不同类型吸水剂提高群众杨抗旱耐盐性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在干旱盐碱地区进行生态环境建设,除了着眼于筛选抗旱耐盐植物,还要加大造林绿化的技术含量,以提高林木的成活率和保存率,本文就是尝试利用吸水剂来提高我国重要速生树种的抗旱耐盐性。实验选取抗逆性较弱、对逆境条件较敏感的群众杨(P.‘popularis 35-44’)为实验材料,研究吸水剂对苗木的抗盐、抗旱能力的影响,同时分析和比较两种吸水剂A. Stocksorb 500 XL(颗粒状吸水剂,德国Stockhausen化学公司研制生产的新型吸水剂-,主要成分为:钾-聚丙烯酸脂-聚丙烯酰胺共聚体)和B. Luquasorb?(粉末吸水剂,由BASF-巴斯夫公司生产的超强吸水剂,其主要成分为:聚丙烯酸-丙烯酸钠交联体)对提高苗木抗逆性的效果,主要实验结果如下:
     1.吸水剂可以有效的提高植物的抗旱能力,干旱处理下施加吸水剂之后,相对高生长速度最高增加了2.73倍,这一结果与本实验的前期研究工作结果相似。同时土壤中施加吸水剂后,盐浓度被稀释,降低了土壤的盐碱程度,减弱了土壤对植物的盐胁迫,也提高了植物的抗盐能力。
     2.吸水剂可以维持苗木在干旱下的正常蒸腾水分蒸腾量,苗木的根系生长在吸水剂之中,即便在干旱胁迫下也可以得到足够的水分来维持正常的生长需要.在盐胁迫下第3天苗木日蒸腾耗水量即出现显著降低,而吸水剂处理后第9天才出现上述现象.干旱胁迫下第6天苗木日蒸腾耗水量显著下降,而吸水剂处理后将这一症状推迟了9天。
     3.盐和干旱胁迫都会造成苗木的气孔关闭、气体交换量降低、有效光化学量子产量(ΦPSII)下降等,而施加吸水剂后可以在一定时期和一定程度内缓解这些影响.盐胁迫下,随着处理天数增加,气孔导度直线下降,在第30天左右下降到80mmol/m2s1 .而施加吸水剂后,可将气孔导度维持在90-100mmol/m2s1.同时ΦPSII也最高提高了1.15倍;干旱胁迫下,吸水剂处理后,气孔导度和ΦPSII分别提高了1.71倍和1.14倍。
     4.由于根在生长中向水生长,细根可以整条穿过多个吸水剂颗粒,吸水剂强大的吸水能力为根的生长创造了一个富水和低盐的微环境,在很大程度上减弱了逆境因素对苗木的不利影响。因此在盐和干旱胁迫下,吸水剂处理苗木的根、叶中胁迫离子(Na+、Cl-)累计量降低,由于吸水剂自身富含K+,同时也为苗木提供了营养离子,最终提高了植株的抗旱耐盐性。
     5.干旱和盐处理会影响苗木的抗氧化系统,导致苗木出现伤害症状,.而施加吸水剂后维持膜抗氧化能力的抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)活性下降速率降低,同时将苗木胁迫症状最多推迟了51天,同时将苗木的生物量最高提高了1.17倍。
     6.两种吸水剂虽然都能促进群众杨的抗旱耐盐性,但作用特点有所不同,颗粒状吸水剂吸水倍率略低,吸水速度慢,但是供水速率快,日供水量大;并且由于根在生长中因为向水生长,成熟的根可以整条穿过多个吸水剂颗粒生长。粉末吸水剂的吸水速度快,吸水倍率高,可以迅速的保持住土壤中可以利用的水资源,减少水分的自然流失和蒸发,但是粉末吸水剂的供水速度较慢日供水量小,供水速度慢,使得在同样的吸水倍率下,粉末吸水剂可以更长久的为苗木提供水分,与颗粒吸水剂相比,可以将延缓苗木出现干旱症状的天数增加20天。
It needs to improve methodology for afforestation in arid and saline areas in addition to screening salt- and drought-resistant plant material. In this research the intolerant tree species-P.popularis were chosen as an experiment material to investigate the different effects two kinds of hydrogel on drought and salt resistance. Polymers used are: Stocksorb 500 XL (granule type, crosslinked poly potassium-co-(acrylic resin polymer)-co-polyacrylamide hydrogel) that manufactured by Stockhausen GmbH Krefeld (Germany), and hydrogel-Luquasorb? series products,powder type, made from partially neutralised, lightly cross-linked poly(acrylic acid) by BASF company (Germany). The experimental results and the main conclusions are summarized:
     1. In gerneral, the two types of polymers enhanced the drought resistance of P.popularis, e.g. relative growth rates of height-RGRH was increased by 2.73-fold. Result is consistent to our further studies. Moreover, hydrogel amendment also increased the salt resistance of the P.popularis. The application of polymers decreased the intensity of salinity by diluting the salt ions in the soil solution, thus enhanced salt tolerance of this tree species.
