始旋链霉菌普那霉素发酵及与分离耦合工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普那霉素是由始旋链霉菌产生的一种链阳性菌素类抗生素,对包括甲氧西林耐药的金黄色葡萄球菌、万古霉素耐药的肠球菌等在内的大多数革兰氏阳性菌均具有较强的杀菌活性,且抗生素后效应较长,被专家们视为治疗顽固性革兰氏阳性菌感染的特选药物。目前,普那霉素的生产水平较低,远不能满足临床上的需求。本文将围绕如何提高普那霉素的产量和质量,对Streptomyces pristinaespiralisXC416的发酵工艺、普那霉素的分离纯化工艺等进行较为系统的研究,并探索采用树脂吸附的原位分离技术与发酵相耦合生产普那霉素的新工艺。
     研究了S.pristinaespiralis XC416的摇瓶发酵条件。通过单因素试验和以响应面为主的统计学方法对发酵培养基进行了优化,优化后的发酵培养基组成为:可溶性淀粉65.45g/L,葡萄糖9.30g/L,豆饼粉10g/L,蛋白胨5g/L,鱼粉10 g/L,酵母粉3 g/L,(NH_4)_2SO_4 1.5g/L,MgSO_4·7H_2O 4.93g/L,KH_2PO_4 0.2g/L,NaNO_30.75g/L,CaCO_34g/L。优化后的摇瓶培养条件为:种龄48 h,接种量8%,摇瓶装液量25 mL/250 mL,发酵初始pH值6.5~7.0,温度23℃,摇床转速为240rpm。在此条件下,S.pristinaespiralis XC416的摇瓶发酵产量达到了490.7 mg/L。
     以生物反应与分离耦合的集成化思路为指导,建立了以JD-1大孔吸附树脂直接从发酵液中吸附分离目标产物的原位分离技术并耦合普那霉素发酵的新方法。在S.pristinaespiralis XC416摇瓶发酵45 h时添加8%(w/v)JD-1树脂,普那霉素的产量达到了1353 mg/L,JD-1树脂对普那霉素的吸附容量约为13.5 mg/g。
     在5 L发酵罐上对S.pristinaespiralis XC416分批发酵的代谢规律进行了研究,确定了采用分两阶段控制溶氧水平的分批发酵工艺,使普那霉素的产量达到了604 mg/L。并在此基础上建立了普那霉素分批发酵的形态学结构模型,该模型能较好地反映普那霉素的发酵过程。同时以模糊理论为基础建立了S.pristinaespiralis XC416的模糊生长动力学模型,普那霉素发酵过程的生长生产耦合度为1.64%,为典型的非生长耦联过程。
     建立了对发酵液中的普那霉素进行分离纯化的硅胶柱层析方法。优化后的柱层析操作条件为:选用100~200目的硅胶,二氯甲烷:乙酸乙酯:乙醇=80:35:5(V:V)为洗脱剂,流速为2.0 mL/min,普那霉素的进样浓度为2.26g/L,硅胶的总负载量约为0.81 mg/g,温度为25℃。在此条件下分离所得产品的纯度约为96%,回收率约为97%。通过制备高效液相色谱法对硅胶柱层析分离后得到的产品进一步纯化精制,最后制备得到了纯度在99%以上的普那霉素Ⅱ_A纯品,并运用紫外光谱、红外光谱、核磁共振和质谱等多种现代波谱学方法对所制备的普那霉素Ⅱ_A纯品进行了结构鉴定。
     探索了采用扩张床吸附分离异位耦合发酵生产普那霉素的新工艺。采用游离菌体的耦合模式,发酵液的粘度过高,导致形成“直通槽”等不利于床层稳定的因素,阻碍了耦合操作的顺利进行。采用固定化菌体的耦合模式,虽然有利于降低发酵液的粘度,使床层较为稳定,但在启动耦合操作24 h之内发酵液即被杂菌污染,致使耦合操作仍无法顺利进行。
Pristinamycins, produced by Streptomyces pristinaespiralis, is a member of streptogramin family of antibiotics. It not only has strong antibacterial activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, but exhibits a prolonged post-antibiotics effect. So pristinamycins is considered as the specially selected medicament against the stubborn gram-positive bacterium infection. Up to now, the production level of pristinamycins is still so low that it could not meet the clinical requirement. In this paper, the fermentation, separation and purification techniques for pristinamycins production were all systematically studied. In addition, a new technique, the integrated fermentation and separation technology based on the in situ product removal technique by adsorbent resin, was developed to produce pristinamycins.
     The fermentation condition in shake flasks by Streptomyces pristinaespiralis XC416 was studied. The production medium was optimized both by 'one-variable-at-a-time' approach and the statistical methods based on Response Surface Method. The optimized medium composition was as follows: soluble starch 65.45 g/L, glucose 9.30 g/L, soybean flour 10 g/L, peptone 5 g/L, fish flour 10 g/L, yeast extract 3 g/L, (NH_4)SO_4 1.5 g/L, MgSO_4·7H_2O 4.93 g/L, KH_2PO_4 0.2 g/L, NaNO_3 0.75 g/L, CaCO_3 4 g/L. And the optimized cultural condition in shake flasks was as follows: inoculum age of 48 h, inoculum level of 8%, medium volume of 25 mL in a 250 mL shake flask, initial pH value of 6.5-7.0, temperature of 23℃, shaking speed of 240 rpm. Under the above conditions, S. pristinaespiralis XC416 could produce 490.7 mg/L pristinamycins in the shake flask.
     Taking the integrated bioreaction and separation process as guide, a new technique, viz. the technique of in situ product removal based on the adsorption of the product by macroreticular resin JD-1 directly from the fermentation broth, was developed for pristinamycins production. When 8% (w/v) resin JD-1 was added into the broth at 45 h during the fermentation process, the yield of pristinamycins could reach 1353 mg/L and the adsorption capacity of resin JD-1 on pristinamycins was about 13.5 mg/g.
     The batch fermentation of Streptomyces pristinaespiralis XC416 in 5 L bioreactor was studied, and the yield of pristinamycins reached 604 mg/L by controlling the different dissolved oxygen levels during the fermentation process. On the other hand, a morphologically structured model was developed, well simulating the batch fermentation process for pristinamycins production. Also, a fuzzy growth model of Streptomyces pristinaespiralis XC416 was developed based on the fuzzy theory. From the model, the coupled degree of the cell growth and the pristinamycins production was 1.64%, indicating that it is a non growth-associated process.
     The separation and purification of pristinamycins from the fermentation broth by the method of silica gel column chromatography was developed. And the operational condition was as follows: 100-200 mesh silica gel to be the stationary phase, solvent system of methlene chloride: ethyl acetate: ethanol = 80:35:5(V:V) to be the eluent, the flow rate of the eluent to be 2.0 mL/min, the feeding concentration of pristinamycins to be 2.26 g/L, the total loading amount of the silica gel to be 0.81 mg/g and the temperature to be 25℃. Under the above condition, the product with the purity of about 96% and the recovery of about 97% was finally obtained. After then, by the preparative HPLC method to purify and refine the product obtained above further, the final product, viz. pristinamycinⅡ_A with the purity of more than 99% was obtained. And the chemical structure of pristinamycinⅡ_A was elucidated by UV, IR, NMR and MS methods.
     The exploring of a new technique to produce pristinamycins by using the integrated bioreaction and separation process based on expanded bed adsorption technique was conducted. When using the integrated mode of free cell, the high viscosity of the broth could easily cause some negative factors, such as the liquid channels, hampering the successful operation. And when using the integrated mode of immobilized cell, although the viscosity of the broth was effectively reduced and the expanded bed was stabilized, the broth was contaminated by some bacteria in 24 h after the onset of the integrated operation, also hampering the successful operation.
引文
[1] 张嗣良,储炬,庄英萍.抗生素发酵过程优化技术研究.中国抗生素杂志,2002,27 (9):572-576.
    
