梨黑斑病拮抗放线菌的选育及其抗菌物质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨黑斑病是一类危害严重的世界性气传真菌病害,它的有效防治已经成为鸭梨生产和贮存中有待解决的难题。本研究从生物防治的角度出发,分离筛选梨黑斑病菌拮抗放线菌株,通过诱变育种提高其生产性能,并对突变株产生的抗菌物质及生防效果进行研究,旨在为开发高效防治梨黑斑病的生防制剂奠定工作基础。
     采用稀释平板法,从果园根际土壤中分离到372株放线菌。通过抑菌圈筛选,得到6株对梨链格孢菌(Alternaria kikuchiana)拮抗作用较强的菌株;进而对这6株菌进行果实活体筛选,其中B105菌株代谢物抑菌效果最好,28℃下的抑菌率为67.4%。抑菌谱实验表明它对苹果轮纹病菌(Physalospora piricola)、柑橘青霉病菌(Penicillium expansum Link),梨黑星病菌(Venturia pirina)、番茄灰霉病菌(Botrytis cinerea)等多种植物病原真菌有明显的抑制作用。
     对B105菌株进行形态特征、培养特征、生理生化特性测试及16S rDNA序列分析,结果表明该菌株属于链霉菌属,在以16S rDNA序列为基础构建的系统发育树中,B105菌株与金色链霉菌(Streptomyces aureus)的同源性最高,达到99%以上。
     利用紫外线、微波和化学试剂NTG三种理化因子对菌株B105进行诱变育种,结果发现NTG诱变效果最好,在其浓度为1mg/mL时获得了高产突变株N2,它的发酵液抑菌圈直径比出发菌株提高了52.2%,在果实上的抑菌效果比出发菌株提高了19.2%,并且遗传性能稳定。
     对突变株N2所产生的抗菌物质的性质进行了研究,结果显示此物质可耐受高温,具有较宽的pH活性范围,同时对光照稳定,耐贮存;利用pH纸色谱、捷克八溶剂系统纸色谱等方法初步确认其抗菌物质为一种碱性水溶性抗生素。
     生防测试结果表明N2菌株产生的抗菌物质能够显著抑制病原菌菌丝的生长和孢子的萌发;在果实及叶片上对梨黑斑病害的防效分别达到85.7%和82.3%,明显高于对照药剂多菌灵500倍稀释液的防效。
Pear black spot caused by Alternaria kikuchiana is a serious air spreading disease which distributes widely in the world. 1t is a difficult problem to control the disease effectively. The research focuses on the biocontrol of pear black spot. Therefore, mutagenic breeding and inhibition effects were studied after an antibiotic actionmycete strain was screened and identified. It provided the theory basis and the technical support for the exploiting agricultural antibiotics for biocontrol.
     Three hundred and seventy two strains of actionmycetes were isolated from the rhizosphere soil samples using dilution method, from which six strains effectively inhibiting Alternaria kikuchiana were screened out by inhibitory zone method. After further screening on fruits, It was found that strain B105 was more effectivly than other antagonistic actinomycetes and its fermentation filtratethe inhibition rate got to 66.5% at 28℃. B105 strain also showed broad antagonism against pathogenic fungi in plant, such as: Physalospora piricola, Penicillium expansum Link, Venturia pirina, Botrytis cinerea et al.
     The morphological, cultural physiological, biochemical characteristics and 16S rDNA sequences of strain B105 were studied. Its substrate mycelium had no partition, the aerial mycelium were ramose, the spores were oval and the surface was smooth, which consistented with the characteristics of the genus Streptomyces. The analysis of 16S rDNA sequence of strain B105 suggested that it was most closely related to Streptomyces aureus and the sequence identity was 99%. From the polyphasic taxonomical view, the strain B105 falled into Streptomyces aureus.