     2. Water or salt stressed plants retained higher level of whole-plant water loss, indicating hydrogel amendment supplied water to plant roots. Whole-plant water loss was declined after 3 days of salt treatment, but hydrogel-treated plants exhibited deceased evaporation on day 9. Similarly, Whole-plant eveporation decreased after 6 days of drought treatment, but it occurred 9 day later in hydrogel-treated plants.
     3. Water and salt stress reduced the stomatal conductance (GS), leaf gas exchange and the maximum quantum yield of PS II (ΦPSII), however, hydrogel amendment decreased the drought- and NaCl-induced decline of these parameters. For Example, stomatal conductance rapidly decreased after the onset of salt stress, and reached the minimum, 80 mmol m-2 s-1 on day 30. In comparison, hydrogel-treated plants remaned GS at 90-100 mmol m-2 s-1. At the same time the ΦPSII of polymer-treated plants were 1.15 times higher than non–hydrogel-treated plants. Similarly, GS andΦPSII of polymer-treated plants were 1.71- and 1.14-fold higher than non–hydrogel-treated plants under water stress.
     4. The roots grewgrow through the granule polymers during the experimental period. The polymer retained large amount of water which could supply a lower salt condition for root growth, thus reducing the intensity of water shortage and salinity. Therefore, the concentration of toxic ions of Na+ and Cl- were greatly diluted. Moreover, and the hydrogels used in this study also are rich of K+, The polymer could supply this nutrient element for plant growth, which increased water and salt tolerance of P. popularis plants.
     5. Salt and drought stress weakened the defense system of plant, resulting in leaf damage. Hydrogel application reduced the drought- and salt-induced decline of ascorbic peroxidase (APX), and glutathione reductase (GR). As a result, stress-induced leaf damage was delayed by 51 days and biomass of polymer-treated plants was increased by 1.17-fold, as compared to stressed plants without hydrogel amendment.
     6. There were different effects of polymers on plant resistance although the two types of hydrogels enhanced salt and water tolerance of plants. The granule hydrogel absorbs less water then the powder one, but it supplied water more quickly. The powder hydrogel supplied less water per day, but it could prolong the supplying duration. As a result, the occurrence of drough-induced leaf damage in powder hydrogel-treated plants was 20 days later than the powder hydrogel-treated plants.
引文
[1] 奥村武信.高分子吸水剂在沙地造林中的应用研究[J].山西水土保持科技,1995,3:45-47.
    [2] 曹 兵,苏润海,王 标,杜正忠.水分胁迫下臭椿幼苗几个生理指标的变化[J].林业科技,2003,28(3):1-3.
    [3] 陈恒伟,姜绍通,周建芹,赵妍嫣,王军辉.高吸水树脂种衣剂对玉米种子生理特性的影响[J].合肥工业大学学报,2004,27(3):242-246.
