工业龟裂链霉菌G6PDH基因敲除和自身抗性基因增强提高土霉素生物合成策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土霉素(Oxytetracycline, OTC)是在动物和水产品饲料中应用广泛的重要抗生素,基因调控策略是提高抗生素生物合成的有效方法之一。为此,本论文以工业土霉素产生菌-龟裂链霉菌(Streptomyces rimosus)为研究对象,分别通过初级代谢途径关键酶改造和增强自身抗性基因剂量方法,研究提高土霉素(OTC)生物合成的策略。
     基于初级代谢途径的改变可能会触发次级代谢水平以及细胞生理变化,且结合本实验室以前通过龟裂链霉菌模式菌株M4018中葡萄糖-6-磷酸脱氢酶(Glucose-6-phosphate dehydrogenase, G6PDH)失活来增加土霉素产量的研究,本论文研究了G6PDH编码基因zwfl失活对龟裂链霉菌工业菌(SRI)的影响,得到如下结果:
     (1)构建得到一株G6PDH失活的土霉素高产菌株S-z8,其OTC产量较原始出发菌株SRI提高36.2%;
     (2)将SRI与S-z8发酵生理代谢比较,发现细胞生长到第6天时,SRI的生物量较S-z8高90%,而两者的耗糖速率却没有显著差异。
     另外,本论文从次级代谢角度出发,研究SRI自身抗性基因otrA与otrB拷贝数增加对土霉素生物合成影响。得到如下结果:
     (1)通过位点特异性整合将otrA和otrB分别整合到SRI染色体上,构建筛选得到一株OTC高产突变株S-B80;
     (2)SRI与S-B80两株菌株土霉素对于底物的得率YP/s(mg/g), S-B80比SRI高81.83%;生物量对于底物的得率Yx/s(mg/g) S-B80却较SRI降低了38.58%;
     (3)摇瓶发酵表明,S-B80胞内OTC浓度较SRI降低13.8%,同时S-B80胞内外OTC浓度总和比SRI高14.2%,说明otrB拷贝数增加可提高细胞外排土霉素至胞外的能力,也具有提高土霉素生物合成的作用。
     因此,通过分别对初级代谢中zwfl基因的失活和OTC自身抗性基因otrB拷贝数增加,都能有效提高土霉素的生物合成,为实际工业生产提供了重要基础。
The aromatic polyketide antibiotic oxytetracycline (OTC) produced by Streptomyces rimosus is one of important secondary polyketide metabolites.Currently, regulatory gene manipulation has been developed one of effective ways to improve antibiotic biosynthesis. Taken industrial Streptomyces rimosus(SRI) strain as an example, in this thesis the investigation of gene disruption of a key enzyme in primary metabolic pathways and enhancement of the cell's self-resistant genes were carried out to improve the OTC productivity.
     Based on the facts that perturbation in primary metabolic pathways can affect both the secondary metabolism and physiological characterization, and that zwf2 gene knock-out in a type strain M4018 enhanced OTC production in our previous work, zwfl encoding Glucose-6-phosphate dehydrogenase(G6PDH) was disrupted to explore its effects on oxytetracycline biosynhtesis in an industrail OTC producer SRI. The results were obtained as follows:
     (1) A mutant with zwf1 disruption, designated S-z8, was genetically constructed and successfully screened, The maximum oxytetracycline level in S-z8 was 36.2%higher than that in parent strain SRI.
     (2) Experimental results showed that the biomass of SRI was 90%more than S-z8 on the sixth day when cultured in the shaking flask, however, there were no significant differences in substrate consumption rate between mutant and parent strain.
     In addition, to improve OTC production, extra copy of two self-resistant genes otrA and otrB was introduced into SRI OTC, respectively, the results were as follows:
     (1) otrA or otrB gene was introduced into SRI genome by site-specific integration at attB site and a mutant with high-yield OTC performance was screened, and designated S-B80;
     (2) OTC Yield on substrate (YP/S,mg/g) of S-B80 was 81.83%higher than that of SRI whereas Yx/s(mg/g) of the mutant was 38.58%lower than SRI;
     (3) Compared with SRI, the intracellular OTC contents in SRI-B80 was 13.8% lower, however, total OTC produced by SRI-B80 was 14.2%higher, indicating that otrB could exflux intracelluler OTC into ouside the cell so that it could elevated OTC production by SRI.