    [2] Khosla R., Verma D.D., Kapur A., Aruna R.V., Khanna N. Streptogramins: a new class of antibiotics. Indian J. Med. Sci., 1999,53 (3): 111-119.
    
    [3] 抗生素和合成抗菌药.http://www.yy2000.com/xinyaodongtai/gcppeixun/ kangshengsu_1.htm中国医药咨询网
    
    [4] Pechere J.C.链阳性菌素——一类独特的抗生素.国外医学药学分册,1997,24(3): 172-174.
    
    [5] 周坚芬.注射用链阳性菌素衍生物RP59500的特性及应用前景.国外医药抗生素分 册,1996,17(6):425-428.
    
    [6] 陆效平,曹苹,阮芝娟,文海.首个链阳性菌素注射剂Synercid面市.药学进展,2000,24 (2):127-128.
    
    [7] Vazquez D. The streptogramin family of antibiotics. In: Corcora J.N., Hahn F.E., eds.Antibiotics. vo1 3. Springer Verlag: Berlin, 1975,521-534.
    
    [8] Shaginian A., Rosen M.C., Binkowski B.F., Belshaw P.J. Solid-phase synthesis ofdihydrovirginiamycin S1, a streptogramin B antibiotic. Chem. Eur. J., 2004, 10 (17):4334-4340.
    