    [4] 陈少良,李金克,尹伟伦,王沙生.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J].北京林业大学学报,2002,24(5/6):84-88.
    [5] 陈少良.胡杨抗盐性的生理生化基础[M].北京:高等教育出版社,2003:123–138.
    [6] 陈贻竹,李晓萍.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报, 1995, 3 (4) : 79- 86.
    [7] 丁书侠,杨 伟,施智宝,高国雄.OASIS 吸水剂在风沙路基边护坡造林中的应用[J].西北林学院学报,2003,18(1):102-103.
    [8] 樊卫国,刘国琴,何嵩涛,安华明,文晓鹏,罗 充,刘进平.刺梨对土壤干旱胁迫的生理响应[J].中国农业科学,2002,35(10):1243-1248.
    [9] 方 锋,黄占斌,俞满源.保水剂与水分控制对辣椒生长及水分利用效率的影响研究[J].中国生态农业学报,2004,12(2):73-76.
    [10] 房江育.无机营养和水分胁迫对春小麦叶绿素丙二醛含量等的影响及其相关性[J].甘肃农业大学学报,2001,36(1):89-94.
    [11] 冯建灿,胡秀丽,苏 乐,等.保水剂对干旱胁迫下刺槐叶绿素a荧光动力学参数的影响[J].西北植物学报,2002,22(5):1144-1149.
    [12] 冯建民,邹雪生,张春桃,张庭兴.吸水剂在银杏等树种扦插育苗中的应用[J].浙江林业科技,1998,18(1):46-48.
    [13] 高宝岩,吕伟,张余良,张义林,隋华.几种主要农作物应用保水剂效应的初步研究[J].天津农林科技,1999,(4):4-6.
    [14] 顾生贵,白丽阳,秦海霞等.三种高吸水剂对半阴坡土壤水分和针叶树成活率影响的研究[J].西北华北林业调查规划,1996,(2):29-31.
    [15] 关义新,戴俊英,林 艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297.
    [16] 韩恩贤,韩 刚,薄颖生等.半干旱地区侧柏造林应用保水剂试验[J].西北林学院学报,2004,19(3):50–52.
    [17] 韩锦峰.干旱胁迫下烤烟光合特性和氮代谢研究[J].华北农学报,1994,9(2):39-45.
    [18] 韩蕊莲,景维杰,侯庆春等.黄土高原人工整地与抗旱造林技术研究进展[J].西北植物学报,2003,23(8):1331–1335.
    [19] 何景峰,唐德瑞,李根前,王迪海.SA 型高效保水剂对造林成活率及苗木生长的影响[J].陕西林业科技,1994,3:76-78.
    [20] 何腾兵,易萱蓉,蔡是华,张 明.高吸水剂的吸水能力及其对土壤水分物理性质的影响[J].耕作与栽培,1996,(5):57-58.
    [21] 黄凤球,杨光立,黄承武,沈华山.化学节水技术在农业上的应用效果研究[J].水土保持研究,1996,3(3):118-124.
    [22] 黄建昌.草莓对干旱的生理反应[J].果树科学,1994,11(2):114-116.
    [23] 黄占斌,万惠娥,邓西平等.吸水剂在改良土壤和作物抗旱节水中的效应[J].土壤侵蚀与水土保持学报.1999,(4):52-55.
    [24] 黄占斌,张国桢,李秧秧,郝明德.保水剂特性测定及其在农业中的应用[J].农业工程学报,2002,18(1):22-28.
    [25] 姜孝成,徐孟亮,陈良碧,周广洽.不同水、陆稻抗旱性与剑叶中可溶性蛋白变化的关系[J].湖南师范大学自然科学学报,1998,21 (3):60-68.
    [26] 靳 平,王 慎,王中会,等.HSPAN 高吸水剂在飞播造林生产上的应用[J].陕西林业勘测设计,1988,(1):28-36.
