黄土高原四种乡土禾草耗水规律和抗旱特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以黄土高原4个乡土禾草:长芒草(Stipa bungeana)白羊草(Bothriochloa ischaemum),无芒隐子草(Cleistogenes songorica),冰草(Agropyron cristatum)作为实验材料,应用盆栽试验,在中国科学院水土保持研究中心的遮雨棚模拟黄土高原干旱环境,人工控制土壤水分并设置3个梯度:适宜水分(75%θf)、中度干旱(55%θf)、重度干旱(40%θf);对这4个乡土禾本科牧草在不同土壤水分条件下的耗水规律、生长特性、叶绿体色素成分和含量、水分生理特性、保护酶活性和渗透调节物质、水分利用效率及干物质积累分配规律等进行研究,探讨了4个乡土禾本科牧草在不同土壤水分条件下这些指标在时间和空间上的变化规律,从而揭示这4个乡土禾本科牧草在耗水规律、水分利用策略、抗旱生理机制以及抗旱性的差异,旨在为黄土高原草地建设提供参考价值,也为乡土禾草的应用提供理论依据。主要结论如下:
     1. 4个乡土禾本科牧草的耗水特性存在差异。4个乡土禾草的月耗水量及总耗水量均表现为:适宜水分>中度干旱>重度干旱。4个乡土禾草月耗水主要集中在6、7月份,且在7月份达到峰值。随干旱胁迫程度加剧,各草种耗水量明显减少;不同草种单株耗水量差异明显,表现为:白羊草>冰草>无芒隐子草>长芒草,最高日、旬、月耗水量差异明显,中度和重度水分亏缺下的最高耗水日比适宜水分下的提前10 d左右。1 d中的最大耗水高峰随着土壤含水量的降低有提前的趋势。
     2. 4个草种株高生长和单叶叶面积明显受土壤水分含量影响,均表现为:适宜水分>中度干旱>重度干旱,土壤干旱下长芒草和无芒隐子草受抑制程度显著大于冰草和白羊草;干旱胁迫均抑制了4个草种地上部的生长,但同时却提高了根冠比。土壤水分含量对4个草种的水分利用效率均有较大影响,长芒草和无芒隐子草的水分利用效率随干旱加剧而降低,两者属于低耗水、低WUE草种,冰草和白羊草在中度干旱下WUE最高,相比白羊草,冰草属于低耗水、高WUE草种;白羊草属于高耗水、高WUE草种。
     3.随干旱胁迫程度的加剧和干旱时间的延长,长芒草和无芒隐子草的叶片组织含水量和叶片相对含水量明显降低,冰草和白羊草则一直能维持较高含水量,且下降幅度小,稳定性好,并且冰草和白羊草利用自身高度保水力的特点来适应干旱环境。另外,随着干旱的不断加剧会减慢抑制叶绿体色素的合成,但抗旱性较强的冰草和白羊草叶绿素含量下降速度比抗旱性较弱的长芒草和无芒隐子草慢,即白羊草和冰草在一定干旱胁迫下能保持原本的叶绿素含量甚至含量增多,所以能维持正常的光合作用。
     4. 4个乡土禾草的保护酶活性和渗透调节物质在整个干旱胁迫期间对不同土壤水分条件的反应不同。结果表明:这4个草种在开始遭受干旱胁迫时,均造成MDA含量增加,O2-·的积累,同时,这4个草种SOD、POD、CAT、APX的活性上下波动协调作用,脯氨酸、可溶性糖、可溶性蛋白和K+含量在干旱下连续积累,这些渗透调节物质和保护酶共同作用,使O2-·和MDA含量在胁迫中后期呈下降趋势。在胁迫前期和中期,主要是以增强保护酶活性来有效地清除活性氧,抑制膜脂过氧化,而在胁迫后期,随着酶活降低,则靠增加渗透调节能力来适应干旱。冰草和白羊草在干旱胁迫下脯氨酸、可溶性糖、可溶性蛋白的积累比长芒草和无芒隐子草更多;无芒隐子草在干旱胁迫下渗透调节物质无机离子的积累量明显比其它三个草种多,说明渗透调节物质之间互相有补充的作用,不同草种主要的渗透调节物质对渗透调节作用的贡献率不同。本文采用主成分分析方法对这4个乡土禾草的抗旱性进行综合评价,结果表明4个禾草的抗旱性为:冰草>白羊草>长芒草>无芒隐子草。
The growth development, strategy of water using and drought-resistance mechanism of four native gramineous grass(Stipa bungeana, Bothriochloa ischaemum, Cleistogenes songorica and Agropyron cristatum) in Loess plateau were studied by pot culture experiments simulating different soil water status in Yangling of China. The different levels of soil-water-treatments were set by artificially controlling soil moisture. This paper mainly studied the time and space changes of water metabolism and growth, photosynthesis characteristic and photosynthesis pigment, water physiological characters, protective enzymes activities, osmotic adjustment substances, WUE ,and the community biomass of four species, expecting to discover the differences of the drought-resistance ability and the strategy of water-using between them. The results provided scientific basis of vegetation restoration and community succession in Loess plateau. The main results are as follows:
     1. Different soil water content had obviously affected on water consumption characteristics of four species. The trends of water consumption of four species in a month and the total water consumption were adequate water(75%θf)>medium stress(55%θf)>severe stress(40%θf). The results showed that water consumption of those species decreased with the increase of soil drought stress, and water consumption of those grasses was different: Bothriochloa ischaemum>Agropyron cristatum> Cleistogenes songorica>Stipa bungeana. The highest water consumption in one day, ten-day and one month were different. The highest water consumption day of medium and severe drought stress occurred about 10 days earlier than the adequate soil water content. The time of day when the greatest water consumption occurred arrived early with the decrease of soil water contents.