引文
[1]S. D. Bentley, K. F. Chater, A. M. Cerdeno-Tarraga, et al.Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).Nature.2002,417(6885):141-147
    [2]H. Ikeda, J. Ishikawa, A. Hanamoto, et al.Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis.Nat Biotechnol.2003,21(5):526-531
    [3]R. Kirby, T. K. Gan, I. Hunter, et al.The genome of Streptomyces rimosus subsp rimosus shows a novel structure compared to other Streptomyces using DNA/DNA microarray analysis. Antonie Van Leeuwenhoek International J Gen Mol Microbiol.2008,94(2):173-186
    [4]B. Gravius, T. Bezmalinovic, D. Hranueli, et al.Genetic instability and strain degeneration in Streptomyces rimosus. Appl Environ Microbiol.1993,59(7):2220-2228
    [5]S Z Mindlin.Proceeding of International Symposium on Genetics and Breeding of Streptomyces. Yugoslav Academy of Sciences and Arts, Zagreb, Uugoslavia.1969,
    [6]M.Alacevic, M Strasek,G sermonti.The cicular linkage map of Streptomyces rimosus.J Gen Microbiol.1973,77(173-185)
    [7]D. Hranueli, J. Pigac,M. Vesligaj.Characterization and persistence of actinophage RP2 isolated from Streptomyces rimosus ATCC 10970.J Gen Microbiol.1979,114(2):295-303
    [8]P. M. Rhodes, I. S. Hunter, E. J. Friend, et al.Recombinant DNA methods for the oxytetracycline producer Streptomyces rimosus.Biochem Soc Trans.1984,12(4):586-587
    [9]M. J. Butler, E. J. Friend, I. S. Hunter, et al.Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetracycline by Streptomyces rimosus.Mol Gen Genet.l989,215(2):231-238
    [10]M. J. Bibb.Regulation of secondary metabolism in Streptomycetes.Curr Opin Microbiol.2005,8(2):208-215
    [11]S. Rigali, A.Derouaus, J.Giannotta, et al.Subdivision of the helix-turn helix GntR family of bacterial regulators in the FadR, HutC, MocR and YtrA subfamilies. J Biol Chem.2002,277(12507-12515):
    [12]S. Rigali, F. Titgemeyer, S. Barends, et al.Feast or famine:the global regulator DasR links nutrient stress to antibiotic production by Streptomyces.Embo Reports.2008,9(7):670-675
    [13]G. Stephanopoulos,J. J. Vallino.Network rigidity and metabolic engineering in metabolite overproduction. Science.1991,252(5013):1675-1681
    [14]H. Jorgensen, J. Nielsen, J. Villadsen, et al.Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations.Biotechnol Bioeng.1995,46(2):117-131
    [15]金慧怡,张惠展.红霉素抗性基因ermE在链霉菌中的表达及抗性测定.上海师范大学学报(自然科学版).2006,35(2):81-84
    [16]H. Hu,K. Ochi.Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol.2001,67(4):1885-1892
    [17]A. L. Demain.From natural products discovery to commercialization:a success story. J Ind Microbiol Biotechnol.2006,33(7):486-495
    [18]J. E. Bailey.Toward a science of metabolic engineering. Science.1991,252 (5013):1668-1675
    [19]J. L. Adrio,A. L. Demain.Genetic improvement of processes yielding microbial products.FEMS Microbiol Rev.2006,30(2):187-214
    [20]J. Nielsen.Metabolic engineering:techniques for analysis of targets for genetic manipulations.Biotechnol Bioeng.1998,58(2-3):125-132
    [21]C. Bro,J. Nielsen.Impact of'ome'analyses on inverse metabolic engineering.Metab Eng.2004,6(3):204-211
    [22]C. J. Klein, L. Olsson,J. Nielsen.Glucose control in Saccharomyces cerevisiae:the role of Migl in metabolic functions.Microbiol.1998,144 (Pt 1)(13-24)
    [23]M. Chalfie, Y. Tu, G. Euskirchen, et al.Green fluorescent protein as a marker for gene expression. Science.1994,263(5148):802-805