    [9] 金志华,吴亚铭,岑沛霖.链阳性菌素衍生物的半合成及构效关系.中国现代应用 药学杂志,2000,17(4):297-301.
    
    [10] Neu H.C., Chin N., Gu J. The in-vitro activity of new streptogramins, RP59500, RP57669 and RP54476,alone and in combination. J. Antimicrob. Chemother., 1992, 30 (Suppl A): 83-94.
    
    [11] Bouanchaud D.H. In-vivo synergic activity and fractional inhibitory concentration (FIC) of the components of a semisynthetic streptogramin, RP59500. J.Antimicrob. Chemother., 1992,30 (Suppl A): 95-99.
    
    [12] 伯兰兹V.,蒂伯特D.,巴马斯-杰库斯N.,伯兰切F.,克罗泽特J.,巴里尔J.C.,德 布斯切L.,法米崇A.,帕里斯J.M.,杜特鲁-罗斯特G.新型链阳性菌素和通过突变 合成制备链阳性菌素的方法.CN 1152338A,1997.
    
    [13] Anger P., Bonnavaud B., Callet A., Lefevre P. Purified form of streptogramins, its preparation and pharmaceutical compositions containing it. US 5637565,1997.
    
    [14] 新颖抗生素达托霉素及市场前景分析.http://www.chinamsr.net/ec/clincdrug/kgr /200601/20060126100455.html东方医药网
    
    [15] Mancy D.I., Charenton, Ninet L., Preud'homme J. Process for the production of pristinamycin. US 3154475, 1964.
    
    [16] Preud'homme J., Tarridec P., Belloc A. Pristinamycine: isolement, caractérisation et identification des constiuant. Boll. Soc. Chim. Fr., 1968,2: 585-591.
    
    [17] 金志华,吴亚铭,金一平.普那霉素产生菌的推理选育.中国抗生素杂志,2004,29 (5):275-278.
    
    [18] Blanc, V., Gil P., Bamas-Jacques N., Lorenzon S., Zagorec M., Schleuniger J., Bisch D.,Blanche F., Debussche L., Crouzet J., Thibaut D. Identification and analysis of genesfrom Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis ofthe 4-dimethylamino-L-phenylalanine precursor of pristinamycin I. Mol.Microbiol.,1997,23(2): 191-202.
    
    [19] Anger P., Bonnavaud B., Callet A., Lefevre P. Purified form of streptogramins, itspreparation and pharmaceutical compositions containing it. US 5637565,1997.
    
    [20] Kingston D.G I., Kolpak M.X., Lefevre J.W., Borup-Grochtmann I. Biosynthesis ofantibiotics of the virginiamycin family. 3. Biosynthesis of virginiamycin M I. J. Am.Chem. Soc, 1983,105 (15): 5106-5110.
    
    [21] Largeron M., Fleury M.B. Acid-base properties of pristinamycin I A and the relatedcompounds. J. Pharm. Sci.,1992,81 (6): 565-568.
    
    [22] Finch R.G. Antibacterial activity of quinupristin/dalfopristin: rationale for clinical use.Drugs, 1996, 51 (Suppl 1): 31-37.
    
    [23] Entenza J.M., Drugeon H., Glauser M.P., Moreillon P. Treatment of experimentalendocarditis due to erythromycin-susceptible or -resistant methicillin-resistantStaphylococcus aureus with RP 59500. Antimicrob. Agents Chemother., 1995, 39 (7):1419-1424.
    
    [24] Kang S. L., Rybak M. J. Pharmacodynamics of RP 59500 alone and in combination withvancomycin against Staphylococcus aureus in an in vitro-infected fibrin clot model.Antimicrob. Agents Chemother., 1995,39 (7): 1505-1511.
    
    [25] Videau D. La pristinamycine et le phénomène de bactériospause. Ann. Inst. Pasteur.,1965, 108: 602-622.
    
    [26] 张致平.微生物药物学.北京:化学工业出版社,第1版,2003.
    
    [27] Paquet V., Goma G., Soucaille P. Induction of pristinamycins production inStreptomyces pristinaespiralis. Biotechnol. Lett., 1992, 14 (11): 1065-1070.
    
    [28] Yamada Y., Sugamura K., Kondo K., Yanagimoto M., Okada H. The structure ofinducing factors for virginiamycin production in Streptomyces virginiae. J. Antibiot.,1987,40(4): 496-504.
    
    [29] Kondo K., Higashi Y, Sakuda S., Nihira T, Yamada Y. New virginiae butanolides fromStreptomyces virginiae. J. Antibiot., 1989,42 (12): 1873-1876.
    