     In order to improve the antibiotic-producing, UV, microwave and NTG were used to mut -agenize B105 spores, respectively. The results showed NTG has stronger mutagenic effect than UV and microwave. Under the optimum dosage of 1mg/ml, a high productive mutant strain named N2 was screened out. The diameter of antibiotic zone of N2 increased by 52.2% and the inhibitation effects to AlternAria kikuchiana increased by19.2% compared to B105 strain. Futhermore , its high capacity for producing antibiotic remained stable after 5 times of subcultures and its antifungal spectrum was not altered.
     The antagonistic substance produced by the strain was considered as one of its antagonistic mechanisms against Alternaria kikuchiana. The antagonistic substance was stable to heat, pH, and illumination, its inhibitory activity could remain 76.5% even incubating at 100℃for 120mins. Accoding to the results of Jack's Eight Solvent System Chromatography and pH Paper Chromatography of the fermentation extracts indicated that the antagonistic substance was basic and water solubility-alkaline antibiotic.
     The result of biocontrol test indicated that the fermentation filtrate had strong inhibition mycelium growth and spore germination of Alternaria kikuchiana, and the control effects on the diseased fruits and pear leaves were 85.7% and 82.3%, respectively, which were obviously better than 50% Duojunling (500 times dilution). The result indicated that strain B105 was really a potential biocontrol endophytic actinomycete.
引文
[1]Simmons Emory G. Alternaria themes and variations[J]. Mycotaxon, 1993, 48: 109-140.
    [2]Baudry A, Morzieres J P, Larue P. First report of Japanese pear black spot caused by Alternaria Kikuchiana in France[J]. Plant-Disease, 2001, 19(4): 19-22.
    [3]何汉祚, 李桂卿, 乔志宏. 梨黑斑病病原菌生物学特性研究[J]. 山西果树, 1995(4): 28-29.
    [4]李永才, 毕阳. 苹果梨黑斑病的发生及侵染过程[J]. 植物保护学报, 2006, 20(2): 131 -135.
    [5]张志铭, 穴福, 孙淑贞. 河北鸭梨黑斑病病原菌的鉴定[J]. 植物检疫, 2003, 17(4): 212-214.
    [6]王宏, 常有宏, 陈志谊. 梨黑斑病病原菌生物学特性研究[J]. 果树学报, 2006, 23(2): 247-251.
    [7]方中达. 植物病研究方法[M]. 北京: 农业出版社, 1979, 69-70.
    [8]古玉, 张敏, 王跃进, 等. 梨黑斑病菌AK2毒素的研究进展[J]. 植物检疫, 2007, 27(1): 35-38.
    [9]程年娣, 叶生海, 王成玉. 梨黑斑病发生特点及综合防治技术[J]. 湖北植保, 2003, (3): 12-13.
    [10]郑建梅, 史西月. 梨黑斑病的发生与防治[J]. 河北果树, 2004, (3): 38-39.
    [11]刘波, 王跃进, 徐亮. 几种杀菌剂对梨黑斑病菌抑制作用研究[J]. 植物检疫, 2007, 21(3): 137-139.
    [12]Nunes C, Usall J, Teixido N, et a1. Biological control of postharvest pear diseases using a bacterium Pantoea agglorrverans CPA2[J]. Intern J Food Microbiol, 2001, 70: 53-61.
    [13]Chand Goyal T, Spotts RA. Biological control of postharvest diseases of apple and pear under semicommercial and commerciaI conditions using three saprophyticyeasts[J]. Biolcontr -ol, 1997, 10: 199-206.
    [14]齐东梅, 惠明, 梁启美, 等. 枯草芽孢杆菌 H110 对苹果梨采后青霉病和黑斑病的抑制效果[J]. 应用与环境生物学报, 2005, 11(2): 171-174.
    [15] Benbow J M, Sugar D. Fruit surface colonization and biological control of postharvest diseases of pear by prehar-vest yeast applications[J]. Plant Diseases, 1999, 9: 839-843.
