淮南潘集煤矿区植被恢复模式及其土壤修复效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿区废弃地的生态恢复已经受到世界各国的广泛关注,大量未经治理的矿区废弃地是造成环境污染、水土流失和土地荒漠化的重大隐患,给人类生存构成了严重的威胁。潘集区位于安徽省淮南市,是以煤炭、电力、化工为主要产业的属一次性能源型重工业城区。煤炭产业为潘集经济、社会发展做出了巨大贡献的同时,由于无节制的过度开采造成了大面积的土地塌陷、荒芜,使矿区生态和环境日益恶化,影响了矿区正常的农业生产、区域经济发展及人民生活水平的提高,加强对废弃矿区受损生态系统的恢复与重建,已经成为生态学的重要研究课题。
     本研究以恢复生态学为理论基础,通过实地调查监测,结合实验室相关指标测定,对淮南潘集煤矿区的植被恢复模式及土壤修复效应进行了探讨。研究内容主要包括以下四个方面:①淮南潘集煤矿区现状植被特征;②淮南潘集煤矿区植被恢复模式研究;③淮南潘集煤矿区植被恢复模式下的土壤修复效应;④淮南潘集煤矿区植被恢复模式优化。主要研究结论如下:
     1、淮南潘集煤矿区现状植被特征
     (1)淮南潘集煤矿区种子植物共有37科79属97种,分别占安徽植物科、属、种总数的22.70%、8.80%、3.88%,说明淮南潘集煤矿区是一个生物多样性非常贫乏的地区。该区种子植物科的组成优势现象明显,以单种科为主,优势科为豆科Leguminosae,禾本科Gramineae,菊科Compositae,蔷薇科Rosaceae,大戟科Euphorbiaceae,杨柳科Salicaceae,这6科共含有40属50种,分别占该地区种子植物属、种总数的50.63%和51.55%,该区种子植物属的组成中,以单种属为主,优势属为蒿属Artemisia,蓼属Polygonum和杨属Populus。属的地理成分含有12个分布型和5个变型,温带成分占该区属总数的61.19%,居明显优势,说明属的特征是以温带成分为主,兼有向热带过渡的性质。该区97种种子植物,可划分为12个分布型和5个变型,热带成分与温带成分在该区各占种总数的32.50%和66.25%,热带成分进一步减弱,反映了该区种子植物种的热带成分与温带成分的交汇与兼容,同时又以北温带分布型为主的性质。
     (2)该区自然演替过程中,豆科Leguminosae,蔷薇科Rosaceae为优势科,植被恢复时宜多采用豆科Leguminosae,蔷薇科Rosaceae等优势科植物种类,该区植被地理成分分布规律是热带分布类型的植物容易迅速在矿区定居下来,具有先锋植物的优良属性,然而热带性质在科级、属级、种级层次方面的比重逐渐降低,而温带性质则相应递增。
     (3)采用经典样方法对淮南潘集煤矿区不同恢复阶段废弃地原生植物演替状况进行了统计分析,结果显示,随着自然原生演替年限的增加,物种种类逐渐增加,群落层次也趋于复杂,逐渐由灌草2层过渡为乔灌草3层,各种物种多样性指数数值也逐渐升高。
     (4)自然演替的淮南潘集煤矿区植被恢复水平仍处于较低阶段,故人工演替仍然是改善煤矿区生态环境的有效途径。淮南潘集煤矿区自然演替的植物多为先锋植物,进行煤矿区植被恢复,宜借鉴自然演替的植被恢复规律,多选择先锋植物与乡土植物,群落层次宜采用复层结构,只有植物种类,种植数量,结构丰富,才能营造物种多样性丰富的恢复类型。
     2、淮南潘集煤矿区植被恢复模式研究
     (1)淮南潘集煤矿区植物具有种类贫乏,结构单一,层次单调等问题,文章以基础生态学,景观生态学与恢复生态学理论为指导思想,并将其贯彻到每个恢复模式中,以期筛选出适合淮南潘集煤矿区的生态型植被恢复模式。
     (2)在详细研究淮南潘集煤矿区植被的种类组成,群落外貌,群落结构,物种重要值,物种多样性,丰富度,频度,均匀度等指标的基础上,设计了5种煤矿区植被恢复模式,分别是以防灾为主的植物群落模式(MS1),以固氮耐瘠薄为主的植物群落模式(MS2),以复合生态农林业为主的植物群落模式(MS3),以科普保健为主的植物群落模式(MS4)与以矿区景观生态唯美为主的植物群落模式(MS5)。
     (3)以群落组成,群落结构与群落功能为指标体系,完成了5种淮南潘集煤矿区植被恢复模式的构建,具体论述了5种恢复模式的设计要点,并结合案例设计出各种恢复模式。
     3、淮南潘集煤矿区植被恢复模式下的土壤修复效应
     (1)在煤矿区废弃地上植被自然恢复对土壤的修复作用不佳,具体表现在物理性状方面,0~60cm,土壤容重平均值在1.12~1.28g/cm3,总孔隙度较低,在45.27-48.23之间,毛管孔隙度,非毛管孔隙度表现出与总孔隙度相同的变化趋势,含水量规律表现为,表层土壤的含水量略高于底层土壤的含水量,且为递减规律,即0~20cm层>20~40cm层>40~60cm层,经统计分析表明煤矿区Ⅰ类废弃地上在植被恢复前土壤的各项物理指标都比较接近,没有显著差异。
     (2)化学性状方面,在煤矿区废弃地上土壤化学指标均有较高的相似性,且处于较低水平。0~60cm,有机质含量很低,仅在0.76~1.52%之间,全氮含量为0.32-0.85g/kg,全磷含量为0.21~0.55g/kg,全钾含量为0.93~1.06g/kg,速效氮含量为16.75~24.54mg/kg,有效磷含量为7.11~10.27mg/kg,速效钾含量为66.26-81.34mg/lg,pH值变化范围为7.74-8.54。经统计分析表明煤矿区Ⅰ类废弃地上土壤营养元素属于严重缺乏阶段,主要表现为磷钾元素的缺失,无论是全磷,还是有效磷,无论是全钾,还是速效钾都维持在很低的水平,而且氮肥也处于缺乏状态。
     (3)生化性状方面,参与氮循环的关键酶,脱氢酶含量0~60cm为0.8658-1.3868μL/L,由于土壤中的微生物是土壤中的脱氢酶的主要来源,说明在植被恢复前废弃地上土壤微生物的数量比较少,作为土壤中一种较为广泛存在的水解酶,脲酶还是土壤中唯一对尿素的转化有着重大影响的酶,0~60cm其含量为0.0721~0.0935mg/100g,说明煤矿区Ⅰ类废弃地上土壤肥力和有机质含量均处于较低状态,过氧化氢酶0~60cm含量为0.7533μ0.8246mL/g,而过氧化氢酶是一种重要的氧化还原酶,由生物呼吸过程和有机物的生物化学氧化反应而产生,对于土壤和生物都有毒害作用,说明废弃地上土壤对于毒力的抵抗性仍然需要改善。
     (4)不同植被恢复模式均能改善土壤物理性状,表现为植被恢复能够降低土壤容重,增加土壤总孔隙度,毛管孔隙度与非毛管孔隙度,并能够使土壤含水量得到显著改善,修复成效上,以固氮耐瘠薄为主的植物群落模式(MS2)>以防灾为主的植物群落模式(MS1)>以矿区景观生态唯美为主的植物群落模式(MS5)>以复合生态农林业为主的植物群落模式(MS3)>以科普保健为主的植物群落模式(MS4)。
     (5)不同植被恢复模式均能改善土壤化学性状,从恢复模式来看,变化趋势一般是以固氮耐瘠薄为主的植物群落模式(MS2)>以防灾为主的植物群落模式(MS1)>以矿区景观生态唯美为主的植物群落模式(MS5)>以复合生态农林业为主的植物群落模式(MS3)>以科普保健为主的植物群落模式(MS4),以固氮耐瘠薄为主的植物群落模式(MS2)植被恢复模式对于氮素的改善效应最为明显,这与该恢复模式中配置了大量的固氮植物有关,而在煤矿区植被恢复过程中适度引种固氮植物可能是一条行之有效的技术途径。
     (6)不同植被恢复模式对土壤酶活性均有较显著的影响,其土壤酶活性随着植物种类的变化而变化,以固氮耐瘠薄为主的植物群落模式(MS2)对于土壤酶活性的增益效应最为显著,其次为以防灾为主的植物群落模式(MS1)。土壤酶的活性在季节的变化上,脱氢酶与过氧化氢酶的活性表现一致,其活性均具有明显的季节变化,各种恢复模式土壤中均表现为7月>10月>4月>1月,即是夏季>秋季>春季>冬季,而土壤脲酶活性的季节变化上稍有不同,表现为10月>7月>4月>1月,可表现为秋季>夏季>春季>冬季。
     4、淮南潘集煤矿区植被恢复模式优化