     2. The growth of plant height and single leaf area of the four native grasses were the fastest under adequate soil water contents, and were the lowest under severe drought .Under drought condition, the growth of four grasses was all inhibited, especially for S. bungeana and C. songorica. The growth of four species had been restrained and WUE was affected strongly under drought stress. Water use efficiency of S. bungeana and C. songorica decreased with the decrease of soil water content, they had lower water consumption and low WUE characteristics. A. cristatum and B. ischaemum had the highest WUE under medium drought treatments, respectively. A. cristatum had low water consumption and high WUE characteristic, B. ischaemum had high water consumption and high WUE characteristic.
     3. The leaf water content of different species decreased with the increase of soil water stress. The RWC of A. cristatum and B. ischaemum were higher than that of S. bungeana and C. songorica obviously under three different soil water conditions in the different growth stage, and maintained stable range, had better water preserving capacity. Besides, the content of photosynthesis pigment of four species decreased at early stress stage under three soil water conditions, which shows that drought-stress affected the synthesis of photosynthesis pigment .But the content of photosynthesis pigment of A. cristatum and B. ischaemum were higher than that of S. bungeana and C. songorica obviously under drought treatments to keep the normal metabolism.
     4. The effects of protective enzymes activities and osmotic adjustment substances were different on four species under different water contents. The content of O2-·and the content of MDA increased under drought stress. With the extending of water stress, the activity of four species enzymes, such as SOD, POD, CAT, APX in the leaves of the four species were up-down fluctuating, and coordinated interactively. In the meanwhile, the content of osmoregulation substance, such as proline, soluble sugar, soluble protein, and K+, accumulated continuously under drought stress, which combined action with protective enzymes above and made the content of O2-·and the content of MDA down in the middle-later period. At the early and middle water stress stages, they may boost up the protective enzymes activities to protect the endosmosis from damaging. As the protective enzymes activities weaker at the following stage, they may adopt the strategy of improving osmotic adjustment substances content to adapt drought. The content of proline, soluble sugar and soluble protein of A. cristatum and B. ischaemum were more than those of S. bungeana and C. songorica under drought treatments. But the content of K+, Ca2+ and Na+ of C. songorica were more than the others. Main components analysis was conducted to reveal the ability of drought-resistance of four species. The result is A. cristatum >B. ischaemum>S. bungeana > C. songorica.