    [24]R. Suelmann, N. Sievers,R. Fischer.Nuclear traffic in fungal hyphae:in vivo study of nuclear migration and positioning in Aspergillus nidulans.Mol Microbiol.1997,25(4):757-769
    [25]S. N. Cohen, A. C. Chang, H. W. Boyer, et al.Construction of biologically functional bacterial plasmids in vitro.Proc Natl Acad Sci U S A.1973,70(11):3240-3244
    [26]A. R. Reeves, I. A. Brikun, W. H. Cernota, et al.Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production.Metab Eng.2007,9(3):293-303
    [27]W. S. Kim, Y. Wang, A. Fang, et al.Methionine interference in rapamycin production involves repression of demethylrapamycin methyltransferase and S-adenosylmethionine synthetase.Antimicrob Agents Chemother.2000,44(10):2908-2910
    [28]S. T. Cole, R. Brosch, J. Parkhill, et al.Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.Nature.1998,393(6685):537-544
    [29]C. Nicolas, P. Kiefer, F. Letisse, et al.Response of the central metabolism of Escherichia coli to modified expression of the gene encoding the glucose-6-phosphate dehydrogenase.FEBS Lett.2007,581(20):3771-3776
    [30]C. Lu, W. E. Bentley,G. Rao.Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations.Biotechnol Bioeng.2003,83(7):864-870
    [31]F. Canonaco, T. A. Hess, S. Heri, et al.Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA.FEMS Microbiol Lett.2001,204(2):247-252
    [32]M. J. Butler, P. Bruheim, S. Jovetic, et al.Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol.2002,68(10):4731-4739
    [33]J. Zhao, T. Baba, H. Mori, et al.Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate.Metab Eng.2004,6(2):164-174
    [34]V. M. D'Costa, K. M. McGrann, D. W. Hughes, et al.Sampling the antibiotic resistome.Science.2006,311(5759):374-377
    [35]R. Benveniste,J. Davies.Structure-activity relationships among the aminoglycoside antibiotics:role of hydroxyl and amino groups.Antimicrob Agents Chemother.1973,4(4):402-409
    [36]R. Benveniste,J. Davies.Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria.Proc Natl Acad Sci U S A.1973,70(8):2276-2280
    [37]R. Benveniste,J. Davies.Mechanisms of antibiotic resistance in bacteria.Annu Rev Biochem.1973,42(471-506)
    [38]J. F. Martin,A. L. Demain.Control of antibiotic biosynthesis. Microbiol Rev.1980,44(2):230-251
    [39]W. Hillen,C. Berens.Mechanisms underlying expression of Tn10 encoded tetracycline resistance.Annu Rev Microbiol.1994,48(345-369)
    [40]L. McMurry, R. E. Petrucci, Jr.,S. B. Levy.Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli.Proc Natl Acad Sci U S A.1980,77(7):3974-3977
    [41]L. M. McMurry, M. Stephan,S. B. Levy.Decreased function of the class B tetracycline efflux protein Tet with mutations at aspartate 15, a putative intramembrane residue. J Bacteriol.1992,174(19):6294-6297
    [42]M. Oethinger, W. V. Kern, A. S. Jellen-Ritter, et al.Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother.2000,44(1):10-13
    [43]X. Z. Li, H. Nikaido,K. Poole.Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother.1995,39(9):1948-1953
    [44]J. A. Fralick.Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli.J Bacteriol.1996,178(19):5803-5805
    [45]E. Cundliffe.Resistance to macrolides and lincosamides in Streptomyces lividans and to aminoglycosides in Micromonospora purpurea.Gene.1992,115(1-2):75-84