     (1)在淮南潘集煤矿区试验点,根据抗干旱、耐瘠薄与能够耐盐碱等的要求,筛选出了适宜在煤矿区栽植的乔木树种为刺槐、臭椿,侧柏、小叶杨,灌木树种有紫穗槐、荆条、胡枝子、沙棘、黄刺玫、连翘,藤本植物有爬山虎、金银花、扶芳藤,草本植物为阔叶山麦冬、紫花苜蓿、草木犀、大花金鸡菊、小飞蓬等。
     (2)覆土10cm并适度提高土壤的疏松度,整地方式为大坑为最有利的土壤基质改良措施。建议的群落结构为下层以豆科和禾本科草本植物为主,上层以木本植物为主的复层结构。植物种植方式为,植物类型选择容器苗,栽植季节选择春季,使用ABT生根粉进行促根为适宜的改良手段。
     (3)矿区废弃地是生态环境严重损害的区域,同一般的植被演替过程即可完成植被恢复的区域不同,矿区废弃地的植被恢复以及优化都需要相应的修复技术做保障。通过土壤基质改良技术,植物选择改良技术,植物配置改良技术,植物种植改良技术,植被恢复管理的探讨,并在研究区实际案例的支持下,完成了对不同类型煤矿区废弃地植被恢复的技术改良与模式优化的成果集成。
The ecological restoration of wasteland in mining area has caught an extensive attention of the world.Lots of unmanaged wastelands in mining area are enormous hazards to cause environment pollution,soil erosion and land desertification,which threaten to human survival severely.Panji District,which is a region of heavy industry focused on un-renewable energy such as coal,electric power and chemistry,is located in Huainan of An'hui Province.While the coal industry makes great contribution to Panji economy and social development,a large area of land subsidence and wastelands are caused by intemperate over-exploitation,which deteriorates the ecology and environment of mining area day by day and impacts on the normal agricultural production,regional economic production and improvement on people's living level. Strengthening the restoration of destroyed ecological system in wasted mining area has become a key research subject of ecology.
     Based on the ecologic recovery theoretically,this paper discusses the vegetation restoration mode and its effects in mining area of Panji in Huainan by on-site investigation and monitoring combing the relevant index determination.The main research contents include the following five aspects:①vegetation features of mining area in Panji,Huainan;②research on the vegetation restoration mode of mining area in Panji,Huainan;③effects during the soil restoration of mining area in Panji,Huainan;@Optimization of vegetation restoration mode in mining area in Panji,Huainan.The main research conclusions are as follows:
     Ⅰ、Vegetation Features of Mining Area in Panji,Huainan
     (1) There're37families,79genus and97species of seed plants in mining area of Panji,Huainan,which account for22.70%,8.80%and3.88%of the family,genus and species of An'hui plant amount.This means the mining area of Panji,Huainan is a region lack of biological diversity.The composition dominance is very clear in the seed plants of this area.lt focuses on single species.Leguminosae,Gramineae,Compositae,Rosaceae, Euphorbiaceae and Salicaceae are the dominant families.There're40genus and50species in those6families,which account for50.63%and51.55%of the genus and species amount for regional seed plants.The single-species is the major composition of seed-plant genus in this area,including Artemisia, Polygonum and Populus as the dominant genus.There're12 distributions and5variations of geological elements for genus.The subtropical element accounts for61.19%of the genus amount in this region,which dominates obviously.This means the genus feature focuses on subtropical element with the feature of transiting to tropical one.The97species of seed plants in this region can be divided into12distributions and5variations.The tropical element and subtropical element account for32.55and66.25%of the species amount respectively.The further weakening of tropical element reflects the integration and combination of tropical element with subtropical element of the seed-plant genus in this region,featuring the northern subtropical distribution.