    [16]王镜岩, 朱对庚, 徐长法. 生物化学[M]. 北京: 高等教育出版社, 2004, 537-546.
    [17]崔云龙. 我国生物农药的现状及实现产业化之路[J]. 农药科学与管理,1995, 1: 33 -34.
    [18]沈寅初. 国内外农用抗生素研究和开发概况[J]. 抗生素, 1996, 6(2): 57-64.
    [19]余风玉, 李振华, 曾会才. 抗真菌农用抗生素的研究进展[J]. 热带农业科学, 2005, 25(1): 60-64.
    [20]王学士. 农用抗生素 120 有效组分的研究[J]. 生物防治通报, 1994, 10 (3): 131- 134.
    [21]尹萃耘, 苟培琪. 多效霉素在农业上应用的研究(摘要)[A]. 第四次全国抗生素学术会议论文集(下)[C]. 上海: 上海科学出版社, 1985, 320.
    [22]蒋细良. 中生菌素的抗生作用[J]. 植物病理学报, 1997, 27(2): 133-138.
    [23]金章旭, 林铃. 武夷霉素─小单孢菌产生的一种氨基糖苷类抗生素[J]. 抗生素, 1985, 10(2): 65-71.
    [24]吴元华. 天柱菌素─ 一种新型高抗烟草花叶病毒病的农用抗生素[M]. 北京: 中国农业科技出版社, 2001, 110-115.
    [25]顾觉奋, 王鲁燕, 倪孟祥. 抗生素[M]. 上海: 上海科学技术出版社, 2001, 13-20.
    [26]田中信男. 抗菌素的作用机制. 北京: 北京科学出版社, 1977.
    [27]Hori M, Equchi J, Kakik K. Studies on the mode of action of Polyoxins VI. Effect of Polyoxin on chitin synthesis in Polyoxin sensitive and resistant strains of Alternria kikuchiana[J]. Journal of Antibiotics, 1971, 27(4): 260-266.
    [28]Cabib E. Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by Polyoxin D and nikkomycins[J]. Antimicrob Agents Chemother, 1991,35(1): 170-173.
    [29]张德. 井冈霉素 A 诱导水稻防御纹枯病反应机理研究[D].北京: 中国农业大学, 2001, 42.
    [30]蒋细良, 谢德龄. 中生菌素对真菌作用机理的研究[J]. 中国生物防治, 1997, 13(2): 69-71.
    [31]蒋细良, 谢德龄, 倪楚芳. 中生菌素的抗生作用[J]. 植物病理学报, 1997, 27(2):133-138.
    [32]上海市农药研究所农用抗菌素组. 井冈霉素[M]. 上海: 人民出版社, 1972, 1-52.
    [33]Yamaguchi H. 国外医药(抗生素)分册[M]. 1990, 11(2): 137-141.
    [34]Banic S, Lunder M. Additive effect of the combination of griseofulvin and ketoconazole against Microsporiam canis in vitro[J]. Mycoses, 1989, 32(9): 47-48.
    [35]朱昌雄, 谢德龄, 倪楚芳. 农抗 120 防治西瓜枯姜病菌的病内药效实验[J]. 生物防治通报, 1990, 6(3): 124-127.
    [36]张穗, 郭永. 井冈霉素 A 对水稻纹枯病菌的毒力和作用机理[J]. 农药学学报, 2001, 3(4): 31-37.
    [37]刘素萍, 李开本, 翁启勇, 等. 生防菌株 BS1、BS2 作用机制初探[J]. 江西农业大学学报, 2000, 22(1): 82-85.
    [38]孔建, 赵白鸽, 王文夕. 枯草芽孢杆菌(Bacillus subtilis (cohen))B-903 菌株抗菌物质对植物病原真菌的抑制作用[J]. 植物病理学报, 1995, 25(1): 69-72.
    [39]朱昌雄, 蒋细良, 孙东园, 等. 新农用抗生素—中生菌素[J]. 精细与专用化学品,2002, (16): 14-17.
