应用原生质体技术改良秦岭链霉菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭链霉菌(Streptomyces qinlingensis sp.nov.)是西北农林科技大学农药研究所从陕西秦岭山区土壤中分离到的一新种放线菌,其发酵产物对多种植物病原真菌和细菌具有强烈的抑制作用。秦岭链霉菌发酵产物中含有多种抑菌活性成分,其中包括10种链丝菌素类抗生素。为了提高其发酵液的生物活性和有效成分含量,本试验以原生质体为材料对该秦岭链霉菌进行菌株改良,主要研究结果如下:
     1.应用原生质体再生并结合物理化学诱变得到了抗菌活性提高较大、稳定性较好的秦岭链霉菌的诱变菌株。生测结果表明:秦岭链霉菌原生质体再生菌株R-72、亚硝基胍诱变菌株NTG-1和热诱变菌株H30-7对枯草芽孢杆菌、蜡状芽孢杆菌、金黄葡萄球菌、铜绿假单胞菌和大肠杆菌等5种病原细菌和小麦赤霉病菌、苹果炭疽病菌、番茄灰霉病菌、棉枯萎病菌和玉米弯孢病菌等5种植物病原真菌的抗菌活性比出发菌株均有显著提高,并且连续培养10代,其遗传性状均比较稳定。其中,菌株H30-7对上述5种植物病原真菌的毒力是出发菌株的3.16、1.39、1.16、1.87和1.34倍。经邻苯二甲醛(OPA)柱前衍生化HPLC分析,再生及诱变菌株R-72、NTG-1和H30-7的链丝菌素F的含量分别为0.42mg/mL、0.66 mg/mL和0.76 mg/mL,但是与出发菌株的链丝菌素F含量(0.82 mg/mL)相比均有所降低。
     2.将秦岭链霉菌原生质体与链霉素产生菌Str2的原生质体进行融合,得到一株抗菌活性有较大提高且遗传稳定性良好的菌株F-47,其培养特征与双亲株均有所差异。抗菌活性测定结果表明:菌株F-47对5种病原细菌和5种植物病原真菌的抗菌活性与出发菌株秦岭链霉菌相比均有明显提高。但是HPLC检测结果表明F-47菌株发酵产物的链丝菌素F含量仅为0.19 mg/mL,远远低于出发菌株秦岭链霉菌中的含量。融合菌株的链丝菌素F的含量大幅度下降而抗菌活性却提高,这可能是由于原生质体融合使融合菌株发酵产物中各种链丝菌素含量比例发生了改变,亦或产生了新的高活性的抗菌物质。
Streptomyces qinlingensis sp.nov., an agricultural antibiotics producer, was isolated from a soil sample collected in Qinling mountains, Shaanxi Province, and identified as a new strain. Its fermentation broth exhibited potent antifungal and antibacterial activities. There are many kinds of bioactive compounds including streptothricins antibiotics with antifungal and antibacterial activities. To improve the antimicrobial activities and antibiotics production of S. qinlingensis, protoplast mutagenesis and protoplast fusion were applied in this study. The main results were as follows.
     The first method is protoplast regeneration combined with physical and chemical mutagenesis to select high-yielding strains. The results of bioassay showed that the antibacterial activities against Bacillus subtilis, Bacillus cereus, Staphylicoccus aureus, Pseudomonas aeruginosa and Escherichia coli and antifungal activities against plant pathogenic fungi Gibberella zeae, Colletotrichum gloesporioides, Botrytis cinerea, Fusarium oxysporum and Curvularia lunata of the fermentation broth from 3 strains, R-72 from protoplast regeneration, NTG-1 and H30-7 from NTG and heat mutagenesis of protoplast, respectively, were remarkable increased comparing with that of the parent strain, and the heredity characters of those strains were stable in successive ten generations. Of these, the toxicities of H30-7 against 5 species plant pathogenic fungi increased 3.16, 1.39, 1.16, 1.87, and 1.34 times compared to that of the starting strain. However, the results of HPLC detection revealed that the contents of streptothricin F of those 3 strains were 0.42 mg/mL、0.66 mg/mL and 0.76 mg/mL, respectively, which lower than that of parent strain, 0.82 mg/mL.