     (2)During natural succession,the Leguminosae and Rosaceae were dominant species in this region.Leguminosae and Rosaceae should be taken as the main species in vegetation restoration.The distribution law of vegetation geological element in this region is it's easy for plants of tropical distribution to inhabit in mining area rapidly.There's good nature of pioneer plant.However,the proportion of tropical nature in areas of family,genus and species decreases gradually while the subtropical nature increases correspondently.
     (3)The classic sampling plot is applied for statistic and analysis on the succession of original plants in different restoration stages in mining area of Panji,Huainan.The result indicates that the species increase gradually as the year of natural and original succession grows.Meanwhile,the community layer tends to be more complicated,transiting from2-layer shrub-herb to3-layer arbor-shrub-grass.The diversity index of species also increases slowly.
     (4) The natural succession of vegetation restoration level in mining area of Panji,Huainan is still in a low stage,so the artificial succession is still a valid path to improve the ecological environment in mining area.Most of plants in natural succession in mining area of Panji,Huainan are pioneer plants.Thus,the vegetation restoration law of natural succession should be referred.Pioneer plants and native plants should be chosen mostly for vegetation restoration in mining area.Multilayer structure is suitable for community layer.A rich restoration type with diverse species can be established only if the plant species,planting quantity and structure are colorful.
     Ⅱ、Research on the Vegetation Restoration Mode of Mining Area in Panji, Huainan
     (1) There're problems of species shortage,easy structure and simple layer. Instructed by fundamental ecology,landscape ecology and theory of restoration ecology,this paper expects to select a ecological mode of vegetation restoration suitable for mining area in Panji,Huainan by applying the theories into every restoration mode.
     (2) Based on a detailed research on species composition,community appearance, species significant value,species diversity,species richness,frequency and evenness of vegetation in mining area of Panji,Huainan,this paper designs5modes of vegetation restoration in mining area:plant community mode focused on disaster prevention (MS1),plant community mode focused on nitrogen fixation and poor soil tolerance (MS2),plant community mode focused on d ecological agroforestry (MS3),plant community mode focused on science popularization and health care (MS4),plant community mode focused on landscape ecology and aestheticism of mining area (MS5).
     (3) Regarding community composition,structure and function as the index system,this paper completes5modes of vegetation restoration in mining area,elaborates the design points of5restoration modes and establishes kinds of restoration modes by combining the cases.
     Ⅲ、Effects during the Soil Restoration of Mining Area in Panji,Huainan
     (1)It's not effective to restore vegetation on wasteland naturally in mining area. This can be seen in the area of physical property.The average bulk density is1.12~1.28g/cm3while the soil total porosity is low without distinguished difference,which is45.73~48.23.the capillary porosity and non-capillary porosity tend to have a similar variation with total porosity.In terms of water content law,the water content in topsoil is obviously higher than the one in bottom soil.It's a descending law,which is0~201ayers>20~401ayers>40~601ayers.
     (2) In terms of chemical feature,there's high similarity of soil chemical indexes on wasteland in mining area.Meanwhile,they're on a low level.The organic matter content is very low,0-60cm which is only0.76%~1.52%;content of total N is0.320.85g/kg;content of total P is0.21~0.55g/kg;content of total K is0.93~1.06g/kg;content of available N is16.75~24.54mg/kg;content of available P is7.11~10.27mg/kg and content of available K is66.26~81.34mg/kg.The variation range of pH value is7.74~8.54.The soil nutrition elements are in a severe shortage state.It can be seen from shortage of P and K elements.No matter the total P or available P;no matter the total K or available K stays in a very low level. Meanwhile,the nitrogen fertilizer is also in a shortage state,which should be complemented during the vegetation restoration.
     (3) In terms of biochemical feature,the content of key enzyme and dehydrogenase participating into0-60cm nitrogen cycling is0.8658~3.3868μL/L.The microorganism is the main origin for soil dehydrogenase.Thus,it indicates the number of soil microorganism in wasteland before the vegetation restoration is very small.As a hydrolases existing extensively in the soil,urease is the sole enzyme which has a major impact on the urea conversion.0~60cm Its content is0.0721~0.0935mg/100g,which indicates the soil fertility and organic matter content in wasteland are in an unfavorable state.0~60cm The Catalase content is0.7533~0.8246mL/g.Catalase is a key oxidoreductases,which is generated due to the oxidation of creature breath and biochemistry of organic matter.It's a poison for soil and creature.Thus,the poison resistance of soil in wasteland still needs to be improved.
     (4) All vegetation restoration in different modes can improve the soil physical property.The vegetation restoration can decrease the soil bulk density,increase soil total porosity,capillary porosity and non-capillary porosity and improve the soil water content obviously.In terms of restoration effect,plant community mode focused on nitrogen fixation and poor soil tolerance (MS2)>plant community mode focused on disaster prevention (MS1)>plant community mode focused on landscape ecology and aestheticism of mining area (MS5)>plant community mode focused on d ecological agroforestry (MS3)>plant community mode focused on science popularization and health care (MS4).
     (5) All vegetation restoration in different modes can improve the soil chemical property.In terms of restoration mode,the variation trend is plant community mode focused on nitrogen fixation and poor soil tolerance (MS2)>plant community mode focused on disaster prevention (MS1)>plant community mode focused on landscape ecology and aestheticism of mining area (MS5)>plant community mode focused on d ecological agroforestry (MS3)>plant community mode focused on science popularization and health care (MS4);the most obvious effect on N improvement is plant community mode focused on nitrogen fixation and poor soil tolerance (MS2) because there're lots of nitrogen fixing plants in this mode.Thus,a proper application of nitrogen fixing plants during the vegetation restoration in mining area is possibly a feasible technical path.
     (6) All vegetation restoration in different modes has an obvious impact on soil urease activity,which varies with the plant species.The most obvious effect on soil urease activity increasing is plant community mode focused on nitrogen fixation and poor soil tolerance (MS2);the second most obvious effect on soil urease activity increasing is plant community mode focused on disaster prevention (MS1).In terms of soil urease activity in season variation,the activities of Dehydrogenase and Catalase are consistent,which have obvious season variation.Dehydrogenase affects are always July>October>April>January which are summer>autumn>spring>winter in different restoration modes;while there's a little difference in season variation in soil Catalase activity: October>July>April>January, which are autumn>summer>spring>winter.