    [46]M. D. Block, J. Botterman, M. Vandewiele, et al.Engineering herbicide resistance in plants by expression of a detoxifying enzyme.EMBO J.1987,6(9):2513-2518
    [47]D.Doyle, K. J. McDowall, M.J. Bulter.Characterization of an oxytetracycline resistance gene,otrA,of Streptomyces rimosus:nucleotide sequence,deduced function and promoter analysis.Molecular Microbiology.1991,5(12):2923-2933
    [48]P. G. Guilfoile,C. R. Hutchinson.A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin.Proc Natl Acad Sci U S A.1991,88(19):8553-8557
    [49]C. Olano, A. M. Rodriguez, C. Mendez, et al.A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus.Mol Microbiol.1995,16(2):333-343
    [50]M. J. Calcutt,F. J. Schmidt.Gene organization in the bleomycin-resistance region of the producer organism Streptomyces verticillus.Gene.1994,151(1-2):17-21
    [51]M. J. Butler, E. J. Friend, I. S. Hunter, et al.Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetracycline by Streptomyces rimosus.Molecular and General Genetics.1989,215(231-238)
    [52]T. Ohnuki, T. Katoh, T. Imanaka, et al.Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes.J Bacteriol.1985,161(3):1010-1016
    [53]L. M.McMurry,S. B.Levy.Revised Sequence of OtrB (Tet347) Tetracycline Efflux Protein from Streptomyces rimosus. Antimicrob Agents Chemother.1998,42(11):3050
    [54]刘志勇,郭美锦,钱江潮,等.龟裂链霉菌zwf2基因阻断提高土霉素生物合成.微生物学报.2008,48(1):21-25
    [55]雷健,赫卫清,王以光.链霉菌形态分化和次级代谢调控机制的研究进展.药物生物技术.2007,14(3):225-229
    [56]A. S. Khokhlov, Tovarova, II, L. N. Borisova, et al The A-factor, responsible for streptomycin biosynthesis by mutant strains of Actinomyces streptomycini.Dokl Akad Nauk SSSR.1967,177(1):232-235
    [57]I. Borodina, J. Siebring, J. Zhang, et al.Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion.J Biol Chem.2008,283(37):25186-25199
    [58]L. C. Vining.Secondary metabolism, inventive evolution and biochemical diversity--a review.Gene.1992,115(1-2):135-140
    [59]L. Vetcher, Z. Q. Tian, R. McDaniel, et al.Rapid engineering of the geldanamycin biosynthesis pathway by Red/ET recombination and gene complementation.Appl Environ Microbiol.2005,71(4):1829-1835
    [60]I.S. Hunter,F. Flerro.Microbial Secondary Metabolites:Biosynthesis,Genetics and Regulation.Metabol Eng.2002,8(174-185)
    [61]Y.G. Ryu, M. J. Bulter, K. F. Chater, et al.Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol.2006,72(11):7132-7139
    [62]M.J. Butler, P. Bruheim, M.J. Bibb.Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol.2002,68(4731-4739)
    [63]H. Petkovic, J. Cullum, D. Hranueli, et al.Genetics of Streptomyces rimosus, the oxytetracycline producer.Microbiol Mol Biol Reviews.2006,70(3):704-706
    [64]R. C.Eisenberg, J.W. Dobrogosz.Gluconate metabolism in Escherichia coli.J Bacteriol.1967,93(3):941-949
    [65]A. P. Fordham-Skelton, M. Skipsey, I. M. Eveans, et al.Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains:expression during embryogenesis.Plant Mol Biol.1999,39(3):593-605
    [66]A. R. Reeves, W. H. Cernota, I. A. Brikun, et al.Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum.Met Eng.2004,6(4):300-312
    [67]H. N. Jnawali, H. C. Lee,J. K. Sohng.Enhancement of Clavulanic Acid Production by Expressing Regulatory Genes in gap Gene Deletion Mutant of Streptomyces clavuligerus NRRL3585.J Microbiol Biotechnol.2010,20(146-152)
    [68]D. J. Kim, J. H. Huh, Y. Y. Yang, et al.Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23.J Bacteriol.2003,185(2):592-600