    [30] Corvini P.F.X., Delaunay S., Maujean F., Rondags E., Vivier H., Goergen J.L., GermainP. Intracellular pH of Streptomyces pristinaespiralis is correlated to the sequential use of??carbon sources during the pristinamycins-producing process. Enzyme Microb. Technol.,2004,34(2): 101-107.
    
    [31] Corvini P.F.X., Gautier H., Rondags E., Vivier H., Goergen J.L., Germain P. IntracllularpH determination of pristinamycin-producing Streptomyces pristinaespiralis by imageanalysis. Microbiology, 2000,146: 2671-2678.
    
    [32] Voelker F., Altaba S. Nitrogen source governs the patterns of growth and pristinamycinproduction in'Streptomyces pristinaespiralis'. Microbiology, 2001,147: 2447-2459.
    
    [33] Jin Z.H., Lei Y.L., Lin J.P., Cen PL. Improvement of pristinamycin-producingStreptomyces pristinaespiralis by rational screening. World J. Microbiol. Biotechnol.,2005,22(2): 129-134.
    
    [34] 朱林东,金志华.普那霉素产生菌的原生质体诱变育种.中国抗生素杂志,2006,31 (10):591-594.
    
    [35] Paquet V., Myint M., Roque C, Soucaille P. Partitioning of pristinamycin in aqueous two-phase systems: A first step toward the development of antibiotic production by extractive fermentation. Biotechnol. Bioeng., 1994,44 (4): 445-451.
    
    [36] Drogue S., Rolet M.C., Thiébaut D., Rosset R. Separation of pristinamycins by high-speed counter-current chromatography I. Selection of solvent system and preliminary preparative studies. J. Chromatogr. A, 1992, 593 (1-2): 363-371.
    
    [37] Genevieve B., Catherine J., Patricia L., Corinne L., Alain S. Microorganisms, preparation method therefore and uses thereof. WO 9320182, 1993.
    
    [38] 朱自强,关怡新,李勉.双水相萃取在抗生素制备中的应用进展.国外医药抗生素 分册,1998,19(3):198-200.
    
    [39] Anger P., Bonnavaud B., Callet A., Lefevre P. Purified form of streptogramins, itspreparation and pharmaceutical compositions containing it. US 5637565, 1997.
    
    [40] Bamas-Jacques N., Lorenzon S., Lacroix P., de Swetschin C, Crouzet J. Clusterorganization of the genes of Streptomyces pristinaespiralis involved in pristinamycinbiosynthesis and resistance elucidated by pulsed-field gel electrophoresis. J. Appl.Microbiol., 1999,87 (6): 939-948.
    
    [41] Blanc V., Blanche F., Crouzet J., Jacques N., Lacroix P., Thibaut D., Zagorec M.Polypeptides involved in streptogramin biosynthesis, nucleotide sequences coding forsaid polypeptides and use thereof. WO 9408014,1994.
    
    [42] Blanc V., Thibaut D., Bamas-Jacques N., Blanche F., Crouzet J., Barriere J., DebusscheL., Famechon A., Paris J., Dutruc-Rosset G New streptogramin B derivatives useful asantibiotics-produced by new mutants of Streptomyces having altered genes forstreptogramin B biosynthesis. WO 9601901,1996.
    
    [43] Sezonov G., Blanc V., Bamas-Jacques N., Friedmann A., Pernodet J. L., Guerineau M.Complete conversion of antibiotic precursor to pristinamycin Ⅱ_A by overexpression ofStreptomyces pristinaespiralis biosynthetic genes. Nat. Biotechnol., 1997, 15: 349-353.
    
    [44] Mahlert C., Sieber S. A., Grunewald J., Marahiel M.A Chemoenzymatic approach to enantiopure streptogramin B variants: characterization of stereoselective pristinamycin I cyclase from Streptomyces pristinaespiralis. J. Am. Chem. Soc., 2005, 127 (26): 9571-9580.
    
    [45] 王雪根,何若平,欧阳平凯.生物反应-分离耦合过程研究综述.江苏化工,1999,27 (1):7-12.
    
    [46] Freeman A., Woodley J.M., Lilly M.D. In situ product removal as a tool for bioprocessing. Bio/technology, 1993, 11: 1007-1012.
    
    [47] 岑沛霖,林建平,江龙法,王文序.生物反应与分离耦合过程的研究现状和趋势.化 工时刊,1997,11(5):34-39.
    
    [48] Stark D., Vonstockar U. In situ product removal (ISPR) in whole cell biotechnologyduring the last twenty years.In: Scheper T.Advances in biochemicalengineering/biotechnology. Heidelberg, Springer-Verlag, 2003, 80: 149-175.
    