    [40]刘翠娟. 土壤放线菌的分离、发酵及活性产物研究[D]. 陕西: 西北农林科技大学, 2004, 36-37.
    [41]曾广然. 农用抗生素的应用和发展[M]. 吉林: 吉林农业科学, 1989, 55: 28-36.
    [42]褚以文. 微生物培养基优化方法及其 OPTI 优化软件[M]. 国外医药抗生素分册, 1999, 20(2): 58-60, 66.
    [43]张嗣良, 储矩, 庄英萍. 抗生素发酵过程优化技术研究[J]. 中国抗生素杂志, 2002, 27(9): 572-576.
    [44]Ikeda H, Takada Y, Pang CH, et al. Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitins [J]. Bactenol, 1993, 175: 2077-2082.
    [45]柏亚罗. Strobilurin 类杀菌剂: 又一例对天然化合物的成功模拟[J]. 农药, 1999, 38(12): 4-6.
    [46]林璧润, 谢双大, 姚汝华. 半合成农用抗生素[J]. 中国生物防治, 1999, 15(4): 174-177.
    [47]Bibb M. The regulation of antibiotic production in Streptomyces coelicolor A3(2)[J].Microbiology, 1996, 142: 1335-1344.
    [48]朱宏建, 易图永, 周鑫钰. 土壤放线菌生防活性物质的研究进展[J]. 作物研究, 2007, 2: 149-151.
    [49]刘长令. 新农药研究开发文集[M]. 北京: 化学工业出版社, 1999, 8-110.
    [50]Williams S T, Sharp M E, Hole C. Bergcy's manaual of systematic bacteriology [M]. Baltimore: Williama andWilkina Company, 1984, 14.
    [51]张利平, 陈冠平, 放线菌化学分类学的现状及发趋势势[J]. 微生物学报, 1997, 24(5): 30-31.
    [52]Minnikin. Mycolic acids in the classification of nocardioform bacteria[A]. New York : InNocardia and Streptomyces Gustar, Fischer Verlan Stuttgart, 1978, 63-66, 85-90.
    [53]Waksman S A. The Actinomyletes, A summary of current knowledge[M]. New York: The Ronald, 1967.
    [54]阮继生, 刘志恒, 粱丽儒, 等. 放线菌研究及应用[M]. 北京: 科学出版社, 1990.
    [55]阮继生, 郎艳军, 石彦林等. 不同放线菌属的化学与分子分类[J]. 微生物学报, 1994, 34(3): 241-244.
    [56]伯杰. 细菌鉴定手册(第八版)[M]. 北京: 科学出版社, 1984.
    [57]Paradia, E C Toyer, C N Hodge, et al. Fatty Acid and profiles of Sterptomycetes scabies strains Isolated in Eastern Canada[J]. Int J System Bacteriol, 1994, 44: 561-564.
    [58]Solovyova K N, Rudays S M, Fadeyeva N P. Importance of certa in features and properties of actinomycetes for their classification[A]. The Jean International Symposium on Taxonomy, Prauser H, Jean. 1968, 163-167.
    [59]Margin J F, Naharrog, Lira S P. Isolation of mutants deregulated in phosphate control of candicidin biosynthesis[J]. Antibiotic, 1979, 32(6): 1557 .
    [60]Fox G E, K R Pechman, C R Woose. Comparative cataloging of 16S ribosomal RNA sequencing in bacterial systematics[J]. Methods Microbio1, 1987, 19: 406-458.
    [61]Lane D J, B Pace, G J Olsen et al. Rapid determination of 16S ribosomal RNA sequence for phylogenetic analysis[J]. Proc.Natl.Acad.Sci.USA, 1985, 82: 6955-6959.
    [62]章名春. 工业微生物诱变育种[M]. 北京:科学出版社, 1984, 112-114.
