弹载SAR多种工作模式的成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着精确制导武器在现代化战争中所扮演的角色日趋重要,高精度复合制导技术已经成为了各国国防工业的发展重点。在众多复合制导技术中,合成孔径雷达(SAR,Synthetic Aperture Radar)与惯性导航系统(INS,Inertial NavigationSystem)的组合由于其自身的众多优点正日益受到重视。装备有SAR+INS导航系统的导弹可以利用SAR获得的高分辨率图像与弹上计算机中存储的参考图像进行景象匹配,计算出导弹实时位置,对弹载INS的导航信息进行误差修正,达到提高导弹打击精度的目的。但是,由于导弹的运动特点与飞机、卫星等传统载体有很大区别,传统的SAR成像算法在弹载SAR中难以直接使用。同时,为了给成像后的景象匹配提供足够的目标特征信息,弹载SAR需要具有大场景宽测绘带成像的能力。此外,导弹在攻击段要求SAR具有前视成像的能力,而前视特有的左右模糊问题给成像带来了很大困难。基于以上原因,本文针对多种工作模式下的弹载SAR成像算法进行了研究,所取得的主要研究成果为:
     1.研究了弹载扫描SAR模式下的宽测绘带成像算法。以传统的划分子孔径成像为思路,分析了扫描模式下的目标回波信号特点,指出了成像面临的两个问题,即线性距离徙动的空变性和多普勒中心的空变性问题,并给出了子孔径划分的原则。接着,研究了改进的子孔径距离-多普勒成像算法,并针对实际需要推导了导弹存在侧向移动时的子孔径图像几何校正公式。最后通过点目标仿真验证了本文方法的有效性,为今后的景象匹配制导研究奠定了基础。
     2.研究了弹载SAR下降段成像模型下的大场景成像算法。以全孔径高分辨成像为思路,首先分析了基于级数反演法的弹载SAR回波信号二维频谱中各相位项的空变特性,接着根据分析结果并结合CZT(Chirp Z Transform)算法提出了成像算法的设计方案。然后,对改进的CZT算法进行了推导,给出了最终的成像流程和运算量分析。最后用仿真实验验证了算法的可行性。
     3.针对弹载SAR下降段大场景成像中存在的多变量耦合问题,研究了一种参数化解耦方法。在已有的基于级数反演的弹载SAR下降段回波信号二维频谱中,存在五个耦合变量,而传统的SAR成像算方法只能处理其中三个变量。通过分析下降段信号特点和成像模型,分别利用公式的特殊形式和模型的几何特征提出了一种将两个额外变量用斜距变量进行参数化解耦合的方法。在解耦后得到的新二维频谱的基础上,推导了CS(Chirp Scaling)算法。最后通过仿真验证了本章所提方法能有效的提高距离向的成像精度,可以完成距离向扩展大场景的成像需求。
     4.以全孔径高分辨为成像目的,研究了一种弹载SAR下降段的信号二维频谱分析方法。针对弹载SAR下降段成像信号模型的特点,通过借鉴星载SAR曲线轨迹成像方法,对斜距公式进行了合理近似,然后利用此公式直接推导信号的二维傅里叶变换,再利用经典的卡尔丹公式解得信号的驻相点,最后得到了信号的二维频谱表达式。接着,在此二维频谱的基础上推导了相应的成像算法,最后通过仿真验证了所提频谱和算法的有效性。
     5.针对弹载SAR前视成像问题进行了研究。经过对比选择了双天线成像体制,并对该体制下的斜距公式进行了分析,指出了左右模糊问题是前视成像的基本问题。通过分析双天线体制下的信号特点,提出了利用不同天线的波程差进行波束形成,解开左右模糊的算法思路。接着设计了距离向处理算法和方位向解模糊算法,最后用仿真实验验证了该算法的有效性。
As the precision guidance weapons are playing increasingly important role in modernwarfare, high-precision integrated guidance techniques have been the focus of defenseindustry development for all the countries. In masses of the integrated guidance techniques,the combination of Synthetic Aperture Radar (SAR) and Inertial Navigation System (INS) hasgained growing attention due to its multiple intrinsic advantages. Equipped with SAR&INS,the missile can exploit the high resolution images obtained by SAR for scene matching withthe reference images stored in the computer on missile, calculate the real time position ofitself to correct the INS errors, and finally get a high attacking probability. However, becauseof the great difference in motion characteristics between missile and conventional carrierssuch as airplane and satellite, it is difficult to directly use traditional SAR imaging algorithmsin missile-borne SAR. Meanwhile, to provide sufficient target feature information for scenematching, missile-borne SAR needs the capability of wide-swath imaging. In addition, missilerequires the identical direction for imaging and flight in attack paragraph, in which thepeculiar left/right ambiguity problem leads to great difficulty for imaging.