    [49] Dominguez J.M., Cao N., Gong C.S., Tsao GT. Ethanol production from xylose with theyeast Pichia stipitis and simultaneous product recovery by gas stripping using a gas-liftloop fermentor with attached side-arm (GLSA). Biotechnol. Bioeng., 2000, 67 (3):336-343.
    
    [50] Hollmann D., Switalski J., Geipel S., Onken U. Extractive fermentation of gibberellicacid by Gibberella fujikuroi. J. Ferment. Bioeng., 1995, 79 (6): 594-600.
    
    [51] Fabre C.E., Condoret J.S., Marty A. Extractive fermentation of aroma with supercriticalCO_2. Biotechnol. Bioeng., 1999, 64 (4): 392-400.
    
    [52] Kulkarni N., Vaidya A., Rao M . Extractive cultivation of recombinant escherichia coliusing aqueous two phase systems for production and separation of extracellular xylanase.Biochem. Biophys. Res. Commun., 1999,255 (2): 274-278.
    
    [53] Honda H.,Toyama Y.,Takahazeko H., Nakazeko T., Kobayashi T. Effective lactic acidproduction by two stage extractive fermentation. J. Ferment. Bioeng., 1995, 79 (6):589-593.
    
    [54] Kyung K. H., Gerhardt P. Continuous production of ethanol by yeast 'immobilized' in amembrane-contained fermentor. Biotechnol. Bioeng., 1984, 26 (3): 252-256.
    
    [55] Vonktaveesuk P., Tonokawa M., Ishizaki A. Simulation of the rate of L-lactatefermentation using Lactoccocus lactis IO-1 by periodic electrodialysis. J. Ferment.Bioeng., 1994,77 (5): 508-512.
    
    [56] Choudhury J.P., Ghosh P., Guha B.K. Ethanol separation from molasses basedfermentation broth by reverse osmosis. Biotechnol. Lett., 1986, 8(10): 731-734.
    
    [57] Kim C.H., Kim S.W., Hong S.I. An integrated fermentation-separation process for theproduction of red pigment by Serratia sp. KH-95. Process Biochem., 1999, 35 (5):??485-490.
    
    [58] Dufosse L., Souchon I., Feron G, Latrasse A., Spinnler H.E. In situ detoxification of thefermentation medium during γ- decalactone production with the yeast Sporidiobolussalmonicolor. Biotechnol. Progr., 1999,15 (1): 135-139.
    
    [59] Einicke W.D., Mauersberger P., Handel J., Breuel A. In situ recovery of fermentationproducts by selective adsorption and ion exchange. Chem. Tech. (Leipzig), 1995,47 (5):261-268.
    
    [60] González-VaraY.R.A., Vaccari G, Dosi E., Trilli A., Rossi M., Matteuzzi D. Enhancedproduction of L-(+)-lactic acid in chemostat by Lactobacillus casei DSM 20011 usingion-exchange resins and cross-flow filtration in a fully automated pilot plant controlledvia NIR. Biotechnol. Bioeng., 2000,67 (2): 147-156.
    
    [61] Dukler A., Freeman A. Affinity-based in situ product removal coupled withco-immobilization of oily substrate and filamentous fungus. J. Mol.Recognit., 1998,11 (1-6): 231-235.
    
    [62] Aguma S., Tsunekawa H., Okabe M., Okamoto R., Aiba S. Hyper-production ofL-trytophan via fermentation with crystallization. Appl. Microbiol. Biotechnol., 1993,39 (4-5): 471-476.
    
    [63] 张虹,柳正良,王洪泉.大孔吸附树脂在药学领域的应用.中国医药工业杂志,2001, 32(1):41-44.
    
    [64] 顾觉奋,魏爱琳.大孔网状吸附剂在微生物制药分离纯化上的应用.离子交换与吸 附,2002,18(3):281-288.
    
    [65] Van der Wielen L.A., Luyben K.C. Integrated product formation and recovery infermentation. Curr. Opin. Biotechnol., 1992,3 (2): 130-138.
    
    [66] Gastaldo L., Marinelli F., Acquarella C, Restelli E., Quarta C. Improvement of thekirromycin fermentation by resin addition. J. Ind. Microbiol. Biotechnol., 1996, 16 (5):305-308.
    
    [67] Lee J.C., Park H.R., Park D.J., Lee H.B., Kim Y.B., Kim C.J. Improved production ofteicoplanin using adsorbent resin in fermentations. Lett. Appl. Microbiol., 2003, 37 (3):196-200.
    
    [68] Lam K.S., Veitch J.A., Lowe S.E., Forenza S. Effect of neutral resins on the productionof dynemicins by Micromonospora chersina. J. Ind. Microbiol., 1995,15 (5): 453-456.
    
