树木生长量无线遥测方法及装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代林业研究与数字化经营管理对于森林资源信息的采集技术具有新的要求,尤其是树木生长信息的实时、准确的远程自动采集更是林业科研工作者和森林调查人员的期盼。当前树木生长量调查的主要手段是通过人工直接进入实地测量,该方法劳动量大、效率低。用树木生长量远程监测技术替代人工实地调查需主要解决以下三个方面的问题:一,开发高精度的远程生长量动态遥测系统,替代人工调查来准确获取单木生长信息。二,研究树木调查因子间关系模型,其中研究D-H模型最为重要,只有精确的D-H模型才能计算林木材积,进而估算林地蓄积。三,研究对林地内树木有效的抽样方法,在考虑经济条件约束下,应用远程生长量动态遥测装置准确获取动态变化的全林蓄积,使得对林地代表性树木抽样相对于人工实测有更高的要求,所以需要对林地内树木有效的抽样方法进行研究。
     本研究针对以上树木生长量远程遥测技术应用于森林调查所需解决的问题,在充分分析和借鉴已有的国内外树木生长量动态监测方法和相应自动测量装置及其他相关学科领域研究成果基础上,设计开发了基于容栅技术的立木胸径遥测装置及其软件系统,试验表明:该系统通讯可靠,可以用于立木胸径变化量50mm—450mm范围内高精度的自动实时数字式测量,最大误差为0.037mm。基于毛白杨树种依据偏最小二乘回归原理建立了更加准确的高径方程,其相关系数达到0.93,结合设计的立木胸径测量系统解决了单木树高及材积难于测量问题。
     为了使立木胸径测量装置得以用于全林蓄积变化量的动态监测,监测方法需要更加准确和高效,本文做了林地树木代表性样点抽样方法的相关研究,将数量化理论与地理学空间变异函数相结合,提出了对林地内树木进行空间分类抽样的方法。在小块实验区内,通过和随机抽样方法对比验证验证了空间抽样方法的高效性。
     本研究所开发的树木生长量遥测装置对单木生长信息数据的自动收集具有重要的实用价值;对林地空间代表性立木抽样研究的结论,为今后开发节点间具有通讯功能的无线传感器网络的不同层次节点间距离选择提供了基础数据,同时为其它林地环境信息的遥测提供新的技术方法参考。
Recent forestry research about digital management and administration require advanced collection techniques of forest resource information. Especially, application of immediate (real-time), accurate, long-distance, auto collecting growth information are fairly expected by the normal investigators.
     For now, the limitation of satellite telemetry measurement can never exactly obtain growth biomass of single tree that can not meet the basic need of research; So, forestry growth biomass information are much depended on workers'field surveys or timely collecting the auto-observing spot data. There are many disadvantages of these applications such as inaccurate, inefficiency and waste of labor force.
     This study is aiming at development of forestry research and information collection technique. Based on the analysis of single growth dynamic monitoring measurement and auto-measuring devices in current situation, we designed a telemetry measurement of stumpage DBH (Diameter at breast height) device and software based on capacitance technology
     Experiments showed communication system of the device is efficient and reliable, DBH of the samples is available which ranged from 50mm to 450mm; Precision could reach to 0.037mm. According to theory "PLS", more precise formula:Diameter-height curve was introduced to make up single stumpage height measurement.
     To convince people that our device and software could be used practically in the dynamic monitoring Forest Growing Stock, we did co-relative sampling study of proxy trees. Quantification and Semivariable functions are combined to gain 3 division strategies based on the square of the forests. Meanwhile Biomass ranges of the trees which grew in different directions were obtained too.
     From Kriging interpolation formula, Square Network Topology of the sample's reasonable distance was drawn. It provided the theoretical foundation of nodal point's optimum layout. The strategy of how to arrange the stumpage DBH measuring devices can be consulted by this theory.
     Another significant improvement of this device is to collect Biomass information of single tree. The conclusion of proxy trees sampling study provided a basic data for developing "wireless sensor Networks on different levels and nodal point separation in the future. Moreover, the telemetry measurement introduced can be extended to forestry geography too.
引文
1. 白永飞,许志信,李德新.内蒙古高原针茅草原群落土壤水分和碳、氮分布的小尺度空间异质性[J].生态学报,2002,(8):1215-1223.