     Based on all above, this dissertation makes a study on missile-borne SAR imaging inmultiple operating modes. The main research results are as follows:
     1. The wide-swath imaging method for missile-borne ScanSAR is studied. Accordingto the traditional sub-aperture separation imaging method, the features of target echoedsignals are analyzed. Two problems i.e. the spatial variation of the linear range cell migrationand Doppler center are presented, as well as the rule of sub-aperture separation and amodified Range-Doppler algorithm. Further, for the practical demand, the geometriccorrection equation for sub-aperture images with the existence of side movement is deduced.The point target simulation validates the effectiveness of the method proposed in thisdissertation, which lays a foundation for scene matching.
     2. The research of wide-swath imaging algorithm based on the model of themissile-borne SAR in decline paragraph is conducted. Motivated by high resolution imagingof the full aperture, we firstly analyze the spatial variation properties of all the terms in theechoed signal2D spectrum of missile-borne SAR based on the series reversion method. Then,corresponding to the analysis results, with the combination of CZT (Chirp-Z Transform)algorithm, we design an imaging scheme. Additionally, the modified CZT algorithm isderived, and the imaging flow and computational load analysis is given. The simulationexperiments confirm the feasibility of this method.
     3. With respect to the problem of multi-variables coupling in the wide-swath imagingof missile-borne SAR in decline paragraph, we investigate a parameterized de-couplingmethod. In the existing2D echoed signal spectrum of missile-borne SAR in the declineparagraph obtained by series reversion method, there are five coupled variables, only three ofwhich can be processed by conventional SAR imaging algorithms. By analyzing thecharacteristics of the signal in decline paragraph and the imaging model, we present a methodto parameterize the other two variables with the slant range variable, attributed to the specialform of the equation expressions and the geometric features of the imaging model. On thebasis of the new parameterized2D spectrum, CS (Chirp-Scaling) algorithm is deduced.Simulations verify that this parameterized de-coupling method can effectively improve theimaging accuracy in the range direction and it is promising to enhance the performance ofextended wide-swath imaging.
     4. Following the high resolution imaging of full aperture, an analysis method for2Dsignal spectrum of missile-borne in decline paragraph is presented. For the characteristics ofthe imaging model in this paragraph, by imitating the imaging method with curve trace inspace-borne, we make a reasonable approximation for the slant range expression. With thisequation, the2D Fourier transform of the signal is directly derived. Then the stationary phasepoint can be solved by using the classical Cardano’s formula. And thus the signal2Dspectrum can be obtained, based on which the corresponding imaging algorithm isdemonstrated. The effectiveness of the proposed method for imaging in decline paragraph isvalidated by the simulations.
     5. The problems in forward-looking missile-borne SAR are also studied. By makingcomparisons, we select the double-antenna system and analyze the slope range equation inthis system. The basic problem of the left/right ambiguity for forward-looking imaging isfigured out. With the analysis on the signal features in the double-antenna system, we putforward a scheme to solve the left/right ambiguity by using the beam-forming with rangedelay difference between different antennas. Then a range processing algorithm andde-ambiguity algorithm in azimuth direction is designed. The point target simulation testifiesthe validity of this method.
引文
[1]赵少奎.导弹与航天技术导论[M].北京:中国宇航出版社,2008.pp.227-232.
    [2]尹德成.弹载合成孔径雷达制导技术发展综述[J].现代雷达.2009, vol.31,no.11, pp.20-24.
    [3]王司.战术制导武器捷联惯导系统快速传递对准研究[D].哈尔滨工业大学,2008.
    [4]高烽.合成孔径雷达导引头技术[J].制导与引信.2004, vol.25, no.1, pp.1-4.
    [5]黄世奇,禹春来,刘代志,等.成像精确制导技术分析与研究[J].导弹与航天运载技术.2005, no.5, pp.20-25.
    [6]秦玉亮,王建涛,王宏强等.弹载合成孔径雷达技术研究综述[J].信号处理.2009,4月, vol.25, no.4, pp.630-634.
    [7]常青.巡航导弹制导系统关键技术研究[D].西北工业大学.2003.
    [8]于秋则.合成孔径雷达(SAR)图像匹配导航技术研究[D].华中科技大学.2004.
    [9]李悦丽.弹载合成孔径雷达成像技术研究[D].国防科技大学.2008.