引文
曹帮华,翟明普,张明如. 2005.土壤干旱条件下脱落酸根冠通讯的研究进展.内蒙古农业大学学报, 3 :115~118
    曹慧,许雪峰,韩振海. 2004.水分胁迫下抗旱性不同的苹果属植物光合特性的变化.园艺学报, 31(3):285~290
    陈立松,刘星辉. 1998.水分胁迫对荔枝叶片活性氧代谢的影响.园艺学报,25(3):241~246
    陈善福,舒庆尧.1999.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报, 16(5):555~560
    陈亚娟,李付广,刘传亮.2009.植物渗透调节研究进展及与棉花耐旱遗传改良.分子植物育种, (01): 149~154
    陈永金,陈亚宁,薛燕. 2004.干旱区植物耗水量的研究与进展.干旱区资源与环境,18(6):152~158
    陈忠,苏维埃,汤章城.1999.豌豆热激蛋白n p c 6 0对酶的高温保护功能及其机理.科学通报, 44(20):2171~2175
    崔宏安.刘莉丽.陈铁山. 2003.葛藤不同类型叶耐旱结构的比较解剖学研究.西北植物学报,23(12):2211~2215
    董宽虎,米佳.2006.白羊草种群繁殖的数量特征.草地学报, 14(3):200~213
    杜金友,胡冬南,李伟. 2006.干旱胁迫条件下胡枝子渗透物质的变化.福建林学院学报, 26(4):349~352
    范杰英. 2005.1O个树种光合和蒸腾性能对分胁迫的响应.西北林学院学报,20(2):36~38
    傅坤俊. 2000.黄土高原植物志.北京:科学出版社:12~312
    高俊凤,孙群,曹翠玲.2006.植物生理实验指导.北京:高等教育出版社,:15~16
    高玉葆,刘峰,任安芝. 1999.不同类型和强度的干旱胁迫对黑麦草实验种群物质生产与水分利用的影响.植物生态学报, 23(6):510~520
    龚明. 1989.作物抗旱性鉴定方法与指标及其综合评价.云南农业大学学报,4(1):73~81
    关义新,戴俊英,林艳. 1995.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯, 31(4):293~297
    郭连旺,沈允钢.1996.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,32(1):1~8
    郭泉水,谭德远,刘玉军. 2004.梭梭对干旱的适应及抗旱机理研究进展.林业科学研究17(6):796~803
    韩蕊莲,景维杰,侯庆春.2003.黄土高原人工整地与抗旱造林技术研究进展.西北植物学报, 23(8):1331~1335
    韩蕊莲,梁宗锁. 1994.黄土高原适生树种苗木的耗水特性.应用生态学报,5(2): 210~213
    侯庆春,韩蕊莲. 2000.黄土高原植被建设中的有关问题.水土保持通报, 20(2):53~56
    黄占斌,山仑. 1998.水分利用效率及其生理生态机理研究进展.生态农业研究, 6(4):19~23
    江龙. 1999.作物抗旱性研究方法.贵州农业科学,27(5):70~72
    蒋明义,郭绍川. 1996.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯, 32(2):144~150
    蒋明义. 1996.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,32(2):144~150
    接玉玲,杨洪强,崔明刚.2001.土壤含水量与苹果叶片水分利用效率的关系.应用生态学报, 12(3):387~390
    康俊梅,杨青川,樊奋成. 2005.干旱对苜蓿叶片可溶性蛋白的影响.草地学报, 13(3): 199~202
    孔德政,杨芳缄,刘辉志. 2000.不同品种草坪草抗旱性的初步研究.河南科学,18(4):412~414
    孔俊杰,贾黎明. 2007.影响树木蒸腾耗水的外部因子研究进展.世界林业研究,20(1):16~21
    黎燕琼,陈泓. 2007.林木抗旱性研究及其进展.世界林业研究, 20(1): 10~15
    李春香,王纬,李德全. 2001.长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响.西北植物学报,21(5):924~930
    李德全,邹琦.1991a.土壤水分胁迫下小麦品种渗透调节与膨压维持.华北农学报,6(4):100~105
    李德全,邹琦. 1991b.植物渗透调节研究进展.山东农业大学学报,21(1):86~90
    李德全,邹琦,程炳嵩. 1991c.抗旱性不同的冬小麦品种渗透调节能力的研究.山东农业大学学报,22(4):377~383
    李德全,邹琦,程炳嵩. 1991d.植物渗透调节的测定方法介绍.植物生理学通讯,27(4):296~298
    李德全,邹琦,程炳嵩. 1992a.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,18(1):37~44