     Ⅳ、Optimization of Vegetation Restoration Mode in Mining Area in Panji, Huainan
     (1) According to the requirements of drought resistance, poor soil tolerance and salt resistance, the species of arbor trees for proper planting in mining area are Robinia pseudoacacia, Ailanthus altissima, Arborvitae chinese, Populus simonii; the species of shrub trees are Amorpha fruticosa, Vitex negundo var. heterophylla, Lespedeza buckthorns, Rosa xanthina, Folium forsythia; vine species are Parthenocissus tricuspidata, Euonymus fortunei; herbage plants are Liriope platyphylla, Alfalfa melilotus, Coreopsis grandiflora and Erigeron canadensis.
     (2)10cm-soil cover,a proper improvement on the soil porosity and selecting pit as soil preparation are the most favorable measures to make the soil property better. Leguminosae and Gramineae are mainly suggested for community structure on the low layer while woody plants are mainly advised for multi-layer structure.The planting way is:to choose containerized seedlings as plant type;spring as the planting season and ABT rooting powder for grow-up.
     (3) The wasteland in mining area is the region with severely destroyed ecological environment.Different from the region completing the restoration by standard vegetation succession,a guarantee about restoration technology is required in terms of vegetation restoration and optimization on wasteland in mining area. Supported by practical case in research area,this paper integrates different achievements of technology improvement and mode optimization for vegetation restoration on wasteland in mining areas by discussing on the improvement technology on soil substrates,plant choice,plant figuration,planting and restoration management.
引文
[1]张成梁,B.Larry Li美国煤矿废弃地的生态修复[J].生态学报,2011,31(1):276-285.
    [2]杨越,哈斯,孙保平,等.植被恢复类型对土壤物理性质的影响研究[J].灌溉排水学报,2012,(1):15-18.
    [3]钱一武.北京市门头沟区生态修复综合效益价值评估研究[D].北京:北京林业大学,2010.
    [4]Bell F.G,Bruynl.A.D.Subsidence problems due to abandoned pillar Workings in coal seams[J].Bull.Eng. Geol.Env.,1999,57:225-237.
    [5]Todd J.Rescuing diversity,the search for a social and economic context,in: Wilson EOed Biodiversity[M]. Washington DC:National Academy Press,1988.
    [6]Hossner.L.R.Reclamation of Surfaee-Mined Lands[M].Roes Rstion,Flonda,USA:CRC Press,1998.
    [7]Miyawaki A.Restoration of native forests from Japan to Malaysia.In:Leith H & Lohmann M(eds.)Restoration of Tropical Forest Ecosystems[C].Dordrecht:Kluwer Academic Publishers,1993,5-24.
    [8]周进生,石森.矿区生态恢复理论综述[J].中国矿业,2004,13(3):10-12.
    [9]张大勇,姜新华,雷光春.理论生态学研究[M].北京:高等教育出版社,2000.
    [10]高国雄,周心澄.国外工矿区地复垦动态研究[J].水土保持研究,2001,8(1):98-103.
    [11]Alvarex-Buylla,E.R.etal.Seed bankve rsussee drainin the regenerati on of tropical pioneer tree[J],oeeologia,1990,84:314-325.
    [12]Van Wassenaer P J E,L Schaeffer,W A Kenney.Strategic planning in urban forestry: A 21st century paradigm shift for small town Canada[J].Forestry Chronicle, 2000,76:241-245.
    [13]陈波,包志毅.国外采石场的生态和景观恢复[J].水土保持学报,2003,17(5):25-27,37.
    [14]Wu J,Hobbs R.Key issues and research priorities in landscape ecology:An idiosyncratic synthesis[J].Landscape Ecology,2002,17(4):355-365.
    [15]Sklar F H,Costanza R,Day J W.Dynamic spatial simulation modelingof coastal wetland habitat succession[J].Ecological Modelling,1985,29:261-281.
    [16]Radel off V C,Hammer R B,Stewart S I,etal.The wildland-urban interface in the United States[J].Ecological Applications,2005,15:799-805.
    [17]Vanclay J K.Spatially-explicit competition indices and the analysis ofmixed-species plantings with the Simile modelling environment[J].Forest Ecology and Management, 2006,233(2/3):295-302.
    [18]Braud I,Vich a I J,Zuluaga J,Fornero L,Pedrani A.Vegetation influence on run off and sediment yield in the Andes region:observation and modelling[J] Journal of Hydrology,2001,254(1/4):124-144.
    [19]Binder C,Boumans R M,Costanza R.Applying the PatuxentLandscape UnitModel to human dominated ecosystems:the case of agriculture[J].Ecological Modelling, 2003,159(2/3):161-177.
    [20]Schroder B.Pattern,process,and function in landscape ecology and catchment hydrology-how can quantitative landscape ecology support predictions in ungauged basins[J].Hydrology and Earth System Sciences,2006,10:967-979.
    [21]Al-KhederS,Wang J,Shan J.Fuzzy inference guided cellular auto mata urban-growth model ling using multi-temporal satellite images[J].International Journal of Geographical Information Science,2008,22(11/12):1271-1293.
    [22]Schroder B,Seppelt R.Analysis of pattern-process interactions based on land scapemodels-Overview,general concepts,and method eological issues[J].Ecological Modelling,2006,199(4):036.
    [23]Rapport D J,Gaudett C,Karr J R.Evaluating landscape health [J]. Journal of Environmental Management,1998,53(1):1-15.
    [24]WengQ H.Land use change analysis in the Zhujiang Delta of China using satellite remote sensing,GIS and stochastic modelling[J] Journal of Environmental Management,2002,64(3):273-284.
    [25]Chen P L,Huang Q L.Analysis of land use situation and forecast of its development tendency in Fujian Province by Markov[J] Journal of Natural Resources,1992, 7(1):36-42.
    [26]Horn H S,Shugart H H,Urban D L.Simulators asmodels of forest dynamics[M]. Perspectives in ecological theory,Princeton University Press,1989,256-267.
    [27]Shao G F.GIS applications on forest landscape dynamic simulation[J].Journal of Applied Ecology,1991,2(2):103-107.
    [28]Turner M GLandscape Ecology:The Effect of Pattern on Process[J].Annual Review of Ecological System,1989,20(1):171-197.
    [29]Wolfram S.Cellular Automata as Models of Complexity [J].Nature,1984,311(5985): 419-424.
    [30]Herold M,Goldstein N C,Clarke K C.The spatiotemporal form of urban growth: measurement, analysis and modeling[J].Remote Sensing of Environment,2003,86(3): 286-302.
    [31]ShenM,Yu H X,Chen X H.I nvestigation of Heavy Metals and Zoobenthos in J iangsu Section of the Yangtze River and Ecological Risk Assessment[J]. Journal of Agro-Environment Science,2006,25(6):1616-619.