    [10]王建涛.机动航迹弹载SAR成像研究[D].国防科技大学,2008.
    [11]姚秀娟,彭晓乐,张永科.几种精确制导技术简述[J].激光与红外.2006,vol.36, no.5,pp.338-340.
    [12]杨树谦.精确制导技术发展现状与展望[J].航天控制.2004, vol.22, no.4,pp.17-20.
    [13]夏思宇.精确制易技市及具现状与发展[J].航空科学技术.2003, pp.11-13.
    [14]杨树谦.精确制导武器和技术.红外与激光工程[J].1999, vol.28, no.6,pp.1-3.
    [15]鲍虎,刘隆和.寻的制导体制及其对抗方法[J].航天电子对抗.1999, no.1,pp.7-11.
    [16]刘隆和.发展中的精确制导技术[J].飞航导弹.2001, no.6, pp.61-65.
    [17]张纯学.复合制导技术的进展[J].飞航导弹.2004, no.9, pp.50-59.
    [18] Wiley C A. Synthetic Aperture radar[J]. IEEE Trans. Aerosp. Electron. Syst.,1985,21(3):440-443.
    [19] C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe. Some Early Developments inSynthetic Aperture Radar Systems. IRE Trans. On military electronics,1962,6(2):111-115.
    [20] L.J.Cutrona et al. A High Resolution Radar Combat-Surveillance Systems [J]. IRETrans. On military electronics,1961,5(2):127-131.
    [21] L.J.Cutrona, et al. A Comparison of Techniques for Achieving Fine AzimuthResolution [J]. IRE Trans. On military electronics,1962,6(2):129-131.
    [22] D A Ausherman, A Kozma, J L Walker, H M Jones, E C Poggio. Developments inRadar Imaging [J], IEEE Trans on AES,1984,20(4):.363-400.
    [23] W M Brown, L J Porcello. An Introduction to Synthetic Aperture Radar.[J] IEEETrans on GRS1969September,52-62.
    [24] Kirk J C. Digital synthetic aperture radar technology[C]. IEEE International RadarConference,1975.
    [25] Elahci C, Bicknell T, Jordan R L, and Wu C. Spaceborne synthetic apertureimaging radars: application, techniques, and technology [J]. Proc. of IEEE,1982,70(10):1174-1209.
    [26] Jordan R L, Huneycutt B L, Werner M. The SIR-C/X-SAR Synthetic ApertureRadar System [J]. Proc. IEEE,1991,79(6):.827-838.
    [27] Raney R K, Luscombe A P, et al. Radarsat [J]. Proc of IEEE,1991,79(6):839-849.
    [28] Horn R. E-SAR—The experiment airborne L/C band SAR system of DLR [C].Proc. of IGARSS’88, pp.1025-1026,1988.
    [29] Ender J H G, and Brenner A R. PAMIR-a wideband phased array SAR_MTIsystem [J]. IEE Proc. Radar Sonar Navig.,2003,150(3):165-172.
    [30] Hensley W H, Doerry A W, Walker B C. Lynx: A High-resolution SyntheticAperture Radar [J]. SPIE Aerosense,1999,3704.
    [31] Sheen D R, Lewis T B. The P-3UWB-SAR [J]. SPIE, Vol.2747,1996, pp.20-24.
    [32] Maden S N, Christensen E L, et al. The Danish SAR System: Design and InitialTests [J]. IEEE Trans Geosc. and Remote Sens.,1991,29(3):417-426.
    [33]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [34] Xixing Z, Minhui Z. The development of on-board imaging processor for airborneSAR in China [C]. EUSAR'96, Germany.
    [35] L J Cutrona et al. On the Application of Coherent Optical Processing Techniquesto Synthetic Aperture Radar [J]. PIEEE,1966,54(8),1026-1032.
    [36]《CSAR-2003会议》论文集.第一届中国合成孔径雷达会议,合肥:2003年12月1日至4日.
    [37]《CSAR-2005会议》论文集.第二届中国合成孔径雷达会议,南京:2005年11月2日至5日.
    [38]《20071st Asian and Pacific Conference on Synthetic Aperture RadarProceedings》. Huangshan, China,2007.5-9.
    [39]《20092st Asian and Pacific Conference on Synthetic Aperture RadarProceedings》. Xi’an, China,2009,21-25.
    [40] http://www.gov.cn/jrzg/2010-08/10/content_1675289.htm.H
    [41]陈国范,胡仕友,周国军.合成孔径在弹上导引头的应用[J].飞航导弹.1995,No.7, pp.43-47.