    李德全,邹琦,程炳嵩. 1992b.土壤水分胁迫对小麦叶片的渗透调节与延伸生长的影响.植物学报,34(2):121~125
    李吉跃,翟洪波. 2000.木本植物水力结构与抗旱性.应用生态学报, (02):301~305
    李吉跃. 1991.太行山区主要造林树种耐旱性研究.北京林业大学学报,13(增刊):251~265
    李莉,任金平,曲柏宏. 2005.水分胁迫对苹果梨叶片活性氧代谢的影响.吉林农业科学, 30(6) :58~60
    李文华. 2004.干旱胁迫对苗木蒸腾耗水和生长的影响.西北农林科技大学学报,32(1):61~66
    李雪莲,张国芳,谷艳蓉. 2005.4种多年生禾草苗期抗旱性的比较研究.四川草原, 110(1) :13~15
    李银芳. 1992.不同水分生境对梭梭耗水量的影响.干旱区研究, 9(4):45~50
    梁建生,庞佳音,陈云. 2001.渗透胁迫诱导的植物细胞中脱落酸的合成及其调控机制.植物生理学通讯, 37(5) :447~451
    刘奉觉,郑世锴,巨关升.1993.用热脉冲速度记录仪测定树干液流.植物生理学通讯, 29(2):110~115
    刘国琴,樊卫国. 2000.果树对水分胁迫的生理响应.西南农业学报, 13(1):101~105
    刘君娣,王有科,贺春燕.2007.三个杏品种叶片主要抗旱生理指标的比较.甘肃农业大学学报, (06): 71~75
    刘天慰,岳建英. 2003.山西植物志.北京:中国科学技术出版社:46~51
    柳小妮. 2002.脱落酸与早熟禾的耐旱性.甘肃农业大学报, 37(3) :279~284
    路贵和,安海润. 1999.作物抗旱性鉴定方法与指标研究进展.山西农业科学,27(4):39~43
    马宗仁. 1992.短芒披碱草和老芒麦在水分胁迫下游离脯氨酸积累的研究.草业科学, 9(5):53~57
    祁娟,徐柱,王海清. 2009.旱作条件下披碱草属植物叶的生理生化特征分析.草业学报, 18(1):39~45
    任安芝,高玉葆,刘爽. 2000.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响.应用与环境生物学报, 6(4):112~116
    戎郁萍,赵萌莉,韩国栋.2004.草地资源可持续利用原理与技术.北京:化学工业出版社:23
    山仑,徐炳成. 2009.黄土高原半干旱地区建设稳定人工草地的探讨.草业学报, 18(2):1~2
    山仑. 1994.植物水分利用效率和半干旱地区农业用水.植物生理学通讯, 34(1):61~66
    史刚荣,汤盈. 2006.淮北相山恢复演替群落优势树种叶片的生态解剖.植物生态学报,30(2):314~322
    史燕山,骆建霞,黄俊轩. 2005.5种草本地被植物抗旱性研究.西北农林科技大学学报,33(5):130~134
    宋莉萍,于辉,李钢. 2008.4种根茎型多年生禾本科牧草抗旱生理比较研究.黑龙江畜牧兽医, 12(1):56~57
    孙存华,李扬,贺鸿雁. 2005.藜对干旱胁迫的生理生化反应.生态学报, 25(10):2556~2561
    孙洪仁,关天复,孙建益.2009.不同年限紫花苜蓿(生长)水分利用效率和耗水系数的差异.草业科学, 26(3):39~42
    孙洪仁,韩建国,张英俊.2004.蒸腾系数、耗水量和耗水系数的含义及其内在联系.草业科学, 21(增刊):522~526
    孙卫红,王伟青,孟庆伟.2005.植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性.植物生理学通讯, 41(2):143~147
    孙宪芝,郑成淑,王秀峰. 2007.木本植物抗旱机理研究进展.西北植物学报, 27 (3):629~634
    邰建辉,王彦荣,陈谷. 2008.无芒隐子草种子萌发、出苗和幼苗生长对土壤水分的响应.草业学报, 17(3):105~110
    汤章城.1986.水分胁迫和植物的气孔运动.植物生理生化进展,(4):43~50
    陶国清,章一安.1986.细胞分裂素.植物生理生化进展,4:74~98
    腾文元,周湘红. 1993.果树气孔反应及其对叶水势的调控.干旱地区农业研究, 11 (4) : 61~64
    王海珍,韩蕊莲. 2003.不同土壤水分条件对辽东栎、大叶细裂槭水分状况的影响.西北林学院学报, 18(3):1~5
    王继和,马全林,吴春荣. 2001.干旱沙区几种果树生理生态特性及其适应性研究.中国沙漠, 21(增刊):22~29
    王孟本,李洪建,柴宝峰. 1999.树种蒸腾作用光合作用和蒸腾效率的比较研究.植物生态学报, 23(5):401~410
    王齐,孙吉雄,安渊. 2009.水分胁迫对结缕草种群特征和生理特性的影响.草业学报, 18(2):33~38
    王晓江.1994.荒漠草原土壤水分动态研究.内蒙古林业科技, 3:15~2O