    2. 陈伏生,曾德慧,陈广生.不同土地利用方式下沙地土壤水分空间变异规律[J].生态学杂志,2003,22(6):43-48.
    3. 陈玉建.用于容栅式数显尺的智能接口设计[J].计量技术,2000,(6):22-23.
    4. 程映雪,向衍荪.,周长春.系统安全评价方法分析[J].中国安全科学学报,1995,(12):42-47.
    5. 邓广,张旭,鞠洪波等.森林生态与资源信息共享系统的建立与应用[J].林业科学,2006,42(1):159-162.
    6. 邓红兵.红松单木生长高模型研究[J].生态学杂志,1999,18(3):19-22.
    7. 董建军,郭占胜.伏南山区马尾松人工林生长规律研究[J].河南林业科技,2004,(2):45-48.
    8. 董文泉,周光召.数量化理论及其运用[M].长春:吉林人民出版社,1980:27-113
    9. 冯仲科,景海涛,周科亮,吴鸿华.全站仪测算材积的原理及精度分析[J].北京林业大学学报,2003,(3)73-75.
    10.郭旭东,傅伯杰,马克明等.基于GIS和地统计学的土壤养分空间变异特征研究——以河北省遵化市为例[J].应用生态学报,2000,11(4):557-563.
    11.郝卫东.容栅位移传感器[J].桂林电子工业学院学报,1997,17(1):83-86.
    12.何粒,薛尚清,杨维剑.大位移测试数据采集系统[J].四川工业学院学报,1998,17(3):62-67.
    13.何志斌,赵文智.半干旱地区流动沙地土壤湿度变异及其对降水的依赖[J].中国沙漠,2002,22(4):359-362.
    14.黄崇福.自然灾害风险分析.北京:北京师范大学出版社,2001:152-179.
    15.黄家荣,孟宪宇,关毓秀.马尾松人工林单木生长神经网络模型研究[J].山地农业生物学报,2004,23(5):386~391.
    16.黄心渊.“数字林业”及其技术与发展[J].北京林业大学学报,2006,28(6):142-147.
    17.黄炎和.闽南地区的土壤侵蚀与治理[D].福州:福建师范大学,2002:39-47.
    18.江希钿.马尾松造纸原料林生长收获预估模型的研究[J].福建林学院学报,2001,21(1):1-5.
    19.姜志华.容栅电子长度测量系统[J].上海计量测试,2000,(2):32-33.
    20.李宝清,陆德仁,王渭源.变面积结构微机械电容式加速度传感器[J].中国工程科学,2000,(2).
    21.李博,杨持,林鹏.生态学[M].北京:高等教育出版社,2000:122-196.
    22.李崇贵,赵宪文.森林郁闭度定量估测遥感比值波段的选择[J].林业科学,2005,(4).
    23.李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实践[M].北京:科学出版社,2005:79-162.
    24.李哈滨,王政权,王庆成.空间异质性定量研究理论与方法[J].应用生态学报,1998,9(6):651—657.
    25.李亮亮,依艳丽,凌国鑫等.地统计学在土壤空间变异研究中的应用[J].土壤通报,2005,36(2):265~268.
    26.李谋.位置检测与数显技术[M].北京:机械工业出版社,1993:65-131.
    27.李蔚.天然阔叶林建群树种若干测树因子相关关系的探讨.亚热带水土保持,2005,17(3):56-58.
    28.李新荣.干旱沙区土壤空间异质性变化对植被恢复的影响[J].中国科学:D辑,2005,35(4):361-370.
    29.李信,刘君,邱宗明.容栅传感器接口技术的研究[J].西安理工大学学报,1994,10(4):269-273.
    30.凌锐鸿,王估.容栅传感器刻划误差的分析计算[J].工具技术,1995,29(7):41-46.
    31.刘海洋,季钢.基于89C51单片机的数显游标卡尺智能测量系统[J].测控技术,2002,21(4):68-69.
    32.刘杏梅.基于GIS和地统计学的不同尺度水稻田土壤养分时空变异及其机理研究[D].杭州:浙江大学,2005:49-62.
    33.刘岳等.中国人口分析与区域特征.北京:海洋出版社,1991,(1).
    34.卢国纲.位移测量技术及其传感器的最新发展[J].世界制造技术与装备市场,2005,(4).