     The second method is the protoplast fusion between S. qinlingensis and Streptomycin producer Str2 because streptothricin and sreptomycin are both belong to aminoglycoside antibiotics. A fusant named F-47, with potent antifungal and antibacterial activities and stable heredity character, was screened from the fusants. Moreover, the culturing characteristics of F-47 have some clear differences from its parental strains. But, the result of HPLC detection showed that the content of streptothricin F dropped a lot from 0.82 mg/mL in the original strain S. qinlingensis to 0.19 mg/mL in the fusant F-47. This is possible because that there may be another antifungal agents are generated or contents of streptothricins are changed in the fermentation broth from fuant F-47 due to the effect of protoplast fusion.
引文
[1] 汪天虹. 微生物分子育种与技术[M]. 北京: 化学工业出版社, 2005.
    [2] 胡海峰,张琴,朱宝泉. 抗生素的耐药性与菌株的优化[J]. 国外医药抗生素分册, 2002, 23 (3): 124-128.
    [3] Parekh S, Vinci VA. Strobel RJ. Improvement of microbial strains and fermentation processes[J]. Appl Microbiol Biotechnol, 2000, 54: 287-30.
    [4] 诸葛健, 沈薇. 工业微生物育种学[M]. 北京: 化学工业出版社, 2006.
    [5] 雷肇祖, 钱志良, 章健. 工业菌种改良述评[J]. 工业微生物, 2004,34 (1): 39-51.
    [6] 汪杏莉, 李宗伟, 陈林海等. 工业微生物物理诱变育种技术的新进展[J]. 生物技术通报, 2007(2): 114-118.
    [7] 高定华, 金德明. X 及 γ 射线对枯草杆菌 BF-7658 产 α 淀粉酶的诱变效应初步研究[J]. 上海调味品, 1981, 1(2): 1-4.
    [8] 庞长宏, 于秀莲, 方常福等. 采用氯化锂和 γ-射线复合诱变方法选育柱晶白霉素高产菌株[J]. 沈阳药科大学学报, 1993, 10(2): 151-153.
    [9] 刘桂杰. 紫外线诱变育种提高土霉素菌株的生产能力[J]. 中国医药工业杂志, 1997, 16(3): 18-20.
    [10] 贺亚男,朱传合,杜连祥等. 氮离子注入选育阿维拉霉素高产菌株的研究[J]. 微生物通报, 2007, 34(1): 39-42.
    [11] 张 燕,叶蕊芳,余维等. 螺旋霉素产生菌的 He-Ne 激光诱变效果及其数量分析[J]. 中国抗生素杂志, 2007, 32(3): 146-149.
    [12] 郭 峰, 程新, 陈其亮等. 南昌链霉菌的微波诱变[J]. 生物加工过程, 2004, 2(4): 51-53.
    [13] 方晓梅, 赵志甲, 顾海科. 泰乐菌素产生菌的空间诱变育种研究[J]. 航天医学与医学工程, 2005, 18(2):121-125
    [14] 冀伟,穆平. 应用统计学对林肯链霉菌诱变育种的研究[J]. 河北师范大学学报, 1996, 20(1): 85-88.
    [15] 李西波, 刘胜利, 王耀民等. 高产纤维素酶菌株的诱变选育和筛选[J]. 食品与生物技术学报, 2006, 25(6): 107-110.
    [16] 王惠, 童应凯, 吴兆亮等. 亚硝酸诱变选育黄霉素高产菌的研究[J]. 饲料工业, 2006, 27(8): 17-19.
    [17] 朱非, 安志东, 王健. 亚硝基胍诱变选育林肯霉素高产菌株[J]. 氨基酸和生物资源, 1999, 21(2): 16-18.