    [27] 黎祜琛,邱治军.树木抗旱性及抗旱造林技术研究综述[J].世界林业研究,2003,16(4):17-22.
    [28] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,7:175-177.
    [29] 李合生.现代植物生理学[M].高等教育出版社,2002:399-420.
    [30] 李宏彬,黄建昌,叶 希,卢国志,黄勇军.水分胁迫对荔枝实生幼苗部分生理特性的影响[J].仲恺农业技术学院学报,2002,15(3):39-43.
    [31] 李景生,黄韵珠.土壤保水剂的吸水保水性能研究动态[J].中国沙漠,1996,(16):86-91.
    [32] 李林锋,刘新田.干旱胁迫对桉树幼苗的生长和某些生理生态特性的影响[J].西北林学院学报,2003,19(1):14-17.
    [33] 李树华,许兴,何军,米海莉,王具宏.水分胁迫对牛心朴子光合生理特性影响的研究西北植物学报 K2004,24 (1):100—104.
    [34] 李青丰,徐 军,董天明.对吸水剂抗旱作用机理一些问题的探讨[J].干旱区资源与环境,2001,15(2):85-88.
    [35] 李文卿,潘廷国,柯玉琴,陈凤翔.土壤水分胁迫对甘薯苗期活性氧代谢的影响[J].福建农业学报 2000,15(4):45-50.
    [36] 李云开,杨培岭,刘洪禄.吸水剂农业应用及其效应研究进展[J].农业工程学报,2002a,3:182 - 187.
    [37] 李云开,杨培岭,刘洪禄.保水剂在农业上的应用技术与效应[J].节水灌溉,2002b,2:12-17.
    [38] 林文杰,马焕成,周 蛟等.干旱胁迫下保水剂对苗木生长及生理的影响[J].干旱区研究,2004a,21(4):353-357.
    [39] 林文杰,马焕成,周 蛟.干旱胁迫下不同保水剂处理的水分动态研究[J].水土保持学报,2004b,11(2):121-124.
    [40] 刘飞虎,梁雪妮,张寿文,黄海辉.干旱胁迫下苎麻种质的生理生化特性研究[J].江西农业大学学报,2000,22(1):11-19.
    [41] 刘克礼.春玉米叶片叶绿素含量与光合速率的研究[J].内蒙古农牧学院学报,1998,19(2):48-51.
    [42] 刘友良.植物水分逆境生理[M].北京:农业出版社,1992:98-136.
    [43] 刘子凡,梁计南,罗明珠等.土壤保水剂对秋植蔗形态生理效应的研究[J].热带农业科学,2004a,24(2):18-22.
    [44] 刘子凡,梁计南,谭中文,罗明珠,陈培寿.土壤保水剂对甘蔗抗旱性的影响[J].甘蔗,2004b,11(2):11-15.
    [45] 卢从明.水分胁迫对光合作用影响的研究进展[J].植物学通报,1994,11(增刊):9-14.
    [46] 鲁克成,刘 奎,袁素蓉,石 伟.抗旱保水剂在墨西哥柏工程造林上的应用研究[J].林业建设,2003,2:30-32.
    [47] 吕 庆,郑荣梁.膜脂过氧化脱酯化在干旱引起植物膜损伤中的作用[M].自由基生命科学进展(第 2 集).北京:原子能出版社,1994:1-66.
    [48] 吕金印,山 仑,高俊凤,覃凤云,杨淑慎.干旱对小麦灌浆期旗叶光合等生理生理特性的影响[J].干旱地区农业研究,2003,2(21):77-81.
    [49] 罗广华,王爱国.植物 SOD 的凝胶电泳及活性显示[J].植物生理学通讯,1983,6:44-45.
    [50] 罗志斌,马焕成,饶龙兵.保水剂及其在林业上的应用研究进展[J].林业科学研究,2002,15(5):620-626.