    35.陆守一,唐小明.地理信息系统实用教程[M].北京:中国林业出版社,1998:49-62.
    36.毛德兵.冲击矿压发生危险性评价方法[J].煤矿开采,2000,(12):52-53.
    37.孟宪宇.测树学[M].北京:中国林业出版社,199871-93.
    38.钱静,陈志云.关于危害因素辨识、危险评价及危险控制措施探讨[J].认证前沿,2002,(3):25-26.
    39.#12
    40.史福元,马修水,周保贵.容栅传感器材质误差分析[J].工具技术,1997,33(4):39-41.
    41.宋健,刘文红.数显卡尺容栅定栅母板的研制[J].计量技术,2001,(12):25-26.
    42.宋健,张伟宏.数显卡尺容栅定栅母板的研制[J].机械工程师,2001,(9):56-57.
    43.孙立宁,晏祖根.电容式微位移传感器设计及其应用研究[J].传感器技术,2005,24(10):13-16.
    44.孙英君,王劲峰,柏延臣.地统计学方法进展研究[J].地球科学进展,2004,19(2):268~274.
    45.童诗白,华成英.模拟电子技术[M].北京:高等教育出版社,2001:313-321.
    46.万志军,朱传章,朱世学.用统计推理改进煤矿冲击地压危险性评价[J].世界采矿快报,1999,(7):19-20.
    47.王劲峰,Haining R, Wise S.中国干旱洪水地震灾害监测空间采样设计[J].自然科学进展,1998, (1).
    48.王劲峰,李连发,葛勇,时陪中等.地理信息空间分析的理论体系探讨[J].地理学报,2002,55(1),99-110.
    49.王军,傅伯杰,邱扬等.黄土高原小流域土壤养分的空间异质性[J].生态学报,2002,22(8):1173-1178.
    50.王连国,宋扬.矿井突水危险性评价模型[J].工程地质学报,2001,(9):158-163.
    51.王文良,杨继恩,李斌.容栅式直线同步传感器工作原理及系统设计方法[J].传感器世界,1998,(9):23-26.
    52.王习文,齐欣,宋玉泉.容栅传感器及其发展[J].吉林大学学报,2003,33(2):89-94.
    53.王小群,陈洪彪.模糊层次综合法在企业安全评价中的应用[J].铁道劳动安全与环保,2003,(30):196-198.
    54.王雪,王晟,毕道伟.无线传感器网络动态节点选择优化策略[J].计算机研究与发展,2008,(1).
    55.王雪.无线传感器网络测量系统[M].北京:机械工业出版社,2007:119-193.
    56.王占礼.中国土壤侵蚀影响因素及其危害分析[J].农业工程学报,2000,16(4):32-36.
    57.王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000,20(6):945-950.
    58.王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999:42-61.
    59.吴强.巨尾桉立木测树因子关系的研究[J].林业勘察设计,2001,(2):14-16.
    60.吴晓帆,康玉,蔡自兴.传感器输出信号的线性化处理[J].自动化仪表,1997,19(7):37-39.
    61.吴艳文.双坐标容栅数显机床标尺单片机智能接口[J].安徽电力职工大学学报[J],2001,6(3):83-87.
    62.向志民,何敏.几种落叶松生长规律及树高与胸径间关系的研究[J].林业科技,1999,(1).
    63.肖兴威,袁少青,蒋成乡.坚持和完善森林资源管理制度,保障和促进林业持续快速发展[J].林业资源管理,2004,(5).
    64.肖兴威.国家林业局森林资源管理司司长肖兴威在全国林地林权管理培训研讨班上的讲话(摘要)[J].林业资源管理,,2003,(1).
    65.谢华馄.我国数显量具发展点评[J].工具技术,2004,35(7):56-58.
    66.徐成彦,赵不亿主编.普通地质学[M].北京:地质出版社,1988:33-49.
    67.徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2004:67-112.
    68.徐科军,马修水,廖健芳.容栅传感器研究与开发现状.[J]工具技术,1994,28(12):37-40.
    69.徐科军,田小丰.容栅传感器静、动态联合数学模型[J].计量学报,1996,7(3):221-225.
    70.徐科军,张志正.容栅传感器误差的建模与修正[J].仪表技术与传感器,1996,(11):7-9.