    [18] 颜亨宸. 甲基磺酸乙酯对吸水链霉菌井冈变种的诱变效应[J]. 中国抗生素杂志, 1983, 8(3): 188-189.
    [19] 徐志彦, 王敏. 吖啶黄和溴化乙锭复合处理诱导酵母菌小菌落的研究[J]. 遗传学报, 1985, 12(5): 01-404.
    [20] 钦葆纯, 程冀平, 张宇等. 四环素产生菌抗噬菌体菌株选育[J]. 中国抗生素杂志, 1991, 16(5): 375-376.
    [21] 张应禄, 朱昌雄, 白兰芳等. 转座子 Tn5096 对刺孢吸水链霉菌北京变种 RF220 转座的诱变[J]. 微生物学报, 1999, 39(6): 510-515.
    [22] 张致平. 微生物药物学[M]. 北京: 化学工业出版社, 2003.
    [23] 诸葛健. 工业微生物资源开发应用与保护[M] 北京: 化学工业出版社, 2002.
    [24] Jarai M. Genetic recombination in Streptomyces aureofaciens[J]. Acta Microbiol Acad Sci Hungary, 1961, 8: 73–79.
    [25] Mindlin SZ. Genetic recombination in the actinomycete breeding. Genetics and Breeding of Streptomyces (Sermonti G & Alacevic M, eds)[M]. Yugoslav Academy of Sciences and Arts, Zagreb, 1969.
    [26] Malmberg LH, Hu WS, Sherman DH. Precursor flux control through targeted chromosomal insertion of the lysine epsilon-aminotransferase (lat) gene in cephamycin C biosynthesis[J]. J Bacteriol, 1993, 175 (21): 6916–6924.
    [27] Crameri R, Davias JE.Increased production of aminoglycosides associated with amplified antlbiotic resistance genes[J]. J.Antibiot, 1986, 39: l28-131.
    [28] 顾觉奋. 应用基因工程改进抗生素产量的研究进展[J]. 国外医药: 抗生索分册, 1999, 20(5): 193- 197.
    [29] 刘志恒, 姜成林. 放线菌现代生物学与生物技术[M]. 北京: 科学出版社, 2004.
    [30] Stutzman-Engwall KJ, Otten SL, Hutchinson CR. Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius[J]. J Bacteriol. 1992, 174(1): 144-154.
    [31] Wakabayashi S, Matsubara H, Webster DA. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla[J]. Nature, 1986, 322: 481-483.
    [32] Khosla C, Bailey JE. The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence and genetic expression in Escherichia coli[J]. Mol Gen Genet, 1988, 214(1): 158-61.
    [33] Dikshit KL, Webster DA. Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli[J]. Gene, 1988,70(2): 377-86.
    [34] Magnolo SK, Leenutaphong DL, DeModena JA, et al. Actinorhodin production by Streptomyces coelicolor and Growth of Streptomyces lividans are improved by the Expression of a Bacterial Hemoglobin[J]. Bio/Technology, 1991, 9: 473-476.
    [35] Brünker P, Minas W, Kallio PT, et al. Genetic engineering of an industrial strain of Saccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene (vhb) [J]. Microbiology, 1998, 144: 2441-2448.
    [36] DeModena JA, Gutiérrez S, Velasco J, et al. The production of Cephalosporin C by Acremoniumchrysogenum is improved by the intracellular expression of a bacterial hemoglobin[J]. Bio/Technology, 1993, 11: 926-929.
    [37] Feng L, Chen S, Sun M, et al. Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improve the cell density and insecticidal crystal proteins yield[J]. Appl Microbiol Biotechnol, 2007, 74(2): 390-397.
    [38] Zhang L, Li Y, Wang Z, et al. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering[J]. Biotechnology Advances, 2007, 25: 123–136.
    [39] Kim YJ, Sa SO, Chang YK,et al. Overexpression of Shinorhizobium meliloti Hemoprotein in Streptomyces lividans to Enhance Secondary Metabolite Production[J]. J Microbiol Biotechnol, 2007, 17(12): 2066-2070.