    [32]Rashleigh B.Application of AQUATOX,a Process-Based Model for Ecological Assessment,to Contentnea Creek in North Carolina[J].Journal of Resh Water Ecology,2003,18(4):515-522.
    [33]Wu F L.Calibration of stochastic cellular automata:the application to rural-urban land conversions[J].International Journal of Geographical Information Science,2002,16(8): 795-818.
    [34]Hattermann F F,Krysanova V,HabeckA,etal.Integrating wetlands and riparian zones in river basin modelling[J].EcologicalModelling,2006,199(4):379-392.
    [35]Tian G J,Wu J G.Simulating land use change with agent-based models:progress and prospects[J].Acta Ecologica Sinica,2008,28(9):4451-4459.
    [36]MeadeN.Conducting cooperative natural resource damage assessments:a case study of the Chalk Pointoil spill Ecological Damage Caused by Oil Spills[J].Economic Assessments and Compensations,2008,32(3-4):393-408.
    [37]Wei J B,Xiao D N,Zeng H.Sustainable development of an agricultural system underecological restoration based on Emergy analysis:A case study in nor the astern China[J].International Journal of Sustainable Development and World Ecology, 2008,15(2):103-112.
    [38]Zhang H H,ZengY N,Jin X B,Yin C L,Zou B.Urban land expansionmodel based onmulti-agent system and application[J].Acta Geographica Sinica,2008,63(8): 869-881.
    [39]Skarpe C.Plant functional types and climate in a southern African savanna[J] Journal of Vegetation Science,1996,7:397-404.
    [40]Schaap M G,Bouten W.Modeling water retention curves of sandy soils using neural networks[J]. Water Resour Res,1996,32:3033-3040.
    [41]Reich P B,Oleksyn J,Modrzynski J,et al.Linking litter calcium, earthworms and soil properties:A common garden testwith 14 tree species[J].Ecology Letters,2005,8: 811-818.
    [42]Kong F H,Yin H W,Nakagoshi N.Using GIS and landscape emetrics in the hedonic pricemodeling of the amenity value of urban green space:A case study in Jinan City,China[J].Landscape and Urban Planning,2007,79:240-252.
    [43]Mather A S,Fairbairn J,Needle C L.The course and drivers of the forest transition:the case of France[J].Journal of Rural Studies,1999,15:65-90.
    [44]Chen J J,Zhang S W,Zheng D M.Uncertainty of the Quantitative Analysis on Landscape Patterns[J].Arid Zone Research,2005,22(l):63-66.
    [45]Zhu W Q,He X Y,Chen W,etal.Quantitative analysis of urban forest structure:A case study on Shenyang arboretum[J].Chinese Journal of Applied Ecology,2003,14(12): 2090-2094.
    [46]You Z,Li Z B,Yuan Q GThe application of landscape ecology principles in soil erosion and a case analysis[J].Research of soil and water conservation,2005,12(3):12-14.
    [47]Jeltsch F,Moloney K,Milton S J.Detecting process from snapshot pattern:lessons from tree spacing in the southern Kalahar[J].Oikos,1999,85(3):451-466.
    [48]Zhou Z Y,Fu H,Zhang H R,etal.Effect of sludge utilization on smooth brome growth[J]. Acta Agrestia Sinica,2000,8(2):144-149.
    [49]Cao R L,Huo W R,Jia X K. Study on the environmental impact of sludge compost utilization on green area[J]. Research of Environmental Sciences,1997,10(3):46-50.
    [50]Liu Y,Guo H C,Yu Y J,et al.Ecological-economicmodeling as a tool for watershed management:a case study of Lake Qionghai watershed[J].China Limnologica, 2008,38(2):89-104.
    [51]Chen L D,Liu Y,Lii Y H, et al.Landscape pattern analysis in landscape ecology: current,challenges and future[J].Acta Ecologica Sinica,2008,28(11):5521-5531.
    [52]P.R Sheoey,J.P loui,K.B.Singth,et al.Gorund subsideneeo bsevr ation and amodi fied in flueneeu fnetion methodo freom Pletesub sidence Perdiction[J].International Jounral of Roek Mecha niesand Mining Scienees,2000,37:801-811.
    [53]曹宇,哈斯巴根,宋冬梅.景观健康概念、特征及其评价[J].应用生态学报,2002,13(11):1511-1515.
    [54]束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究(I)[J].生态科学,2000,19(2):24-28.
    [55]张彩霞,许丽,周心澄.阜新矿区煤矸石山植被恢复土地适宜性评价[J].水土保持研究,2007,14(3):246-248.
    [56]肖兴田,王志宏.煤炭资源开发对土地破坏及土地复垦之研究[J].露天采煤技术,2001,(4):31-34.
    [57]屠世浩,陈宜先.煤矿开采对环境的影响及其对策研究[J].矿业研究与开发,2003,23(4):8-10.
    [58]黄铭洪.环境污染与生态恢复[M].北京:科学出版社,2003,176-177.
    [59]刘长瑜,孙守栋,刘学山,等.粉煤灰充填采煤塌陷地覆土还田的实践与探讨[J].2000年北京国际土地复垦学术研讨会专辑土地资源,2000:20,22-27.
    [60]杨铁良.煤矿城市的国土政治问题[J].国土与自然资源研究,1993,(2):8-9.
    [61]马彦卿,李小平,冯杰,等.粉煤灰在矿山复垦中用于土壤改良的试验研究[J].矿治,2000,9(3):15-19.
    [62]马彦卿.微生物复垦技术在矿区生态重建中的作用[J].采矿技术,2001,1(2):66-68.
    [63]毕银丽,全文智,柳博会.煤矸石堆放的环境问题及其生物综合治理对策[J].金属矿山,2005,356(12):61-64.
    [64]孙宇博,朗勇,陆刚,等.矿区土地复垦组织模式研究[J].国土与自然资源研究,2003,(1):47-48.
    [65]刘金辉.煤矿区生态工程复垦规划设计[J].矿山测量,2000,(3):444-527.
    [66]美国生态学会.土地利用与管理的生态系统原理和准则[M].北京:中国土地学会,2002.
    [67]宁丰收,游渡,杨海林.重庆市主城区废弃采石场生态与景观恢复对策[J].水土保持通报,2005,25(3):77-80.