    71.徐科军.容栅传感器的研究与应用[M].北京:清华大学出版社,1995:26-74.
    72.杨雪芳,蔡萍,王卫钢,杨重远.全数字式容栅位移传感器[J].仪表技术与传感器,2005,(7):49-53.
    73.尹光志,鲜学福,金立平,刘成明.地应力对冲击地压的影响及冲击危险区域评价的研究[J].煤炭学报,1997(4):132-137.
    74.尹丽丽.定高胸径测量仪的研究[J].林业机械与木工设备,2006,34(1):22-24.
    75.张景兰.落叶松幼中龄林主要测树因子生长规律的研究[J].河北林果研究2006,21(4):395-397.
    76.张军国,李文彬,韩宁等.基于ZigBee无线传感器网络的森林火灾监测系统的研究[J].北京林业大学学报,2007,29(4):41-45.
    77.张青.基于仿射重构的树高测量[J].北京林业大学学报,2005,(31):21-22.
    78.张仁铎.空间变异理论及应用[M].北京:科学出版社,2004:22-39.
    79.张绍宗,谢绍兰,程锡纯.容栅数显高度仪.航空精密制造技术,1997,33(3):25-28.
    80.张银芳.容栅位移传感器的工作原理及其特点[J].航空精密制造技术,2005,41(4):58-59.
    81.张玉铭、毛任钊、胡春胜等.华北太行山前平原农田土壤养分的空间变异性研究[J].应用生态学报,2004,15(11):2049-2054.
    82.张玉柱.嫩江沙地樟子松人工林各测树因子数量关系的研究.防护林科技,2006,(1):7-9.
    83.张增耀,骆家贤.容栅技术.北京:中国计量出版社,2002:29-61.
    84.赵良菊,肖洪浪,郭天文等.甘肃省灌漠土土壤养分空间变异特征[J].干旱地区农业研究,2005,23(1):70-74.
    85.赵良菊,肖洪浪,郭天文等.甘肃省武威地区灌漠土微量元素的空间变异特征[J].土壤通报,2005,36(4):536-540.
    86.赵宪文,李崇贵,蔡体久.遥感区域大小对森林蓄积估测影响规律的研究[J].北京林业大学学报,2001,(4):79-83.
    87.赵宪文,李崇贵.基于“3S”技术的森林资源定量估测——原理、方法、应用及软件实现[M].北京:中国科学技术出版社,2001:68-97.
    88.郑双忠,彭倩鹏,潘开名,丁明珍.企业安全评价分析方法及应用[J].辽宁工程技术大学学报,2003,(8):484-496.
    89.郑袁明,陈同斌,陈煌.北京市近郊区土壤镍的空间结构及分布特征[J].地理学报,2003,58(3):470-476.
    90. Andersen, Hans-Erik. Using Airborne Light Detection and Ranging (LIDAR) to Characterize Forest Stand Condition on the Kenai Peninsula of Alaska[J]. Society of American Foresters, 2009,24(2):95-102.
    91. Antoni Fertner and Ander Sj olund, Analysis of the Performance of the Capacitive Displacement Transducer[J]. IEEETrans Instrum. Meas,1989,38(4):972-978.
    92. BACHMAN, C G. Laser radar systems and techniques [M]. Dedham:Artech House, Inc,1979: 203.
    93. Bardi, J.F. Acacia melanoxylon R.Brown.A study of the relationship height-diameter. Advances in Ecological Sciences[J], Ecosystems and Sustainable Development Ⅲ,2001,10(3):657-666.
    94. Barrio-Anta. Mimicking natural variability in tree height of pine species using a stochastic height-diameter relationship[J]. New Zealand Journal of Forestry Science,2006,36(1):21-34.
    95. St-Onge and Nora Achaichia. MEASURING FOREST CANOPY HEIGHT USING A COMBINATION OF LIDAR AND AERIAL PHOTOGRAPHY DATA[J]. International Archives of Photogrammetry and Remote Sensing,2001, (3):22-24.
    96. Brian A. Needelman, William J. Ggburek, Andrew N. Sharpley and Gary W. Petersen. Environmental management of soil phosphorus-Modeling spatial variability in small fields[J]. Soil Science Society of America Journal,2001,(65):1516-1522.