    [40] Sezonov G, Blanc V, Bamas-Jacques N. Complete conversion of antibiotic precursor to pristinamycinIIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes[J]. Nature Biotechnology, 1997, 15, 349-353.
    [41] Paradkar AS, Mosher RH, Anders C, et al. Applications of Gene Replacement Technology to Streptomyces clavuligerus Strain Development for Clavulanic Acid Production[J]. Appl Environ Microbiol, 2001, 67(5): 2292–2297.
    [42] Ikeda H, Takada Y, Pang CH, et al. Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis[J]. J Bacteriol., 1993, 175(7): 2077–2082.
    [43] Stemmer W P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution [J]. PNAS, 1994, 91(22): 10747-10751.
    [44] ZhangY ,Perry K, Vinci VA, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria[J]. Nature, 2002, 415, 644-647.
    [45] Patnaik R, Louie S, Gavrilovic V, et al. Genome shuffling of Lactobacillus for improved acid tolerance [J]. Nat Biotechnol, 2002, 20: 707-712.
    [46] Dai M, Copley SD. Genome Shuffling Improves Degradation of the Anthropogenic Pesticide Pentachlorophenol by Sphingobium chlorophenolicumATCC 39723[J]. Appl.Environ.Microbial, 2004, 70(4): 2391–2397.
    [47] 徐波, 王明蓉, 夏永等. 应用基因组重排育种新方法筛选替考拉宁高产菌[J]. 中国抗生素杂志, 2006, 31(4): 237-242.
    [48] Hida H, Yamada T, Yamada Y. Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid[J]. Appl Microbiol Biotechnol, 2007, 73: 1387-1393.
    [49] Wang Y, Li Y, Pei X, et al. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus[J]. J Biotech, 2007, 129(3): 510-515.
    [50] Wei P, Li Z, He P, et al. Genome shuffling of ethanologenic yeast Candida krusei for improved acetic acid tolerance[J]. Biotechnol. Appl. Biochem., 2008, 49(2):113-120.
    [51] Yu L, Pei X, Lei T, et al. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus[J]. J. Biotech., 2008, 134(1-2):154-159.
    [52] Lin J, Shi B, Shi Q, et al. Rapid Improvement in Lipase Production of Penicillium expansum by Genome Shuffling[J]. Chinese J. Biotechnology, 2007, 23(4): 672-676.
    [53] Hu H, Ochi K. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations[J]. Appl. Environ. Microbiol., 2001, 67: 1885-1892.
    [54] Shima J, Hesketh A, Okamoto S, et al. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2) [J]. J. Bacteriol., 1996, 178: 7276–7284.
    [55] Hesketh, A., Ochi, K. A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomalprotein S12) mutations conferring resistance to streptomycin[J]. J. Antibiot., 1997, 50: 532–535.
    [56] Hosoya Y, Okamoto S, Muramatsu H, et al. Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria[J]. Antimicrobial. Agents Chemother., 1998, 42: 2041-2074.
    [57] Hu H, Zhang Q, Ochi, K. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding RNA polymerase-subunit) of Streptomyces lividans[J]. J. Bacteriol., 2002, 184: 3984-3991.
    [58] Ochi K, Okamoto S, Tozawa Y, et al. Ribosome engineering and secondary metabolite production[J]. Adv Appl Microbiol., 2004, 56: 155-84.
    [59] Ochi K. From microbial differentiation to ribosome engineering[J]. Biosci Biotechnol Biochem, 2007, 71(6): 1373-86.
    [60] 王耀耀,刘云清,朱研研等. 组合链霉素和利福平抗性突变去甲基万古霉素高产菌株的选育[J]. 中国抗生素杂志, 2006, 31(6): 243-246.
    [61] Tamehiro N, Hosaka T, Xu J, et al. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus[J]. Appl. Environ. Microbiol., 2003, 69:6412–6417.