    [68]陈芳清,张丽萍,谢宗强.三峡地区废弃地植被生态恢复与重建的生态学研究[J].长江流域资源与环境,2004,13(3):286-291.
    [69]董林根,林国坚.低丘生态脆弱区植被恢复与经济开发研究[J].浙江林业科技,1998,18(3):1-7.
    [70]王焕校.污染生态学(第二版)[M].北京:高等教育出版社,2002:88-92.
    [71]陈永峰.阳泉矿区煤矸石自燃防治研究[D].西安:西安建筑科技大学,2005.
    [72]李鹏波.煤矸石山景观重建及景观评价研究[D].北京:中国矿业大学,2006.
    [73]李志敏.治理煤矿矸石山自燃初探[J].山西煤炭,2003,23(2):43-45.
    [74]郭青霞,吉谦.安太堡露天煤矿复垦土地适宜性评价研究[J].山西农业大学学报,2002,22(1):82-86.
    [75]潘明才.中国土地复垦概况及发展趋势与对策[J].土地资源,2000,(7):5-7.
    [76]陆建华.唐山市煤矿区土地复垦与生态重建模式研究[J].资源产业,2000,15(7):15-19.
    [77]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-101.
    [78]付梅臣.煤矿区复垦农田景观演变及其控制研究[D].北京:中国矿业大学,2004.
    [79]何书金,苏光全.矿区废弃土地复垦潜力评价方法与应用实例[J].地理研究,2000,19(2):165-171.
    [80]胡振琪,魏忠义,秦萍.矿山复垦土坡重构的概念与方法[J].土壤,2005,37(1):9-11.
    [81]黄义雄.厦门海沧采石废弃地景观生态重建探究[J].福建师范大学学报,2002,18(1):112-115.
    [82]王志宏,李爱国.矿山废弃地生态恢复基质改良研究[J].中国矿业,2005,14(3):22-23,27.
    [83]何方.应用生态学[M].北京:科学出版社,2003.
    [84]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    [85]白中科,郭青霞,王改玲,等.矿区土地复垦与生态重建效益演变与配置研究[J].自然资源学报,2001,16(6):525-530.
    [86]彭德福.二十世纪我国土地复垦与生态重建的理论与实践[A].见:第六次全国土地复垦学术会议论文集[C].1999:1-4.
    [87]宋书巧,周永章.矿业废弃地及其生态恢复与重建[J].矿产保护与利用,2001,(5):48-9.
    [88]刘海龙.采矿废弃地的生态恢复与可持续景观设计[J].生态学报,2004,24(2):323-329.
    [89]汤中立,李小虎,闰海卿,等.矿山地质环境问题及防治对策[J].地球科学与环境学报,2005,27(2):1-4.
    [90]张鑫,周涛发,唐宜,等.矿区生态环境修复的生物技术研究[M].刘登义.生态安徽的理论与实践.合肥:合肥工业大学出版社,2004,342-346.
    [91]中国科学院南京土壤研究所.中国土壤[M].北京:科学出版社,1978.
    [92]陈峰,胡振琪,柏玉,纪晶晶.矸石山周围土壤重金属污染的生态风险评价[J].农业环境科学学报,2006,25(增刊):575-578.
    [93]刘景双,王金达.煤矿塌陷地复垦还田生态重建研究:以抚顺煤矿为例[J].地理科学,2000,20(2):189-192.
    [94]顾和和,纪亚洲.矿区土地复垦景观格局变化和生态效应[J].农业工程学报,2012,28(3):251-256.
    [95]罗爱武.淮北市采煤塌陷区土地复垦研究[J].安徽师范大学学报(自然科学版),002,(3):12-14.
    [96]王可涵.龙口煤矿塌陷区遥感动态监测及土地复垦利用研究[D].济南:山东师范大学,2006.
    [97]毛汉英,方创琳.兖滕两淮地区采煤塌陷地的类型与综合开发生态模式[J].生态学报,1998,18(5):449-454
    [98]阎允庭,陆建华,陈德存,等.唐山采煤塌陷区土地复垦与生态重建模式研究(英文)[A].面向21世纪的矿区土地复垦与生态重建—北京国际土地复垦学术研讨会论文集,2000.
    [99]卢全生,张文新.煤矿塌陷区土地复垦的模式[J].中州煤炭,2002,(4):33-37.
    [100]董祥林,宛新平.童亭煤矿塌陷地综合治理项目可行性分析及评价[A].全国“三下”采煤学术会议论文集,2008.
    [101]刘金辉.煤矿塌陷地生态工程规划设计[J].矿山测量,2000,10(3):44-45.
    [102]武胜林,刘文锴,张合兵,等.焦作市煤矿塌陷地生物复垦技术研究[M].北京:科学出版社,2011.
    [103]魏文俊,李仕明,张作金.谈地面塌陷的影响因素及防治措施[J].山东冶金,2001,23(1):42-43.
    [104]杜计平,汪理全.煤矿特殊开采方法[M].徐州:中国矿业大学出版社,2003.
    [105]吴开业,何琼,孙世群.区域生态安全的主成分投影评价模型及应用[J].中国管理科学,2003,(1):106-109.
    [106]程漱兰,王前进,徐德徽.国家生态安全:概念、评价及对策[J].管理世界,2001,(1):16-20.
    [107]曲格平.关注中国生态安全[M].北京:中国环境科学出版社,2004.
    [108]肖笃宁,陈文波,郭福良.论生态安全的基本概念和研究内容[J].应用生态学报, 2002,13(3):360-363.
    [109]尹希一.我国煤炭矿区生态环境问题分析[J].中国煤炭,2002,28(7):21-24.
    [110]陈国阶.论生态安全[J].重庆环境科学,2002,(3):31-34.
    [111]吴豪,许刚,虞孝感.关于建立长江流域生态安全体系的初步探讨[J].地域研究与开发,2001,(2):16-24.
    [112]吴开亚,孙世群,聂磊.生态安全的灰关联评价方法探讨[J].安徽农业大学学报;2004,(3):158-166.
    [113]李博.生态学[M].北京:高等教育出版社.2004.
    [114]舒检民,王家骥,刘晓春.矿山废弃地的生态恢复[J].中国人口资源与环境,1998,8(3):72-75.
    [115]高群.生态—经济系统恢复与重建的基础理论研究[J].地理与地理信息科学,2004,20(5):72-76.
    [116]邬建国.景观生态学-格局、过程、尺度与等级[M].第2版.北京:高等教育出版社,2007.