    [69] Wang X.D., Tao J.L., Wei D.Z., Shen Y.L., Tong W.Y. Development of an adsorptionprocedure for the direct separation and purification of prodigiosin from culture broth.Biotechnol. Appl. Biochem., 2004,40 (3): 277-280.
    
    [70] 胡纯铿.离子交换树脂分离发酵新工艺生产L-苹果酸的研究.食品与发酵工业, 1999,25(6):33-36.
    
    [71] 卢金照,高年发,杨枫,卢小林.乳酸的发酵与提取耦合工艺.广州食品工业科技,??2004,20(2):17-19.
    
    [72] 李永泉,姚恕,陈文元,俞峰,梅乐和.肌苷发酵与分离耦合过程优化条件研究.高 校化学工程学报,1993,7(1):85-89.
    
    [73] 魏东芝,王学东,沈亚领.一种分离制备灵菌红素的方法.CN1563400A,2005.
    
    [74] 焦瑞身.国内外微生物技术的一些进展.生物工程进展,1990,10(2):1-4.
    
    [75] 窦德献.抗反馈抑制发酵方法及其在生产抗生素中的应用.CN1560262A,2005.
    
    [76] Takors R. Ganzzell-ISPR-prozessentwicklung: chancen und risiken. Chem. Ing. Tech., 2004,76 (12): 1857-1864.
    
    [77] 周金如,宁正祥,宋贤良.食品及生物工程中的过程耦合技术.食品科学,2002,23 (12):125-128.
    
    [78] 杨晶,伍云涛,汤晓玉,石尔,肖泽仪.乙醇连续发酵-渗透汽化耦合系统发酵动力 学研究.四川化工,2006,9(5):13-16.
    
    [79] 汤凤霞,乔长晟.原位分离技术在L-乳酸发酵中的应用.宁夏农学院学报,2001,22 (2):70-72.
    
    [80] Cornelissen G., Bertelsen H.P.,Lenz K., Hahn B., Schultz M., Scheffler U., Werner E.,Leptien H., Krüβ S., Jansen A.K. , Elsholz O., Gliem T., Wilhelm B.U., Sowa E.,Radeke H.H., Luttman R. Production of recombination proteins with Pichia pastoris inintegrated processing. Eng. Life Sci., 2003, 3 (9): 361-370.
    
    [81] Sun Y., Li Y.L., Bai S., Hu Z.D. Modeling and simulation of an in situ product removalprocess for lactic acid production in an airlift bioreactor. Ind. Eng. Chem. Res., 1999, 38(9): 3290-3295.
    
    [82] Shah M.N., Lee Y.Y., Wyman C.E., Goodman B.J. Process improvement inacetone-butanol production from hardwood by simultaneous saccharification andextractive fermentation. Appl. Biochem. Biotechnol., 1994,45-46: 585-597.
    
    [83] Dykstra K.H., Li X.M., Wang H.Y. Computer modeling of antibiotic fermentation withon-line product removal. Biotechnol. Bioeng., 1988, 32 (3): 356-362.
    
    [84] Sch(a|¨)fer T., Bengtson G., Pingel H., B(o|¨)ddeker K. W., Crespo J. P. S. G Recovery ofaroma compounds from a wine-must fermentation by organophilic pervaporation.Biotechnol. Bioeng., 1999,62 (4): 412-421.
    
    [85] Iyer P.V., Lee YY. Simultaneous saccharification and extractive fermentation oflignocellulosic materials into lactic acid in a two-zone fermentor-extractor system. Appl.Biochem. Biotechnol., 1999,78 (1-3): 409-419.
    
    [86] Choudhury J.P., Ghosh P., Guha B.K. Ethanol separation from molasses basedfermentation broth by reverse osmosis. Biotechnol. Lett., 1986,8 (10): 731-734.
    
    [87] Van der Wielen L.A., Luyben K.C. Integrated product formation and recovery infermentation. Curr. Opin. Biotechnol., 1992,3 (2): 130-138.
    
    [88] Groot W.J., Kraayenbrink M.R., van der Lans R.G.J.M., Luyben K.Ch.A.M. Ethanol??production in an integrated fermentation/membrane system. Process simulations and economics. Bioprocess Biosyst. Eng., 1993, 8 (5-6): 189-201.
    
    [89] Schoutens G.H., Groot W.J. Economic feasibility of the production of isopropanol-butanol-ethanol fuels from whey permeate. Process Biochem., 1985, 20: 117-121.
    
    [90] 熊宗贵.发酵工艺原理.北京:中国医药科技出版社,1995.
    
    [91] 陈坚,堵国成,李寅,华兆哲.发酵工程实验技术.北京:化学工业出版社,2004.
    