    王怡丹,全炳武,朴京珠.水分胁迫对4种牧草苗期的抗旱性比较.延边大学农学学报2007,29(2):101~105
    魏永胜,梁宗锁,山仑.2005.利用隶属函数值法评价苜蓿抗旱性.草业科学, 22(6):33~36
    吴钦孝,杨文治. 1998.黄土高原植被建设与持续发展.北京:科学出版社:12
    吴志华,曾富华,马生健. 2004.水分胁迫下植物活性氧代谢研究进展.亚热带植物科学,33(3) :77~80
    吴志华,曾富华,马生健.2004.水分胁迫下植物活性氧代谢研究进展(综述Ⅱ).亚热带植物科学, 33(3):77~80
    谢贤健,兰代萍,白景文. 2009.三种野生岩生草本植物的抗旱性综合评价.草业学报, 18(4):75~80
    辛国蓉,董姜玲. 1996.水分胁迫下8种燕麦品种的抗旱性综合评价.草业科学, 13(6) :30~34
    熊清,王伯初,段传人.2000.植物抗脱水胁迫的分子机制.生物化学与生物物理进展,27(3):247~250
    熊伟,王彦辉,程积民.2003.三种草本植物蒸散量的对比试验研究.水土保持学报, 17(1):170~172
    徐炳成,山仑,黄占斌. 2001.草坪草对干旱胁迫的反应及适应性研究进展.中国草地, 23(2) :55~61
    徐东翔,张汝民,刘素梅.1990.沙生植物抗旱生理学问题.干旱区资源与环境,1(增刊):9~12
    严昌荣,韩兴国,陈灵芝. 2001.六种木本植物水分利用效率和其小生境关系研究.生态学报, 21(11):23~27
    严昌荣,韩兴国,陈灵芝. 2001.六种木本植物水分利用效率和其小生境关系研究.生态学报, 21(11):23~27
    杨洪强,贾文锁. 2001c.植物水分胁迫信号识别与转导.植物生理学通讯,37(2):149~154
    杨洪强,李林光. 2001a.植物对土壤干旱的识别与逆境信使的产生和传输.水土保持研究, 8(3):72~76
    杨洪强,李林光. 2001b.脱落酸信号转导研究进展.植物学通报, 18(4):427~435
    杨建伟,梁宗锁,韩蕊莲. 2004.不同土壤水分状况对刺槐的生长及水分利用特征的影响.林业科学, 40(5):93~97
    杨建伟,梁宗锁,韩瑞莲. 2004.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究.植物生态学报, 28(5):630~636
    杨敏生. 1997.树木抗旱性研究进展.河北林国研究,12(1):87~93
    杨涛,梁宗锁,薛吉全.2005.干旱胁迫下不同玉米品种的耗水特性及其水分利用效率的差异.干旱地区农业研究, 23(5):103~108
    杨文斌,杨茂仁. 1996.蒸腾速率、阻力与叶内外水势和光强关系的研究.内蒙古林业科技,3(4): 53~57
    姚满生,杨小环,郭平毅. 2005.脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响.棉花学报, 17 (3) :141~146
    余小军,王彦荣,曾延军.2004.温度和水分对无芒隐子草和条叶车前种子萌发的影响.生态学报, 24(5):883~887
    翟洪波,李吉跃,聂力水. 2003.油松的水力结构特征.林业科学, (02): 1411~1415
    翟洪波,李吉跃. 2003.元宝枫苗木的水力结构特征.应用生态学报, (09): 14~19
    詹妍妮,郁松林,陈培琴. 2006.果树水分胁迫反应研究进展.中国农学通报,22(4):239~244
    张灿军,姚宇卿,王育红. 2005.早稻抗旱性鉴定方法与指标研究—Ⅰ鉴定方法与评价指标.干旱地区农业研究,23(3):33~36
    张富,余新晓,景亚安.2007.黄土高原水土保持防治措施对位配置研究.郑州:黄河水利出版社:4
    张华,王百田. 2006.黄土半干旱区不同土壤水分条件下刺槐蒸腾速率的研究.水土保持学报, 20(2):122~125
    张继颖,高聚林,吕小红. 2007.施氮量对大豆抗旱生理特性及水分利用效率的影响.大豆科学, 26(4):517~522
    张建国. 2003.中国北方主要造林树种耐早特性及其机理的研究[博十学位论文].北京:北京林业大学
    张美云,钱吉,郑师章. 2001.渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化.复旦学报, 40(5):558~561
    张小林,彭致功. 2009.不同水分处理对草坪草生长发育的影响.草业科学, 26(4):144~149
    张泱.2005.叶面喷施脱落酸对银中杨几个生理指标的影响.东北林业大学学报, 33(5) :97~98
    张正斌. 2006.中国旱地和高水效农业的研究与发展.北京:科学出版社:43
    招礼军. 2003.我国北方主要造林树种耗水特性及抗旱造林技术研究[博士学位论文].北京:北京林业大学
    赵纪东,傅华,吴彩霞. 2006.水分胁迫对白刺的幼苗生物量和渗透调节物质积累的影响.西北植物学报, 26(9):1788~1793