    [51] 马双艳,姜远茂,彭福田,孙建义.干旱胁迫对苹果叶片中甜菜碱和丙二醛及脯氨酸含量的影响[J].落叶果树,2003,5:1-4.
    [52] 马秀芳,沈秀瑛,杨德光.不同耐旱性玉米品种对干旱的生理生化反应[J].沈阳农业大学学报,2002-06,33(3):167-170.
    [53] 毛慧玲,李思光,刘筱斌,邱为龙.金针菇菌丝生长量与可溶性蛋白含量变化比较研究[J].食用菌学报,1998,5(4):34-36.
    [54] 毛军三.应用高吸水剂提高半干旱丘陵地区造林成活率试验初报[J].内蒙古林业科技,1988,2:17-20.
    [55] 潘永祥,曹立平,王 忠,包存文.抗旱吸水剂在干旱山区造林中的应用初报[J].宁夏农林科技,2003,2:11-16.
    [56] 任建宏,艾海舰.土壤保水剂对荷兰菊幼苗在干旱胁迫下生长的影响[J].陕西农业科学,2003,1:6-7.
    [57] 沈 艳, 谢应忠.干旱对紫花苜蓿叶绿素含量与水分饱和亏缺的影响[J].宁夏农学院学报,2004,25(2):25-28.
    [58] 宋晴晴,何 群,付在秋,朱东顺.保水剂对夏播甜菜苗期生长的影响[J].中国甜菜糖业,2002,4:42-43.
    [59] 宋永莲,王生福,巴音孟克,乌兰英.抗旱保水剂在紫花苜蓿种植中应用的试验报告[J].青海草业,2003,12(2):9-10.
    [60] 孙友笙,孙继祥.高分子高吸水剂在侧柏造林上的初步应用[J].山东林业科技,1987,4:46-48.
    [61] 史胜青,袁玉欣,杨敏生,梁海永,张金香.水分胁迫对 4 种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响.林业科学.2004.40(1):168-173.
    [62] 邵杰,陈少良,王瑞刚,江杰,张新荣. 吸水剂提高群众杨的抗盐性及其机理 北京林业大学学报,2007,1:79-84
    [63] 覃 鹏,杨志稳,孔治有,刘凤英,刘飞虎.干旱对烟草旺长期光合作用的影响[J].亚热带植物科学,2004,33(2):5-7.
    [64] 滕汉玮,段宇红.农用保水剂在旱作农业上的应用试验初报[J].甘肃农业科技,2000,12:23-24.
    [65] 童成金,张有生,王荣秀.不同保水剂各处理间对柠条苗期影响初步研究[J].青海农林科技,2001,4:12-13.
    [66] 汪立刚,武继承,王林娟.保水剂有效使用的土壤水分条件及对小麦的增产效果[J].土壤,2003,1:80–82.
    [67] 汪企明,吴礼才,成恒嵩,等.生物吸水胶应用于育苗造林研究[J].江苏林业科技,1991,2:1-7.
    [68] 王 敏,姚维传,张从宇,司文会,谢 辉.抗旱剂对玉米出苗和幼苗生长的影响[J].中国农学通报,2003,19(2):33-36.
    [69] 王 敏,张从宇,马同富,姚维传.大豆品种苗期抗旱性研究[J].中国油料作物学报,2004,26(3):29-32.
    [70] 王 忠.植物生理学[M].北京:中国农业出版社,2000:121-185.
    [71] 王爱国,罗广华.植物的超氧自由基与羟氨反应的定量关系[J].植物生理学通讯,1990,6:55-57.
    [72] 王爱国,邵从本,罗广华.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,1986,22(2):55-57.
    [73] 王翠忠等.吸水剂造林刍议[J].太原科技,2003,1:22-23.
    [74] 王建光,裴秀琴,胡秋芳.吸水剂对牧草种子萌发及其幼苗抗旱性的影响[J].中国草地,1996,4:32–35.