    [92] 张龙翔.生化实验方法和技术.北京:高等教育出版社,1997.
    
    [93] 天津轻工业学院编.工业发酵分析.北京:中国轻工业出版社,1989.
    
    [94] Leal C., Codony R., Compano R. Determination of macrolide antibiotic by liquidchromatography. J. Chromato. A, 2001,910 (2): 285-290.
    
    [95] Kanfer I., Skinner M.F., Walker R.B. Analysis of macrolide antibiotics. J. Chromato. A,1998,812(1): 255-286.
    
    [96] Thibaut D., Ratet N., Bisch D., Faucher D., Debussche L., Blanche F. Purification of thetwo-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycinⅡ_B during the last step of pristinamycin Ⅱ_A biosynthesis. J. Bacteriol., 1995, 177(18):5199-5205.
    
    [97] 张艳,孟庆芳,杨文香,刘大群,李亚宁,张汀,牛昆.生防菌株Men-myco-93-63发 酵培养基优化条件的研究.河北农业大学学报,2006,29(2):77-82.
    
    [98] 刘建忠,熊亚红,翁丽萍,计亮年.生物过程的优化.中山大学学报(自然科学版), 2002,41(增刊):132-136.
    
    [99] Stowe R.A., Mayer R.P. Efficient screening of process variables. Ind. Eng. Chem., 1966,58 (2): 36-40.
    
    [100] Williams K.R. Comparing screening designs. Ind. Eng. Chem., 1963,55 (6): 29-32.
    
    [101] Silva C.J.S.M., Gübitz G, Cavaco-Paulo A., Optimisation of a serine protease couplingto Eudragit S-100 by experimental design techniques. J. Chem. Technol. Biotechnol.,2006,81(1): 8-16.
    
    [102] Chen X., Chen S.W., Sun M., Yu Z.N., Medium optimization by response surfacemethodology for poly-γ-glutamic acid production using dairy manure as the basis of asolid substrate. Appl. Microbiol. Biotechnol., 2005,69 (4): 390-396.
    
    [103] Montgomery D.C. Design and analysis of experiments. New York : John Wiley &Sons,3~(rd) ed., 1991.
    
    [104] 张家学,陈守文,孙明,喻子牛.苏云金芽胞杆菌不同发酵阶段的补糖发酵.无锡 轻工业大学学报,2005,24(1):11-14.
    
    [105] 邬行彦,熊宗贵,胡章助.抗生素生产工艺学.北京:化学工业出版社,1982.
    
    [106] Kruetzfeldt R., Ross A., Deckwer W.D. Selective separation of adsorption resins with the decanter as an unit-operation in whole-broth-processing. Bioengineering, 1992,8 (4):??32-34.
    
    [107] 浦宇,王芝祥.吸附树脂及其在天然产物和抗生素中的应用.中国医药工业杂志, 2003,34(12):636-644.
    
    [108] Kusunose Y., Wang D. Preliminary studies on extractive phenylalanine fermentation with uncharged polymeric beads. Chem.Eng. Commun., 2004,191 (9): 1185-1198.
    
    [109] 俞俊棠,唐孝宣.生物工艺学(下册).上海:华东理工大学出版社,1992.
    
    [110] Bohinski R.C. Modern concepts in biochemistry,Allyn &Bacon, 5~(th) Ed., 1988.
    
    [111] 范代娣.细胞培养与蛋白质工程.北京:化学工业出版社,2000.
    
    [112] 周蓬蓬,秦文敏,余龙江,李家麟.表明活性剂对被孢霉产花生四烯酸的影响.华 中科技大学学报(自然科学版),2003,31(5):98-100.
    
    [113] Tian W.N., Braunstein L.D., Pang J.D., Stuhlmeier K.M., Xi Q.C., Tian X.N., Stanton R.C. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol.Chem., 1998,273 (17): 10609-10617.
    
    [114] 赵东峰,梁春艳,任翔,孙树明.溶氧对生物转化泰乐菌素为其酰化物的影响.中 国医药工业杂志,2006,37(3):162-164.
    
    [115] 郜培,陆静波,段作营,毛忠贵,史仲平.溶氧浓度对谷氨酸发酵关键酶的影响.食 品与发酵工业,2005,31(10):72-75.
    
    [116] 居燕苏.微生物生长和发酵的动力学.工业微生物,1991,21(2):19-28.
    
    [117] Liu G, Xu Z.N., Cen P.L. A morphologically structured model for mycelial growth and secondary metabolite formation. Chin. J. Chem. Eng., 2000,8 (1): 46-51.
    
    [118] 刘刚,夏黎明,岑沛霖.丝状菌生长模型研究(Ⅰ模型的建立及丝状菌微观生长过 程的描述).生物数学学报,1998,13(6):967-976.
    