    [63]沈寅初, 杨慧心. 杀虫抗生素 Avermectin 的开发及特性[J]. 农药译丛, 1994, 16(3):1-13.
    [64]薛禹谷. 我国链霉菌遗传学研究的回顾和展望[J]. 中国抗生素杂志, 1990, 15(3): 225-230.
    [65]吴振倡. 金霉素链霉菌(S.aureofaciens)激光高产株的选育[J]. 中国激光, 1992, 19(7): 555-557.
    [66]陈五岭, 杨晓燕, 姚胜利. 氦氖激光辐照红霉素链霉菌诱变育种的研究[J]. 光子学报, 1998, 27(6): 539-542.
    [67]袁成凌, 余曾亮. 低能粒子束在生物技术中的应用研究[J]. 中国生物工程杂志, 2003, 23(4): 57-61.
    [68]梁慧星. 离子注入技术在微生物诱变育种中的研究[J]. 安徽农业科学, 2007, 35(9): 2564-2565.
    [69]龚加顺, 肖琳, 姚建铭, 等. 单宁酶高产菌株发酵条件研究[J]. 西南农业大学学报, 1999, 21(5): 433-436.
    [70]刘梅, 张鹏, 崔晓兰. 离子注入选育霉酚酸高产菌株及其发酵条件研究[J], 微生物学报, 2006, 46(5): 816-819.
    [71]余增亮, 邱励俭, 霍裕平. 离子注入生物效应研究及育种研究进展[J]. 安徽农学院学报, 1991, 18(4): 251-257.
    [72]朱非, 安志东, 王健. 亚硝基胍诱变选育林肯霉素高产菌株[J]. 氨基酸和生物资源, 1999, 21(2): 16-18.
    [73]任超, 马王向坡, 李宝库, 等. Avermectin B1a组分高产菌株的诱变育种[J]. 中国抗生素杂志, 2006, 31 (1): 52-55.
    [74]胡海峰, 张琴, 朱宝泉. 抗生素的耐药性与菌株的优化[M]. 国外医药抗生素分册, 2002, 23(3): 124-128.
    [75]郑幼霞, 徐小雪, 张庭兰. 链霉菌原生质体种间融合重组的研究[J]. 生物工程学报, 1985, 1 (3): 32-37.
    [76]薛禹谷. 我国链霉菌遗传学研究的回顾和展望[J]. 中国抗生素杂志, 1990, 15(3): 225-230.
    [77]Sermontigspada Sermontll. Genetic Recombination in Streptomyces [J]. Natrure, 1955, 17: 116-121.
    [78]Gomi S, Ikeda D, Nakamura H, et al. Isolation and structure of a new antibiotic, Indolizomycin, produced by a strain SK2-52 obtained by interspecies fusion treatment [J]. Journal of Antibiotics, 1984, 37(11): 1491-1494.
    [79]Skatrud PL&Queener SW. An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium[J]. Gene, 1989, 78(2): 331-338.
    [80]Malmberg L H, Hu WS&Sherman D H. Percursor flux control through targeted chromoso -mal insertion of the lysine aminotransferase (lac) gene in Cephamycin C biosynthesis[J]. Bacteriol, 1993, 175, (21): 6916-6924.
    [81]Kumada Y, Anzai H, Takano E, et al. The bialaphos resistance gene(bar) plays a role in both self-defense and bialophos biosynthesis in Streptomyces hygroscopicus[J]. Antibiot, 1998, 41(12): 1838-1845.
    [82]陈春福, 郭一平, 王永胜, 等. 林可霉素产生菌的推理选育[J]. 中国抗生素杂, 2002, 27(7): 394-398 .
    [83]金志华, 吴亚铭, 金一平, 等. 普那霉素产生菌的推理选育[J]. 中国抗生素杂志, 2004, 29(5): 275-279.
    [84]周德庆. 微生物学实验手册[M]. 上海: 上海科学技术出版社, 1986, 121-123.