    [117]胡振琪,魏忠义,秦萍.矿山复垦土壤重构的概念与方法[J].土壤学报,2005,37(1):8-12.
    [118]张田良,矿区环境与土地复垦[M].徐州:中国矿业大学出版社,1997.
    [119]陈利顶,刘洋,吕一河,等.景观生态学中的格局分析:现状、困境与未来[J].生态学报,2008,28(11):5521-5531.
    [120]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    [121]张平仓,工文龙,唐克丽,等.神府—东胜矿区采煤塌陷及其对环境的影响初探[J].水土保持研究,1994,1(4):35-44.
    [122]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    [123]刘荣增.共生理论及其在我国区域协调发展中的运用[J].工业技术经济,2006,25(3):19-21.
    [124]王世绩.废矿区复垦造林田的立地基本特征[J].土壤学报.1995,26(1)61-65.
    [125]谢华生,朱坦.环境影响评价理论体系的建设[J].农业环境科学学报,2004,23(4):664-667.
    [126]韩有志.煤矸石山不同植被恢复模式对土壤侵蚀和养分流失的影响[J].中国水土保持科学,2011,9(2):93-99
    [127]刘庆.生态恢复重建研究与发展现状及存在的主要问题[J].世界科技研究与发展,2008,23(1):44-48.
    [128]张彤阳.浅析城市滨水区景观设计[J].规划与设计,2005,19(5):34-37.
    [129]曾书红.小议园林景观生态设计[J].安徽建筑.2002,(3):24-28.
    [130]陈庆恒,刘照光.退化植物群落结构及其物种组成在人为干扰梯度上的响应[J].云南植物研究,2000,22(3):307-316.
    [131]樊华,张群,王海洋,7种园林植物的耐盐性研究[J].林业科技,2007,(2):65-69.
    [132]巩如英,王飞,刘雅莉,等.韦伯一费希纳定律评价模型在景观环境评价中的应用[J].西北林学院学报,2006,21(1):131-133.
    [133]Rapport,D J Evaluating landscape health integrating social and biophysical process[J]. Journal of Environmental Management,1998,53:1-15.
    [134]刘康,李团胜.生态规划—理论、方法与应用[M].北京:化学工业出版社,2004:141-176.
    [135]李洪远,鞠美庭.生态恢复的原理与实践[M].北京:化学工业出版社,2005.
    [136]傅伯杰,陈利顶,马克明,等.景观生态学原理及应用[M].北京:科学出版社,2001,270-276.
    [137]钱迎倩,马克平.生物多样性研究的几个国际热点[J].广西植物,1996,16(4):295-299.
    [138]J.Jacobs.The Death and Life of Great American Cities[M].Random Home,1961.
    [139]Richard Register. Ecocity: Berkeley[J].North Atlantic Books,U.S.A.1987.
    [140]奥托兰诺著.华南科学研究所译,环境规划与决策[M].北京:中国环境科学出版社,1988.
    [141]阎传海.江苏北部景观生态评价[J].徐州师范大学学报,1999,17(2):295-299.
    [142]贾志清,郭保贵,李昌哲.太行山石质山地植被结构优化评价[J].林业科学研究,2004,17(2):226-230.
    [143]代全林.重金属对植物毒害机理的研究进展[J].亚热带农业研究,2006,2(2):129-134.
    [144]钟林生,肖笃宁,赵士洞.乌苏里江国家森林公园生态旅游适宜度评价[J].自然资源学报,2002,(1):71-77.
    [145]黄棠华.景观生态评价研究—以广东省龙门县为例[J].广西师范学院学报:自然科学版,2005,22(2):80-85.
    [146]张成梁,王伟,黄艺,等.外生菌根真菌及其接种白皮松生长对煤矸石胁迫的反应[J].林业科学,2008,44(12):68-71.
    [147]施顺生.矿山林业复垦的技术特点[J].中国工程科学,2005,7(增刊):430-432.
    [148]何东进,洪伟,胡海清,吴承祯,陈炳容,余建安.武夷山风景名胜区景观生态评价[J].应用与环境生物学报,2004,10(6):729-734.
    [149]郝润梅,杨劫,李素英,雷军,杨保军.半干旱地区城市边缘区景观格局动态变化及存在问题浅析—以呼和浩特市为例[D].资源科学.2005,27(3):154-160.
    [150]周月梅,陈志强.长泰县土地利用景观格局分析及对策[J].福建师范大学学报(自然科学版),2005,21(3):98-102.
    [151]范少辉,洪志猛,叶功富,刘荣成,张建生,肖胜.福建沿海惠安县的景观生态格局分析与评价研究[J].林业科学研究,2004,17(5):623-629.
    [152]李淑娟,隋玉正,李玉文,孙志虎,王凤友.黑龙江省帽儿山地区景观格局及其多样性[J].东北林业大学学报,2004,32(1):14-17.
    [153]焦峰,温仲明,王飞,张晓萍,杨勤科,李锐.黄土丘陵县域尺度整体景观格局分析[J].水土保持学报,2005,19(2):167-170.
    [154]郭晋平,阳含熙,张芸香.关帝山林区景观要素空间分布及其动态研究[J].生态学报,1999,19(4):469-473.
    [155]马克明,傅伯杰,周华锋.北京东灵山地区森林的物种多样性和景观格局多样性的研究[J].生态学报,1999,19(1):1-7.
    [156]马从安,王启瑞.大型露天矿区生态评价模型研究及应用[J].采矿与安全工程学报.2006,23(4):446-451.
    [157]郝蓉,白中科,赵景逵,等.黄土区大型露天煤矿废弃地植被恢复过程中的植被动态[J].生态学报,2003,23(8):1470-1476.
    [158]宋楠.煤矸石山坡面覆盖对土壤改良和植被恢复的影响研究[D].北京:北京林业大学,2012.
    [159]王丽艳,韩有志.张成梁,等.不同植被恢复模式下煤矸石山复垦土壤性质及煤矸石风化物的变化特征[J].生态学报,2011,31(21):6429-6441.
    [160]温仲明,焦峰.自然植被分布预测研究进展[J].中国水土保持科学,2009,7(5):117-124.
    [161]周择福,王延平,张光灿,等.五台山林区典型人工林群落物种多样性研究[J].西北植物学报,2005,2(2):321-327
    [162]陈灵芝,钱迎倩.生物多样性科学前沿[J].生态学报,1997,17(6):565-572.