    赵黎芳,张金政,张启翔. 2003.水分胁迫下扶芳藤幼苗保护酶活性和渗透调节物质的变化.植物研究,23(4):437~441
    赵文智,常学礼.1995.樟子松针叶气孔运动与蒸腾强度关系研究.中国沙漠, 15(3):241~243
    赵雅静,翁伯琦,王义祥. 2009.植物对干旱胁迫的生理生态响应及其研究进展.福建稻麦科技, 27(2):45~50
    周平,李吉跃. 2002.北方主要造林树种苗木蒸腾耗水特性研究.北京林业大学学报, 24(5):50~55
    Allan A C, Fricker M D, Ward J L. 1994.Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell, 6:1319~1328
    Anderson B E, Ward J M, Schroeder J I. 1994.Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiol, 104: 1177~1183
    Archer J R, Smith P D. 1972. The relations between soil bulk density, available water capacity and air capacity of soils. J Soil Sci, 23:475~485
    Ares A, Fownes J H. 1999.Water supply regulates structure, productivity, and water use efficiency of Acacia koaforest in Hawaii. Oecologia, 12:458~466
    Besford R T, Richardson C M, Campos G L. 1993. Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta, 189:207
    Blatt M R, Thiel G. 1993.Hormonal control of ion channel gating. Annu Rev Plant Physiol Plant Mol Biol, 44:543~567
    Bolger T P, Matches A G. Water use efficiency and yield of sainfoin and alfalfa. Crop Science,1990,30:143~148
    Boyer J S. 1970. Leaf enlargement and metabolic rates in com-soybean, and sun-lowerat various leaf water potentials.PlantPhysiol,46: 233~235
    Bray EA. 1993.Molecular response to water deficit. Plant Physiol, 103,1035~1040
    Dalal R C, Strong W M. 1996. Prediction of grain protein in wheat and barley in a subtropical environment from available water and nitrogen in Vertisols at sowing. India journal of agronomy,41(1):48~51
    Foyer C H, Lelandais M, Kunert K J. 1994. Photooxidative stress in plants. Physiologia Plantarum , 92: 696~717.
    Gilmour S J, Sebol T A M,Salazar M P. 2000. Overexpression of the A rabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology ,124 :18542~1865
    Grimes D W, Wiley P L, Sheesley W R. 1992. Alfalfa yield and plant water relations with variable irrigation.Crop Science, 32:1381~1387
    Gummuluru S, Hobbs SLA, Jana S. 1989.Physiological responses of drought tolerant and drought susceptible durum wheat genotypes. Photosynthetica, 23:479~485
    Hall AE. 1990. Physiological ecology of crops in relation to light, water, and temperature. In: Carroll CR, Vandermeer JH, Rosset P(eds), Agroecology. New York: Mc Graw Hill Publishing Company. 191~233