    [62] Beltrametti F, Rossi R, Selva E, et al. Antibiotic production improvement in the rare actinomycete Planobispora rosea by selection of mutants resistant to the Aminoglycosides Streptomycin and Gentamycin and to Rifamycin[J]. J Ind Microbiol Biotechnol, 2006, 33: 283-288.
    [63] 陈春福, 柯永忠, 罗朗等. 棒状链霉菌原生质体再生和克拉维酸产量变化的研究[J]. 中国抗生素杂志, 1996, 21(2): 94-98.
    [64] 孙 益, 姚瑜, 童敏等. 柱晶白霉素的诱变育种和发酵研究. 中国抗生素杂志, 1994, 19: 174-177.
    [65] Ikeda H, Inoue M, Omura S. Improvement of macrobide antibiotic-producing Streptomycetes strains by the regeneration of protoplast[J]. J Antibiot, 1983, 36: 283-288.
    [66] 施巧琴, 吴松刚. 工业微生物育种学[M]. 北京: 科学出版社, 2003.
    [67] Malina H, Tempete C, Robert-Gero M. Enhanced sinefungin production by medium improvement, mutagenesis and protoplast regeneration of Streptomyces incarnatus NRRL 8089[J]. J Antibiot, 1985, 38(9): 1204-120.
    [68] Kim KS, Cho NY, Pai HS, et al. Mutagenesis of Micromonospora rosaria by using protoplasts and mycelial fragments[J]. Appl Environ Microbiol., 1983, 46(3): 689–693.
    [69] Wan HM, Chen CC, Chang TS, et al. Combining induced mutation and protoplasting for strain improvement of Aspergillus oryzae for kojic acid production[J]. Biotechnol Lett., 2004, 26(14): 1163-1166.
    [70] 谭珍连, 梁静娟, 庞宗文等. 原生质体紫外诱变选育白地霉 GXU08 脂肪酶高产菌株[J]. 生物技术, 2007, 17(2): 42-44.
    [71] 朱林东,金志华. 普那霉素产生菌的原生质体诱变育种[J]. 中国抗生素杂. 2006, 31(10): 591-595.
    [72] Homolka L, Vysko?il P, Pilát P. Use of protoplasts in the improvement of filamentous fungi I. Mutagenization of protoplasts of Oudemansiella mucida[J]. Appl.Micro.Biotech., 1988, 28(2): 166-169.
    [73] Ryu DY, Kim KS, Cho NY, et al. Genetic recombination in Micromonospora rosaria by protoplast fusion[J]. Appl Environ Microbiol., 1983, 45: 1854-1858.
    [74] Adrio1 JL, Demain AL Genetic improvement of processes yielding microbial products[J]. FEMS Microbiol Rev, 2006, 30: 187-214.
    [75] Hopwood DA, Wright HM, Bibb MJ. Genetic recombination through protoplast fusion in Streptomyces[J]. Nature, 1977, 268 (5616): 171-174.
    [76] Muralidhar RV, Panda T. Fungal protoplast fusion -a revisit[J]. Bioprocess Engineering, 2000, 22: 429-431.
    [77] Beltrametti F, Barucco D, Rossi R, et al. Protoplast fusion and gene recombination in the uncommon Actinomycete Planobispora rosea producing GE2270[J]. J Antibiot., 2007, 60(7): 447-54.
    [78] Scheurich P, Zimmermann U, Mischel M, et al. Membrane fusion and deformation of red blood cells by electric fields[J]. Z Naturforsch [C], 1980, 35(11-12):1081-1085.
    [79] 张瑾阳, 吕婉瑜, 韩卫华等. 金色链霉菌原生质体电融合[J]. 中国抗生素杂志, 1993, 18 (3): 163-168.
    [80] Zhang B, He X, Tie C, et al. Construction of high ergosterol-producing yeast strains and study on the optimal conditions for culture[J]. Chin J Biotechnol , 1999, 15(1): 43-49.
    [81] 卜宗式. 激光诱导金盏菊原生质体融合方法初探[J]. 激光生物学, 1993, 2: 282-283, 275.