    [163]包维楷.汶川地震重灾区生态退化及其恢复重建对策[J].中国科学院院刊,2008,23(4):324-329.
    [164]包维楷,王丽.海南重楼(Paris dunniana Levl.)(?)中群的生存状况[J].植物资源与环境学报,2004,13(1):32-36.
    [165]温继文,李道亮,白金,等.植被恢复与重建理论体系的构建[J].中国水土保持,2007,(3):22-25.
    [166]高洪文.生态交错带(Ecotone)理论研究进展[J].生态学杂志,1994,13(1):32-38
    [167]Dial R,Roughgarden J.Theory ofmarine communities:the inter-mediate disturbance hypothesis [J].Ecology,1998,79:1412-1424
    [168]王会肖.黄土高原丘陵沟壑区不同植被类型土壤水分动态[J].水土保持研究,2006,13(6):79-81.
    [169]包维楷,陈庆恒.生态系统退化的过程及其特点[J].生态学杂志,1999,18(2):36-42.
    [170]齐泽民,王玄德,宋光煜.酸雨对植物影响的研究进展[J].世界科技研究与发展,2004,26(2):36-41.
    [171]姜丽娜,杨文斌,卢奇,等.低覆盖度柠条固沙林不同配置对植被修复的影响[J].干旱区资源与环境,2009,23(2):186-193
    [172]杨文斌,王晶莹,王晓江,等.科尔沁沙地杨树固沙林密度、配置与林分生长过程初步研究[J].北京林业大学学报,2005,27(4):33-38
    [173]苏强平.植被恢复下歼石山土壤改良效益研究[D].北京:北京林业大学,2004.
    [174]高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报,2001,21(11):1932-1940.
    [175]孔东莲,郭小平,赵廷宁华北地区边坡生态防护植物选择[J].林业调查规划,2006,31(4):31-34
    [176]刘永光.北京山区关停废弃矿山人工恢复效果及评价研究[D].北京:北京林业大学,2011.
    [177]秦文展.露天铝土矿生态恢复过程中生物多样性研究[D].长沙:中南大学,2011.
    [178]郁万文,曹帮华,曹福亮.干旱、旱盐胁迫对刺槐生长及离子吸收分配的影响[J].南京林业大学学报:自然科学版,2007,31(3):68-72.
    [179]许丽.阜新矿区煤矸石山生境演变特征及其评价研究[D].北京:北京林业大学,2006.
    [180]杨文斌,卢琦,吴波,等.低覆盖度不同配置灌丛内风流结构与防风效果的风洞实验[J].中国沙漠,2007,25(5):791-796
    [181]张金池,等.不同植被恢复模式下矿区废弃地土壤水分物理性质研究[J].中国水土保持,2010,(3):54-59.
    [182]淮南市环境保护局.淮南市生态环境现状调查报告[M].准南市:准南市出版社,2001:132-136.
    [183]王国强,刘洋.淮南矿区的环境地质问题[J].煤田地质与勘探,2002,(3):33-35.
    [184]吕森林,邵龙义,丰年.淮南煤炭开发利用造成的环境问题及防治对策的探讨[J].中国煤炭,2002,28(10):42-44.
    [185]孙翠玲,苏铁成,郭玉文.矿山矸石台地植被恢复栽培模式研究[J].林业科学研究2005,18(3):356-361.
    [186]阎伍玖.淮南市采煤塌陷区环境综合整治分析[J].中国煤炭,2007,33(6):26-29
    [187]何春桂,刘辉,桂和荣.淮南市典型采煤塌陷区水域环境现状评价[J].煤炭学报,2005,(6):22-24.
    [188]郝蓉,陕永杰,白中科,等.露天煤矿复垦土地的植物群落多样性与稳定性[J].煤矿环境保护,2001,15(6):14-16.
    [189]崔龙鹏.淮南煤矿塌陷区煤矸石填充复垦及其对环境的影响[J].安徽地质,1998(3):58-61.
    [190]宋晓梅,周晓燕.煤炭开采对矿区环境的影响及保护对策[J].煤炭技术,2004,23(1):5-7.
    [191]崔龙鹏.淮南煤矿塌陷区煤矸石填充复垦及其对环境的影响[J].安徽地质.1998.8(3):58-61.
    [192]淮南市环境科学研究所,环境保护监测站.准南市生态环境现状调查报告[R].淮南:淮南市环境保护局,2001:132-136.
    [193]范英宏,陆兆华,程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报,2003,23(10):2144-2152.
    [194]周凤祥.两淮能源开发与生态环境的整治[J].生态经济,1995(5):28-31.
    [195]黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003,40(2):161-169.
    [196]王国强,赵华宏,等.两淮矿区煤矸石的卫生填埋与生态恢复[J].煤炭学报,2001,8(4):428-431.
    [197]范英宏,陆兆华,程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报,2003,23(10):2144-2152.
    [198]方志海.新集矿塌陷区治理现状与评价[J].煤矿开采,2001,(4):66-67.
    [199]吴征镒.中国种子植物属的分布区类型[J].云南植物研究,1991,13(S4):1-198.
    [200]王荷生.中国植物区系的性质和各成分间的关系[J].云南植物研究,2000,22(2):119-126.
    [201]吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统[J].云南植物研究,2003,25(3):1-10.
    [202]彭红云,杨肖娥.矿产与粮食复合主产区土壤污染的生物修复与生态重建对策[J].科技导报,2006,(3):25-28.
    [203]刘世忠,夏汉平,孔国辉.茂名北排油页岩废渣场的土壤与植被特性研究[J].生态科 学,2002,21(1):25-28.
    [204]代全林.植物修复与超富集植物[J].亚热带农业研究,2007,3(1):51-56.
    [205]毕德,吴龙华,骆永明,等.浙江典型铅锌矿废弃地优势植物调查及其重金属含量研究[J].土壤,2006,38(5):591-597.
    [206]邓向瑞.北京山区森林景观格局及其尺度效应研究[D].北京:北京林业大学,2007.
    [207]孔东莲.门头沟区道路边坡绿化植物选择研究[D].北京:北京林业大学,2007.
    [208]贾志清.晋西北黄土丘陵沟壑区典型灌草植被土壤水分动态变化规律研究[J].水土保持通报,2006,26(1):10-15.
    [209]徐德聪,詹婧,陈政,高毅,谢贤政,孙庆业,豆长明.种植香根草对铜尾矿废弃地基质化学和生物学性质的影响[J].生态学报,2012,32(18):5683-5691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700