    [75] 王九龄,孙 健.华北石质低山阳坡应用高吸水剂抗旱造林试验初报[J].林业科技通讯,1984, 11:16-20.
    [76] 王儒贵,吴国军.干旱地区应用高吸水性树脂育苗造林试验[J].林业科技通讯,1987,2:10-11.
    [77] 王瑞刚,陈少良,刘力源,等.盐胁迫下 3 种杨树的抗氧化能力与耐盐性研究[J].北京林业大学学报,2005,27,3:46–52.
    [78] 王晓琴,袁继超,熊庆娥.玉米耐旱性的调控研究[J].干旱地区农业研究,2002,20(1):72-76.
    [79] 魏良明,贾了然,胡学安,等.玉米抗旱性生理生化研究进展[J].干旱地区农业研究,1997,15(4):66-71.
    [80] 温尚斌,石连旋,王丹生,马福荣,陈 宏. 大豆叶片光合与呼吸、硝酸还原酶活性及可溶性蛋白含量相互关系的探讨[J].东北师大学报自然科学版,1999,1:67-70.
    [81] 吴 林,李亚东,刘洪章等.水分逆境对沙棘生长和叶片光合作用的影响[J].吉林农业大学学报,1996,18(4):15-19.
    [82] 夏礼煜,赵晓峰,王福祥,等.半干旱地区应用高吸水性树脂抗旱造林试验初报[J].吉林林业业科技,1985,1:12-15.
    [83] 许 宁.黄瓜无土育苗应用保水剂的生理效应研究[J].辽宁农业科学,2004,5:41-43.
    [84] 许大全.气孔运动与光合作用[J].植物生理学通讯,1984,20(6):6-12.
    [85] 尹国平,农韧钢,刘革宁.高吸水剂在我国林业上的应用研究进展[J].世界林业研究,2001,14(2):50–54.
    [86] 余红英,邓世媛,尹国强,赵红霞,陈静文,崔英德.保水剂对月季切花生理生化特性的影响研究初报[J].广东农业科学,2004,3:28-29.
    [87] 俞满源,方 锋,黄占斌.保水剂、液态地膜在苗木栽植中的应用研究[J].干旱地区农业研究,2003a,21(3):30-33.
    [88] 俞满源,黄占斌,方 锋,山 仑.保水剂、氮肥及其交互作用对马铃薯生长和产量的效应[J].干旱地区农业研究,2003b,21(3):15-19.
    [89] 张海忠,宋晓冬,翟丽平.吸水剂在樟子松造林中的应用[J].吉林林业科技,2001,30(4):60-62.
    [90] 张木清,陈如凯,高三基等.甘蔗基因型对水分胁迫的形态生理响应[J].中国农业科学,1997,30(6):72-77.
    [91] 张宪政,陈凤玉,王荣富.植物生理学实验技术[M].辽宁科学技术出版社,1994:9.
    [92] 赵天宏.水分胁迫及复水对玉米叶片叶绿素含量和光合作用的影响[J].杂粮作物,2003,23(1):33-35.
    [93] 赵会杰,邹琦,于振文。叶绿素荧光分析技术及其在植物光合机理研究中的应用。河南农业大学学报(Journal of Henan Agricultural
    [94] 赵明,丁在松,R Ishh ill,陈鹂,张旭。干旱和遮光条件下玉米非光化学荧光猝灭的变化和组成的研究。作物学报 (ACTA AGRONOMICA SINICA).2003.29(1):59~ 62
    [95] 周世新,宁作斌,顺云杰,牟晓燕,刘德义,刘 欣,王树宁,孙伟红.高效营养保水剂在大田玉米生产上的试验效果[J].中国农业气象,2001,22(4):43-47.
    [96] 邹 琦.作物抗旱生理生态研究[M].济南:山东科技出版社,1994:12.