    [82] 张闻迪, 赵白, 王秋等. 激光诱导泥鳅卵细胞融合-一种新的细胞融合方法[J]. 生物工程学报, 1988 , 4 (4): 298-303.
    [83] 陈五岭, 罗雯, 姚胜利. 氦氖激光对链霉菌原生质体种间融合频率的影响[J] . 光子学报, 1998 , 27 (5) : 412-417.
    [84] 王宪, 范云六. 通过原生质体融合产生的苏云金杆菌的新菌株[J]. 生物工程学报, 1987, 3: 29-37.
    [85] 穆国俊, 董毓琨, 黄冠辉. 苏云金芽孢杆菌 Bt23701 与巨大芽孢杆菌 Bm2107 种间原生质体融合[J] . 微生物学报, 1995, 35 (5) : 322-326.
    [86] Yu J , Pang Y, Tang M , Xie R , et al. Highly toxic and broadspectrum insecticidal Bacillus thuringiensis engineered by using the transposon Tn 917 and protoplast fusion[J]. Curr Microbiol , 2001, 43(2): 112-119.
    [87] Hamlyn PI, Ball C. Genetics of Industrial Microorganisms[M] . Sebek OK and Laskin AI(ed.), 1979: 185-199.
    [88] 邢孔昭, 王巽一, 李焕娄. 种间原生质体融合提高巴龙霉素单位产量的研究[J]. 生物工程学报, 1987, 4(1): 48-54.
    [89] Baltz RH. Genetic methods and strategies for secondary metabolite yield improvement in actinomycetes [J]. Antonie van Leeuwenhoek, 2001, 79: 251-259.
    [90] 朱春宝, 杨昭中. 四环素生产菌与柔红霉素产生菌的种间原生质体融合[J]. 中国医药工业杂志,1986,5:193-195.
    [91] 程骥, 洪文荣, 苏建章等. 黑暗链霉菌与卡那链霉菌原生质体融合研究[J]. 福州大学学报(自然科学版), 2003, 31(1): 111-115.
    [92] Tosaka O. Abstracts of the Ⅳth International Symposium on Genetics of Industrial Microorganisms[C]. 1982: 61.
    [93] Nazari R, Akbarzadeh A, Norouzian D, et al. Applying intra-specific protoplast fusion in Streptomyces griseoflavus to increase the production of Desferrioxamine B[J]. Current Science, 2005, 88(11):1185-1190.
    [94] 张瑾阳, 吕婉瑜, 韩卫华等. 金色链霉菌原生质体电融合[J]. 中国抗生素杂志, 1993, 18 (3): 163-168.
    [95] Omura S , Ikada H , Tanaka H. Selective production of specific components of avermectins in streptomyces avermitilis[J] . J Antibiot, 1991, 44(5): 560-563.
    [96] Gomi S, Ikeda D, Nakamura H, et al. Isolation and structure of a new antibiotic, indolizomycin, produced by a strain SK2-52 obtained by interspecies fusion treatment[J]. J Antibiot, 1984, 37: 1491-1494.
    [97] 龙建友. 秦岭链霉菌开发利用的前期基础研究. 陕西杨凌: 西北农林科技大学博士论文, 2006.
    [98] 龙建友, 姬志勤, 师宝君等. 一株抗生素产生菌No.24菌株发酵液抗菌谱及稳定性测定研究[J].西北农林科技大学学报(自然科学版), 2004, 32(增刊): 61-64.
    [99] 姬志勤, 张继文, 魏少鹏等. 秦岭链霉菌发酵液中杀虫活性成分分离及结构鉴定[J]. 农药学学报, 2007, 9 (1): 25-28.
    [100] Ji ZQ, Wang MA, Zhang JW, et al. Two new members of streptothricin class antibiotic from Streptomyces qinlingensis sp.nov.[J]. J Antibiot, 2007, 60(12): 739-744.