    [69]B. K. Hubbard,C. T. Walsh.Vancomycin assembly:nature's way.Angew Chem Int Ed Engl.2003,42(7):730-765
    [70]E. Cundliffe, N. Bate, A. Butler, et al. The tylosin-biosynthetic genes of Streptomyces fradiae.Antonie Van Leeuwenhoek.2001,79(3-4):229-234
    [71]刘占良,岳艳玲,刘大群.链霉菌的抗生素耐药基因.国外医药抗生素分册.2002,23(3):97-107
    [72]M. Gupta, R. T.,Margaret C. M. Smith.Sequences in attB that affect the ability of C31 integrase to synapse and to activate DNA cleavage.Nucleic Acids Research.2007,35(10):3407-3419
    [73]孙志东,詹林盛.高效位点特异性链霉菌φC31噬菌体整合酶的研究进展.生物技术通讯.2007,18(6):1036-1039
    [74]P. Combes, R. Till, S. Bee, et al.The streptomyces genome contains multiple pseudo-attB sites for the (phi)C31-encoded site-specific recombination system. J Bacteriol.2002,184(20):5746-5752
    [75]S. Kuhstoss,R. N. Rao.Analysis of the integration function of the streptomycete bacteriophage phi C31.J Mol Biol.1991,222(4):897-908
    [76]S. Kuhstoss, M. A. Richardson,R. N. Rao.Plasmid cloning vectors that integrate site-specifically in Streptomyces spp.Gene.1991,97(1):143-146
    [77]Katagiri.Study on chlortetracycline. Improvement of chlortetracycline-producing strain by several kinds of methods. Jour Anti Biotics.1954,7(2):45-52
    [78]R. Crameri, J. Davies.Increased production of aminoglycosides associated with amplified antibiotic resistance genes.J Anti.1986,39(1):128-135
    [79]涂国全,刘姝,黎循航.梅岭霉素高产菌株链霉素抗性基因突变株筛选.微生物学通报.2002,29(6):33-37
    [80]金欣,利用ptr抗性基因提高普那霉素产量及其家族改组技术研究.2008,浙江大学:浙江.
    [81]A. Ramos, C. Vallin, N. Joseph, et al.Enhancement of oxytetracycline production in a Streptomyces rimosus strain after treatment with acriflavine.Biotechnol Letters.1986,8(3):161-162
    [82]梁蓉芳.龟裂链霉菌原生质体诱变育种的研究.微生物学研究与应用.1991,1(25-27)
    [83]Z. H. Hu, D. A. Hopwood,C. R. Hutchinson.Enhanced heterologous polyketide production in Streptomyces by exploiting plasmid co-integration. J Industrial Microbiol Biotechnol.2003,30(8):516-522
    [84]C. Olano, F. Lombo, C. Mendez, et al.Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering.Met Engineer.2008,10(5):281-292
    [85]M. Elliot, F. Damji, R. Psssantino, et al.The bldD gene of StreptomycesA3(2):A regulator gene involved in mophogenesis and antibiotic production.J Bacteriol.1998,180(6):1549-1555
    [86]C. Olano, A. M. Rodriguez, C. Mendez, et al.A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus.Mol Microbiol.1995,16(2):333-343
    [87]K. Yanai, T. Murakami,M. Bibb.Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus.Proc Natl Acad Sci U S A.2006,103(25):9661-9666
    [88]K. Ochi.From microbial differentiation to ribosome engineering.Biosci Biotechnol Biochem.2007,71(6):1373-1386
    [89]A. Hesketh,K. Ochi.A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin. J Antibiot (Tokyo).1997,50(6):532-535
    [90]G. Wang, T. Hosaka,K. Ochi.Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol.2008,74(9):2834-2840
    [91]T. Dairi, K. Aisaka, R. Katsumata, et al.A self-defense gene homologous to tetracycline effluxing gene essential for antibiotic production in Streptomyces aureofaciens.Biosci Biotechnol Biochem.1995,59(10):1835-1841
    [92]S.B.Levy.Active efflux, a common mechanism for biocide and antibiotic resistance.J Appl Microbiol Symposium Supplement.2002,92(65S-71S)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700