    Hare P D, Cress W A, van Staden J. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21: 535~ 553.
    Hartung W, Sauter A, Hose E. 2002. Abscisic acid in the xylem: Where does it come from, where does it go to? Journal of Experimental Botany, 53: 27~ 32.
    Hasegawa P M, Zhu J K, Bressan R A. 1997. Molecular aspects of osmotic stress in plants. Critical Reviews in Plant Sciences, 16: 253~277.
    Hernández I, Alegre L, MunnéBosch S. 2004. Drought induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean fieldconditions. Tree Physiology, 24: 1303~ 1311.
    Hsiao T C. 1983. Plant response to water stress. Annu Rev Plant Physiol, 24:519~570
    Jones M M, Turner N C. 1978. Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiology, 61:122~126
    Jones M M, Turner N C.1981. Mechanism of droughty resistance. In: Paleg L G&Aspinall D. The Physiology and Biochemistry of Droughty Resistance in Plants. Sydney:Academic Press,15~25
    Jones M M,Turner N C. 1990. Turgor maintenance by osmotic adjustment: A review and evaluation In: Adaptation of plants to water and high temperature stress,87~103
    Kannangara T. 1982.Drought resistance of Sorghum bicolor. Can Plant Sci, 62:317~330
    Kramer P J. 1983.Water relation of plants. New York: Academic Press
    Kramer P J., Boyer J.S. 1995.Water relation of plants and soils. Academic Press, Inc. Levitt J. 1980. Response of plants to environmental stresses. water, radiation, salt and other stresses. New York: Academic press. 325~358
    Lu D B.1989. Increasing stressistance by in vitro selection for abscisic acid insensitivity in wheat. Crop science,29(4):939~943
    Luna M, Badlanl M, Felicc M. 1985. Selective enzyme inactivation under water stress in maize and wheat seedlings. Envir and Exp Bot, 25(2):153~156
    MA H M, CHEN M CH, ZHANG Q. 2005. Mechanisms of peashrub’s biological formsin adapting to adversity[J] .Journal of Shan xi Agricultural Sciences , 33 (3) :47~49
    Martinez J P, Lutts S, Schanck A. 2004. Is osmotic adjustment required for water stress resistance inthe Mediterranean shrub A triplex halim us L. Journal of Plant Physiology, 161: 1041~ 1051.