    [101] 姬志勤. 秦岭链霉菌次生代谢物中生物活性成分研究. 陕西杨凌: 西北农林科技大学博士论文, 2007.
    [102] 姬志勤, 魏少鹏,杨春平等. 秦岭链霉菌发酵液中二丙酮胺的分离及抑菌活性初步研究[J]. 西北农林科技大学学报(自然科学版). 2008, 36(2): 148-152.
    [103] 余 卿. 抗菌素的菌株选育[J]. 微生物学杂志, 1987, 7(2):75-83.
    [104] 龙建友, 吴文君. 农用抗生素产生菌No.24菌株诱变选育研究[J]. 西北农业学报, 2005, 14(1): 98-101.
    [105] 罗雯, 陈志勤.微生物原生质体融合技术及其在育种中应用[J]. 西安联合大学学报, 2003, 6(4): 5-9.
    [106] 梁蓉芳. 龟裂链霉菌原生质体诱变育种的研究[J]. 微生物研究与应用, 1991(1): 28-32.
    [107] 沈 萍, 范秀容, 李广武. 微生物学实验(第三版)[M], 北京: 高等教育出版社, 1999.
    [108] Hopwood DA, Wright HM. Bacterial protoplast fusion: Recombination in fused protoplasts of Streptomyces coelicolor[J]. Mol Gen Genet, 1978, 162: 307-317.
    [109] 李祥锴, 安志东, 朱 非. 林肯链霉菌双亲灭活原生质体融合的研究[J]. 氨基酸和生物资源, 2001, 23 (4): 24-27.
    [110] 代 鹏, 徐雪莲, 贺玉平等. 多杀菌素生产菌株发酵配方及条件的优化[J]. 华中农业大学学报, 2006, 25(3): 245-248.
    [111] 慕立义. 植物化学保护研究方法[M]. 北京:中国农业出版社, 1991.
    [112] 胡昌勤. 抗生素质控分析中HPLC分析的基本理论(上册). 北京: 气象出版社, 2001.
    [113] 孙 益, 姚 瑜, 童 敏等. 柱晶白霉素的诱变育种和发酵研究[J]. 中国抗生素杂志, 1994, 19:174-177.
    [114] 王金发, 孔小卫, 张晓魁等. 紫外线和亚硫酸氢钠对龟裂链霉菌原生质体的诱变作用[J]. 中国抗生素杂志, 1989, 14 (2): 86-90.
    [115] 崔大鹏, 石莲英. 原生质体再生与诱变在硫霉素产生菌选育中的应用[J]. 中国抗生素杂志, 1999, 24(4): 265-268.
    [116] 周华平, 刘文清, 关荣等. 原生质体再生与诱变在林可霉素产生菌选育中的应用[J]. 中国现代实用医学杂志, 2004, 3(12):10-12.
    [117] 邹 坚. 应用原生质体诱变技术筛选井冈霉素高产菌种的研究[J]. 现代农药, 2003, 2(2): 27-28.
    [118] 朱昌雄. 新农用抗生素—中生菌素[J]. 精细与专用化学品, 2002, 10(16): 14-17.
    [119] 李焕娄, 陈正道. 新霉素产生菌弗氏链霉菌灭活原生质体的融合[J]. 抗生素, 1984, 9(6): 445-449.
    [120] Wright WE. The isolation of heterokaryons and hybrids by a selective system using irreversible biochemical inhibitors[J]. Exp Cell Res. 1978, 15, 112(2): 395-407.
    [121] Hopwood DA, Wright HM. Factors affecting recombinant frequency in protoplast fusions ofStreptomyces coelicolor[J]. J Gen Microbiol, 1979, 111(1): 137-43.
    [122] 马莉, 齐秀兰, 李福德. 通过双亲灭活原生质体融合方法提高链霉素产量[J]. 沈阳药学院学报, 1990, 7(2): 142-144.
    [123] 中国科学院微生物所放线菌分类组. 链霉菌鉴定手册[M]. 北京: 科学出版社, 1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700