    [97] 邹厚远,关秀琦,鲁子瑜等.黄土丘陵区造林技术研究[J].水土保持研究,1994,1(3):48–55.
    [98] 张守仁. 叶绿素荧光诱导动力学参数的意义及讨论[J]. 植物学通报, 1999, 16 (4) : 444- 448.
    [99] Awad F,Doering H W.Mobilization of nutrients from slow-release fertilizer as influenced by hydrogel and water quality[J].Agrochimica,1994,39:123–132.
    [100] Baker J,Steele C,Dure L.Sequence and characterization of 6 Lea proteins and their genes from cotton[J].Plant Mol Biol,1988,11:277-299.
    [101] Beauchamp C, Fridovich I.Superoxide dismutase:improved assays and an assay applicable to acrylamide gels[J].Anal Biochem,1971,44:276-287.
    [102] Bradford MM .A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bingding[J].Anal Biochem,1976,72:248-254.
    [103] Chen S,Li J.Physiologiccal and Biochemical Mechanism of Populus euphratica in Salt Resistance[J].Higher Education Press,2003,12:123-138.
    [104] Chen S,Li J,Fritz E,et al.Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress[J] . Forest Ecology Management,2002,168(1-3):217-230.
    [105] Chen S,Li J,Wang S,Hüttermann A,et al.Salt,nutrient uptake and transport and ABA of Populus euphratica;a hybrid in response to increasing soil NaCl[J].Trees,2001,15(3):186-194.
    [106] Chen S,Zommorodi M,Fritz e,et al.Hydrogel modified uptake of salt ions and calciumin Populus euphratica under saline conditions[J].Trees,2004,18(2):175-183.
    [107] Cheng L S,Liu X H.Effects of water stress on active oxygen metabolism in litchi leaves[J].Acta Horticult Sin,1998,25(3):241-246.
    [108] Cramer GR,Lauchli A,Polito VS.Displacement of Ca2+ by Na+ from the plasmalemma of root cells[J].Plant Physiol,1985,79:207-211.
    [109] El Sayed H,Kirkwood R C,Graham N B.The effects of a hydrogel polymer on the growth of certain horticultural crops under saline conditions[J].J Expt Bot,1991,42:891–899.
    [110] El Sayed H,Kirkwood R C.Effects of NaCl salinity and hydrogel polymer treatments on viability,germination and solute contents in Maize (Zea mays) pollen[J].Phyton (Horn Austria),1992,32:143-157.
    [111] Fridovich L.Superoxide dismutase[M].Ann Rev Biochem,1975,44:147-159.
    [112] Helal H M.Interaction of potassium nutrition and salt tolerance in higher plants[J].Potash Review Subj.1982,16,Sute92.
    [113] Lane B G.Cellular desiccation and hydration:development ally regulated proteins and the maturation and germination of seed embryos[J].FASEBJ,1991,5:2893-2901.
    [114] Lange O L ,Kappen L ,Schulze E D.Water and plant life:problems and modern approaches [M].Berlin:Heidelbergs Springerverlag.1976.
    [115] Prasad D D K ,A R K Parasad.Effect of lead and mercury on chlorophyll synthesis in mung bean seedings[J].Phytochemistry,1987,26:881-883.
    [116] Szmidt R A K,Graham N B.The effect of poly (ethylene oxide) hydrogel on crop growth under saline conditions[J].Acta Horticulturae,1990,287:211-218.
    [117] Tang F D,Liang Y J,Han S J,et al.Effect of biological agents on survival rate and root growth of Scots Pine seedlings[J].Journal of Forestry Research,2004,15 (2):124-126.
    [118] Xuhf,Liuxt,Jinym,Zhangjh,Xukzh.Study on sunflower chlorshyll and the specific leaf weight[J].System Sciences and Comprehensive Studies in Agriculture,2003,19(2):97-100.
    [119] Yang J,Zhang J,Huang Z,et al.Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat[J].Crop Sci,2000,40:1645-1655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700