    97. Burton, T. J. Arkell, J.C.Bathurst. Field variability of landslide model parameters[J]. Environmental Geology,1998,35(2-3):100-114.
    98. Chao Hu, Max Meng, Peter Xiao Liu:Microcomputer-based Phase-discrimination Capacitive Angular Sensor, Computational Intelligence in Robotics and Automation 2003 Proceedings[J]. 2003 IEEE International Symposium,2003,(3):16-20.
    99. Chi-Wen Lin. Mapping soil lead and remediation needs in comtaminated soils[J]. Environmental Geochemistry and Health:2002,24(1):23-33.
    100. D.M.G.Preethichandra, Iatsunori Shida.A Simple Interface Circuit to Measure Very Small Capacitance Changes in Capacitive Sensors[J], Instrumentation and Measurement IEEE Transactions,2001,50(6):97-106.
    101. Ebrahim Ghafar-zadeh, Mohamand Sawan.A High Precision and Linearity Differential Capacitive Sensor Circuit Dedicated to Bioparticles[J]. Detection IEEE-NEWCAS Conference, 2005(2):359-366.
    102. G. Sun, K.J. Ranson, D.S. Kimes. Forest vertical structure from GLAS:An evaluation using LVIS and SRTM data[J]. Remote Sensing of Environment,2008,112(1):107-117.
    103. G.A.Bertonetal., Investigation of Capacitive Based Displacement Transducer[J].IEEE Trans Instrum.Meas.,1990,39(2):235-242.
    104. Gibson D J. The relationship of sheep grazing and soft heterogeneity to plant spatial pattern in dune grassland[J]. Journal of Ecology,1988,76(1):233-252.
    105. Guoqiang Ni, Zhenmin Shen, Tian Lan and Yinchao Zhang. SNR analysis of a new type of airborne three-dimensional gazing gating imaging laser radar system[J]. Beijing Institute of Technology (China),2009,(1):392-405.
    106. H. U.Meyer, Capacitive Dtector for Measuring Length and Angle[J]. US Patent 4810951, 1989,(2):46-51.
    107. H. U.Meyer, Means for Capacitive Measurement of Displacement[J]. US Patent 4449179,1984,(1):51-58.
    108. Harding, D, Lefsky, M, Keller. a Global Forest Canopy Height and Vertical Structure Product from the Geoscience Laser Altimeter System[J]. American Geophysical Union,2006,(2):131-138.
    109. Holger LANGE,Svein SOLBERG. FOREST REFLECTANCE MODELLING OF HYPERSPECTRAL DATA[J]. Norwegian Forest and Landscape Institute,2007,(1):39-47.
    110. Hyyppa, Juha, Kaasalainen, Sanna and Lindroos, Tomi. Toward Hyperspectral Lidar: Measurement of Spectral Backscatter Intensity With a Supercontinuum Laser Source. IEEE Geoscience and Remote Sensing Letters,2007,4(2):211-215.
    111. Inoue, Akio. Allometric model of the height-diameter curve for even-aged pure stands of Japanese cedar (Cryptomeria japonica)[J]. Journal of Forest Research,2004,(1).
    112. J.L. Lovell, David L.B. Jupp, D.S. Culvenor, G.J. Newnham. Estimating forest LAI profiles and structural parameters using a ground-based laser called'Echidna'[J]. Tree Physiology,2009, 29(2):171-181.
    113. Jaramillo V J, Detling J K. Small-scale heterogeneity in a semi-arid North American grassland. I. Tillering, Nuptake and retranslocation in simulated urine patches[J]. Journal of Applied Ecology, 1992,29(1):1-13.
    114. Jason B. Drake, Ralph O. Dubayah, Robert G. Knox. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest[J].Remote Sensing of Environment,2002,(81): 378-392.
    115. Jiang, H., Easterman, J. R..2000, Application of Fuzzy Measures in Multi-criteria Evaluation in GIS[J]. International Journal of Geographical Information Science,2000,14(2),173-184.
    116. John Harrison Asbery. Capacitance Displacement Transducers[J], GB Patent 2133889, 1989,(1):1153-1157.
    117. Joseph E. Means, Steven A. Acker, David J. Harding. Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon[J]. REMOTE SENS. ENVIRON,1999,(67):298-308.
