响[J].林业科学研究,2002,15(1):41-46.
    [165]郑国琦,许兴,徐兆祯,等.盐胁迫对枸杞光合作用的气孔与非气孔限制[J].西北植物学报,2002,22(6):1355-1359.
    [166]张放,张良诚,李三玉.柑桔开花、幼果期的异常高温胁迫对叶片光合作用的影响[J].园艺学报,1995,22(1):11-15.
    [167]郭延平,周慧芳,曾光辉.高温胁迫对柑橘光合速率和光系统活性的影响[J].应用生态学报,2003,14(6):867-870.
    [168]郭延平,张良诚,沈允钢.低温胁迫对温州蜜柑光合作用的影响[J].园艺学报,1998,25(2):111-116.
    [169]张宁,孟庆伟,赵世杰,等.光胁迫下银杏光合作用的光抑制[J].西北植物学报,1999,19(3):461-465.
    [170]韦朝领,江昌俊,陶汉之,等.茶树叶片光合作用的光抑制及其恢复研究[J].安徽农业大学学报,2003,30(2):157-162.
    [171]Anderson J M, Park Y-I,Chow W S. Photoinactivation and photoprotection of photosystem Ⅱ in nature [J].Physiol Plant,1997,100:214-223.
    [172]陈立松,刘星辉.渗透胁迫下Ca+对龙眼叶片光合色素及膜脂过氧化的影响[J].园艺学报,1998,25(1):87-88.
    [173]邱栋梁,刘星辉,郭素枝.模拟酸雨胁迫下钙对龙眼光合功能的调节作用[J].应用生态学报,2002,13(9):1072-1076.
    [174]郭延平,陈屏昭,张良诚,等.缺磷胁迫加重柑橘叶片光合作用的光抑制及叶黄素循环的作用[J].植物营养与肥料学报,2003,9(3):359-363.
    [175]罗勇.湖南省主要树种光合特性及其对环境因子的响应研究[D].长沙:中南林业科技大学,2004.14-15.
    [176]姜丽芬.兴安落叶松人工林光合与呼吸作用机理的研究[D].哈尔滨:东北林业大学,2003.1-17.
    [177]沈育杰,史贵文,徐浩,等.山葡萄种质资源光合特性的研究[J].特产研 究,1998,4:22-25.
    [178]杨江山.樱桃光合特性研究[D].兰州:甘肃农业大学,2003.13-18,23-28.
    [179]王红霞.核桃田间条件下光合特性的研究[D].保定:河北农业大学2003.19-20,26-28.
    [180]姜小文.主要柚品种光合特性研究[D].长沙:湖南农业大学,2003.28-30.
    [181]徐妓卉.李树不同品种光合特性比较研究[D].哈尔滨:东北农业大学2001.27-29,36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700