    Mayland H F, Johnson D A , A say K H, et al. 1993, Ash, carbon isotope discrimination, and Silicon as estimators of transpiration efficiency in crested wheatgrass. A ustJ Plant Physiol, 20: 361~369
    McKersie B D. 2001. Stres tolerance of transgenic plants overexpressing superoxide dismutase. Exp Bot,52 :58
    Munné-Bosch S, Peìuelas J. 2004. Drought-induced oxidative stress in strawberry tree (A rbutus unedo L. ) growing in Mediterranean field conditions. Plant Science, 166: 1105~1110.
    Munns R, Sharp R E. 1993. Involvement of abscisic acid in controlling plant growth in soils of low water potential. Aust J Plant Physiol, 20:425~437
    Neumann P M. 1997. Salinity resistance and plant growth revisited. Plant Cell and Environment, 20:1193~1198
    Powell D B, Thorpe M R. 1977.Dynamic aspects of plant-water relations in environmental effects on crop physiology. London, Academic Press,:259~279
    Roxas VP. 2000 .Stress tolerance in transgenic tobacco seedlings that overexpress glutathione Stransferase/ glutathione peroxidase. Plant Cell Physiol ,41 :1229~1234
    Saliendra N Z. 1991. Symplast volume, turgor, stomatal conductance and growth in relation to osmotic and elastic adjustment in droughted sugarcane. J Exp Bot. 42:1251~1260
    Scandaliol J G . 1993.Oxygen stress and superoxide dismutases. Plant Physio1, 10,7~12
    Sharp R E, Boyer J S. 1986. Photosynthesis of low water potential in sunflower: lack of photoinhibition effects. Plant Physial, 82:90~95
    Shi W M. 2001.Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by Overexpressing in Arabidopsis thaliana. Gene,273 :23~27
    Sofo A, Dichio B, Xiloyannis C. 2004. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Science, 166: 293~302.
    Swanson R H, Whitfield D W A. 1981.A numerical and experimental analysis of implanted- probe heat pulse theory. J Exp Bot, 32:221~239
    Tardieu F J, Zhang J H, Davies W J. 1992. What information is covered by an ABA signal from maize roots in drying field soil. Plant cell Environ, 15(2):185~196
    Trejo C L, Davies W J. 1991.Drought-induced closure of Phaseolus vulgans L. stomata precedes leaf water deficit and any increase xylem ABA concentration. J Exp Bot, 42:1507~1508
    Turner NC. 1979. Drought resistance and adaptation to water deficits in crop plants .In, Harry Mussall(ed.). Stress physiology in crop plants. New York, John Wiley and Sons. 343~372
    Uhlen G L, Haugen E, kolnes A G. 1996. Nutrient and water balance in lysimeter experiments. Norwegian journal of agriculture science, 10(3):317~329
    Volaire F, Thomas H. 1991.Effect of drought on water relations, mineral uptake, water-soluble carbohydrate accumulation and survival of two contrasting populations of cocksfoot (Dactylis glomerata L.). Annals of Botany, 75(5):513~524
    Ward J M, Pei M, Schroeder J I. 1995.Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell,833~844

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700