    [119] 刘刚,夏黎明,岑沛霖.丝状菌生长模型研究(Ⅱ实际发酵过程的数学模型).生物 数学学报,1998,13(6):977-984.
    
    [120] 刘刚.抗生素发酵动力学.博士学位论文.浙江大学,1997.
    
    [121] 于湘莉,苗志奇,元英进,李睿洁,张磊.基于模糊理论的酵母发酵动力学模型.无 锡轻工业大学学报,2002,21(6):638-641.
    
    [122] Yuan Y.J., Miao Z.Q., Li S.Y. The fuzzy neural network controller in yeast fed-batch fermentation. Chem. Eng. Commun., 1999,174: 167-183.
    
    [123] 张磊.基因工程α-2b干扰素新型发酵技术及其结构修饰和新制荆研究.博士学位 论文.天津大学,2003.
    
    [124] 赵振宇,徐用懋.模糊理论与神经网络基础及应用.北京:清华大学出版社,1996.
    
    [125] 常建华,董绮功.波谱原理及解析.北京:科学出版社,第2版,2005。
    
    [126] 熊少祥,蒲丹,幸斌,王光辉.傅里叶变换离子回旋共振质谱测定复杂表面活性剂 组分.分析化学研究报告,2003,31(4):429-432.
    
    [127] Dang J., Bergdahl B.M., Separovic F., Brownlee R.T.C., Metzger R.P. Difference in conformation of Virginiamycin M_1 in chloroform and bound form in the 50S ribosome??or streptogramin acetyltransferase. Aust. J. Chem., 2004,57 (5): 415-418.
    
    [128] Belter P.A. Ion exchange and adsorption in pharmaceutical manufacture. AICHESymposium Series, 1984, Adsorption and ion exchange-progress and future prospects,American Institute of Chemical Engineers: New York, 1984,80 (233): 110-117.
    
    [129] Gailliot F.P., Gleason C, Wilson J.J., Zwarick J. Fluidized bed adsorption for wholebroth extraction. Biotechnol. Progr., 1990,6 (5): 370-375.
    
    [130] Bae J., Moon H., Oh K.K. Kim C.H., Lee D.S., Kim S.W., Hong S.I. A novel bioreactorwith an internal adsorbent for integrated fermentation and recovery of prodigiosin-likepigment production from Serratia sp. KH-95. Biotechnol. Lett., 2001, 23 (16):1315-1319.
    
    [131] 雷引林,金志华,姚善泾,楼冰冰.一种扩张床装置.CN 1269548C,2006.
    
    [132] Al-Dibouni M.R., Garside J. Particle mixing and classification in liquid fluidized beds. Trans. Inst. Chem. Eng., 1979,57:94-103.
    
    [133] 胡洪波,林东强,叶子坚,梅乐和,姚善泾,朱自强.膨胀床的膨胀特征和流体混合 性能.高校化学工程学报,2000,14(2):139-144.
    
    [134] Richardson J.F., Zaki W.N. Sedimentation and fluidization. Tran. Inst. Chem. Eng.,1954, 32: 35-53.
    
    [135] Th(o|¨)mmes J., Bader A., Halfar M. Isolation of monoclonal antibodies from cellcontaining hybridoma broth using a protein A coated adsorbent in expanded bed. J.Chromatogr.A, 1996,752 (1-2): 111-122.
    
    [136] Carlos C.R., Richardson J.F. Solid movement in liquid fluidized beds. Ⅱ. Measurementsof axial mixing coefficients. Chem. Eng. Sci., 1968,23: 813-824.
    
    [137] Millitzer M., Wenzig E., Peukert W. Process Modeling of in situ-adsorption of abacterial lipase. Biotechnol. Bioeng., 2005,92 (6): 789-801.
    
    [138] Ohashi R., Otero J.M., Chwistek A., Yamato I., Hamel J.F.P. On-line purification ofmonoclonal antibodies using an integrated stirred-tank reactor/expanded bed adsorptionsystem. Biotechnol. Progr.,2002, 18 (6): 1292-1300.
    
    [139] Hamilton G.E., Morton P.H., Young T.W., Lyddiatt A. Process intensification by directproduct sequestration from batch fermentations: application of a fluidised bed, multi-bedexternal loop contactor. Biotechnol. Bioeng., 1999,64 (3): 310-321.
    
    [140] Frej A.K.B., Hjorth R., Hammarstrom A. Pilot scale recovery of recombinant Annexin Vfrom unclarified Escherichia coli homogenate using expanded bed adsorption.Biotechnol. Bioeng., 1994,44 (8): 922-929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700