    [85]Bell D K, Wells H D, Markham C R. In vitro antagonism of Trichoderma species against fungal pathogens[J]. Phytopath, 1982, 72: 379-382.
    [86]冉红艳, 葛绍荣, 陶勇, 等. 一株拮抗姜瘟青枯假单胞杆菌的链霉菌的分离及鉴定[J].微生物学报, 2005, 45(3): 325-328.
    [87]El Ghaouth A, Smilanick J L, Brown G E, et al. Control of Decay of Apple and Citrus Fruits in Semicommercial Tests with Candida saitoana and 2-Deoxy-D-glucose[J]. Biological Control, 2001, 20: 96-101.
    [88]Benbow J M, Sugar D. Fruit surface colonization and biological control of postharvest diseases of pear by preharvest yeast applications[J]. Plant Diseases, 1999, 9: 839-843.
    [89]姜云, 黄丽丽, 陈长卿, 等. 一株拮抗番茄叶霉病菌的放线菌筛选、鉴定及发酵条件研究[J]. 微生物学报, 2007, 47(4): 622-627.
    [90]张蕾, 刘春琴, 高智慧, 等. 链霉菌ZG0429的分类鉴定与链酶亲和素的分离纯化研究[J]. 微生物学报, 2007, 47(1): 7-10.
    [91]姜成林, 徐丽华, 许宗雄. 放线菌分类鉴定[M]. 昆明: 云南大学出版社, 1995, 92-99.
    [92]J.萨姆布鲁克, E.F.弗里奇, T.曼尼阿蒂斯. 分子克隆试验指南[M]. 北京: 科学出版社, 2002, 19-56.
    [93]刘志恒, 姜成林. 放线菌现代生物学与生物技术[M]. 北京: 科学出版社, 2004, 102 -321.
    [94]Brunel B, Givaudan A. Fast and accurate identification of Xenorhabdus and Photorhab -dus species by restriction analysis of PCR amplified 16SrRNA gene[J]. Appl Environ Micr -obiol, 1997, 63: 574-580.
    [95]Devereux R, He S H, Doyle C L, et al. Diversity and origin of Desulfovibio species: hy -logenetic definition of a family[J]. Bacteriol, 1990, 172: 3609-3619.
    [96]中国科学院微生物研究所放线菌分类组. 链霉菌鉴定手册[M]. 北京: 科学出版社, 1975, 113-15.
    [97]S. A. 瓦克斯曼著, 阎逊初译. 放线菌的分类和鉴定[M]. 北京: 科学出版社, 1977, 372-375.
    [98]Fry N K, Warwick S, Saunders N A, et al. The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae[J]. Gen Microbiol, 1991, 137: 1215- 1222.
    [99]Oscar H, Martinez Costa, Magdalena Z, et al. The promoter of a cold-shock-like gene has pleiotropic effects on Streptomyces antibiotic biosynthesis [J]. FEMS microbiology letters, 2003, 220: 215-221.
    [100]Zohreh H, Claire M, Barbara H, et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor[J]. Chemistry&B -iology, 2002, 9: 1175-1187.
    [101]施巧琴, 吴松刚. 工业微生物育种学[M]. 北京: 科学出版社, 2003, 125-126.
    [102]孙琦. 山东链霉菌诱变育种及发酵条件的研究[D]. 济南: 山东大学, 2005, 32-33.
    [103]李壮. 抗稻瘟病的烬灰吸水链霉菌D-2变异菌株的产生及其应用研究[D]. 成都: 四川农业大学, 2006, 20.
    [104]汪志芸. 抗生素产生菌AP19-1的鉴定及UV诱变育种的研究[D]. 杭州: 浙江大学, 2003, 11-12.
    [105]钟娟, 周金燕, 谭红. 抗真菌多肽—捷安肽素高产菌的选育[J]. 应用与环境生物学报, 2004, 10(1): 104-107.