    118. Larry.Capacitive DisPlacement Measuring Instrument[J], US Patent 4586260,1989,(1):1172
    119. L. K. Baxter. Capacitive Sensor:Design and Application[M]. New York:IEEE Press,1997:39-92.
    120. Lee, W. H. K., On Chinese Earthquake History-An Attempt to Model an Incomplete Data Set by Point Process Analysis[J], Pure and Applied Geophysics,1979, (1):1229-1257.
    121. Maclean. G.A. Estimation of foliar and woody biomass using an airborne lidar system. Madison, WI(US) [J]; Univ. of Wisconsin,1988,(1):29-34.
    122. Mats Nilsson, Erik Naesset, Johan Holmgren. Laser scanning of forest resources:the nordic experience[J]. Scandinavian Journal of Forest Research,2004,19(6):482-499.
    123. Areh. Environ.metal mining using geostatistical methods[J]. Contam. Toxicol,2004,(46):162-175.
    124. Michael A. Wulder, Christopher W. Bater, Nicholas C. Coops. ADVANCES IN LASER REMOTE SENSING OF FORESTS[J]. Sustainable Development Research Advances,2007,(1): 223-234.
    125. Musulin, R. T.Issues in The Regulatory Acceptance of Computer Modeling for Property Insurance Ratemaking[J]. Journal of Insurance regulation,1997, (15):342-359.
    126. Newton, P.F. Comparative evaluation of five height-diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability[J]. Forest Ecology and Management,2007,247(1-3):149-166.
    127. Paul A. Arp, Paul N. C. Murphy, Jae Ogilvie, Kevin Connor. A comparison of two different approaches for New Brunswick[J], Canada:Springer Netherlands,2007,(1):846-854.
    128. S P Aldred, M S Skolnick, P R Tapster, S J Bass, A D Pitt, N Apsley. Investigation of InGaAs-InP quantum wells by optical spectroscopy[J]. Semiconductor Science and Technology,1986, (1): 91-105.
    129. Sharma, Mahadev. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management,2007,249(3):187-198.
    130. ShuTao. Kriging and mapping of copper, lead, and mercury contents in surface soil in Shen Zhen area. Water[J], Air and Soil Pollution,1995,(82):161-172.
    131. Thomas J.Sauer, David W. Meek. Spatial Variation of plant-available phosphorus in pastures with contrasting management[J]. Soil Science Society of American,2003,(67):826-836.
    132. W. Burckhardt et al. Capacitive Device for the Measurement of Displacement[M], GB Patent 2123629,1982:235-248.
    133. Wang, J., Liu, J., Zhuang, D., Li, L., and Ge, Y.,2002, Spatial Sampling Design for Monitoring The Area of Cultivated Land[J], International Journal of Remote Sensing,2003,(2),263-284.
    134. Xingmei Liu, Jianming Xu, Mingkui Zhang, Bin Zhou. Effects of land Management change on spatial variability of organic matter and nutrients in paddy fields:A case study of Pinghu, China[J]. Environmental Management,2003,34(5):691-700.
    135. Xiujun Li, C.M.Meijer. A Low-Cost and Reliable Interface for Capacitive Sensors, Instrumentation and Measurement Technology Conference 1999 IMTC/99[J]. Proceedings of the 16th IEEE, 1999,(2):24-26.
    136. Xiujun Li, Gerard C:M.Meijer, Gerben W.de Jong, Jo W.Spronck:An Accurate Low-Cost Capacitive Absolute Angular-position Sensor with a Full-Circle Range, Instrumentation and Measurement[J], IEEE Transactions,1996,45(2):35-43.
    137. Xiujun Li, Gerben de Jong, Gerard C.M Meijer. The Application of the Capacitor's Physics to Optimize Capacitive Angular-Position Sensors. IEEE Trans. On Instrumentation and Measurement,1997,46(1):8-14.
    138. Yu CM, Yi F. Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements[J]. Journal of atmospheric and solar-terrestrial physics,2008,70 (10): 1281-1288.
    139. Yu Pinlin, Tsun Kuo Chang, Chiung Wen Shin,Chen Hui Tseng. Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy[J]. Environmental Geology:2002,42(8):900-909.
    140. Zwally, H. Jay, Brenner, Anita C, Dimarzio, John P. Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(2):321-331.
    141. Sharma, Mahadev; Parton, John. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J].Forest Ecology and Management,2007,249(3):187-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700