    [106]姚占芳, 吴云汉. 微生物学实验技术[M]. 北京: 气象出版社, 1998.
    [107]周俊初. 微生物遗传学[M]. 北京: 中国农业出版社, 1998.
    [108]王清海, 万平平, 李安娜, 等. 土壤拮抗链霉菌R15菌株发酵产物的抑菌作用[J]. 中国农学通报, 2006, 22(2): 327-330.
    [109]Ahn S J and Hwang B K. Isolation of antibiotic-producing actinomycetes Antagonistic to Phytophthora capsici from peper-growing soils[J]. Korean J Mycol, 1992, 20: 259-268.
    [110]黄伟平, 方丽萍, 姬志勤, 等. 放线菌A2菌株代谢产物的研究初报[J]. 农药, 2007, 46(4): 232-234.
    [111]Hwang activity B K, Ahn S J and Moon S S. Production, purification, and antagifungal activity of the antibiotic nucleoside, tubercidin, produced by Streptomyces violaleoniger[J]. Can J Bot. 1994, 72: 480-485.
    [112]马艳, 常志州, 赵江涛, 等. 一株疫病拮抗青霉 Pst10 菌株的抗菌活性及其对辣椒疫病的盆栽防效[J]. 中国生物防治, 2006, 22(3): 239–243.
    [113]Nunes C, Usall J, Teixido N, et al. Post-harvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples[J]. Journal of Applied Microbiology, 2002, 92: 247-255.
    [114]Spadaro D, Gullino M L. State of the art and future prospects of the biological control of postharvest fruit diseases[J]. International journal of food microbiology, 2004, 91: 185-194.
    [115]Fravel D R. Role of antibiosis in the biocontrol of plant diseases[J]. Annu Rev Phytopath -ology, 1988, 26-75.
    [116]Spadaro D, Vola R, Piano S, Gullino M L. Mechanisms of action and efficacy of four iso -lates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples [J]. Postharvest Biology and Technology, 2002, 24: 123-134.
    [117]郑雅楠, 杨宇, 吕国忠, 等. 土壤放线菌分离方法研究[J]. 安徽农业科学, 2006, 34(6): 1167-1168, 1170.
    [118]宗兆锋, 郭小芳, 韩立荣, 等. 诱捕分离土壤中的生防放线菌[J]. 西北农林科技大学学报(自然科学版), 2004, 32(11): 19-22.
    [119]Weissburg WG, Barns SM. 16s ribosomal DNA amplification for pbylogenntic study [J]. Bacterial, 1991, 173: 697-703.
    [120]陈波, 张玲, 贺新生, 等. 用抗性筛选法选育γ-亚麻酸(GLA)高产菌株[J]. 微生物学通报, 2003, 30(1): 53-56.
    [121]王晓青. 农用抗生素2-16高产菌株选育及发酵优化组合研究[D]. 北京: 中国农业科学院, 2004, 23.
    [122]张瑞平. 菌株 S15 发酵条件、抗生素提取及对白菜黑斑病防治效果的初步研究[D]. 保定: 河北农业大学, 2001, 29-30.
    [123]魏松红, 纪明山, 李艳丽, 等. 番茄叶霉病菌拮抗菌的筛选及其发酵条件[J]. 中国生物防治, 2007, 23(1): 60-63.
    [124]刘宇, 刘建华, 刘伟成, 等. 利迪链霉菌 A02 诱导番茄抗灰霉病作用机理研究[J]. 河北农业大学学报, 2007, 30(2): 27-30.
    [125]Jeun Y C, Park K S, Kim C H, et al. Cytological observations of cucumber plants during induced resistance elicited by Rhizobacteria [J]. Biological Control, 2004(29): 34-42.
    [126]张桂芝, 杨世忠, 张维一. 酚类物质对哈密瓜两种主要致腐病原产生的细胞壁降解酶活性的影响[J]. 食品科学, 2006, 27(8): 125-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700