    [42]黄世奇,郑健,刘代志,等. SAR/红外双模成像制导系统研究与设计[J].飞航导弹.2004, No.6, pp.38-43.
    [43]张纯学.国外飞航导弹导引头中采用的新技术[J].飞航导弹.2000, No.5,pp.11-16.
    [44] C. Neumann, H. Senkowski, MMW-SAR SEEKER AGAINST GROUNDTARGETS IN A DRONE APPLICATION,EUSAR2002. pp.457-460.
    [45] Thomas Malenke, Thorsten Oelgart, Dr. Worfgang Rieck,“W-BAND-RADARSYSTEM IN A DUAL-MODE SEEKER FOR AUTONOMOUSI TARGETDETECTION, EUSAR2002. pp.171-174.
    [46]徐文. RBS15Mk3反舰导弹[J].飞航导弹,2003, pp:11-13.
    [47]曲家庆,欧阳慧. RBS-15导弹家族的演进过程[J].制导与引信,2011. pp:24-28.
    [48]刘江平.瑞典海军新锐——RBS-15Mk3反舰导弹[J].Ocean World,2010, pp:46-48.
    [49]华莎.维京的战斧——瑞典RBS15反舰导弹最新情报[J].国际展望,2003,pp:66-71.
    [50] Malenke T, Oelgart T, Dr. Rieck W. W-band-radar system in a dual-mode seekerfor autonomous target detection [A]. EUSAR[C].2002.
    [51] Smith B J, Garner W, Cannon R. Precision dynamic SAR testbed for tacticalmissiles [C]. IEEE Aerospace Conference Proceedings. Big Sky, MT, United States,2004, pp:2220-2223.
    [52]易予生.弹载合成孔径雷达成像算法研究[D].西安电子科技大学.2009.
    [53] Polge R, Green A H, Mullins J H, Extension of Synthetic Aperture RadarImagilag to Nonlinear Trajectories, New Orleans, LA, USA,1990,161-166.
    [54] Mahafza B R, Knight D L, Audeh N F, Three-dimensional SAR ImagingTechnique for MMW Seekers [J], IEEE Aerospace Applications ConferenceProceedings, Vail, CO, USA,1994, pp:185-198.
    [55]李道京,张麟兮,俞卞章.主动雷达成像导引头几个问题的研究[J].现代雷达,2003, vol.25. no.5, pp:12-15.
    [56]俞根苗,尚勇,邓海涛,等.弹载侧视合成孔径雷达信号分析及成像研究[J].电子学报,2005, vol.33, no.5, pp:778-782.
    [57]俞根苗,邓海涛,吴顺君.弹载SAR图像几何失真校正方法[J].西安电子科技大学学报,2006, vol.33, no.3, pp:387-389.
    [58]俞根苗,邓海涛,张长耀,等.弹载侧视SAR成像及几何校正研究[J].系统工程与电子技术,2006, vol.28, no.7, pp:997-1001.
    [59]俞根苗,邓海涛,吴顺君.弹载SAR图像几何失真校正误差分析[J].电子与信息学报,2007, vol.29, no.2, pp:383-386.
    [60]郭彩虹,陈杰,孙雨萌,等.超大前斜视空空弹载SAR成像实现方法研究[J].宇航学报,2006, vol.27, no.5:880-884.
    [61]井伟,张磊,邢孟道,等.非匀速平台SAR成像算法研究[J].西安电子科技大学学报,2008, vol.35, no.4, pp:605-608.
    [62]孙兵,周荫清,陈杰,等.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报.2006, vol.34, no.9:1595-1599.
    [63]孙兵,周荫清,陈杰,等.基于俯冲模型的SAR成像处理和几何校正[J].北京航空航天大学学报.2006, vol.32, no.4:435-439.
    [64]房丽丽,王岩飞.俯冲加速运动状态下的SAR信号分析及运动补偿.[J].电子与信息学报,2008, vol.30, no.6:1316-1320.
    [65]秦玉亮,王建涛,王宏强,等.基于距离-多普勒算法的俯冲弹道条件下弹载SAR成像[J].电子与信息学报.2009, vol.31, no.11:2563-2568
    [66]秦玉亮,王建涛,王宏强,等.基于RD算法的横向规避弹道弹载SAR成像[J].系统工程与电子技术.2010, vol.32, no.4:731-733.
    [67]易予生,张林让,刘楠,等.基于级数反演的俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术.2009,31no.12:2863-2866.
    [68] Neo Y L, Wong F H, Cumming I. A two-dimensional spectrum for bistatic SARprocessing using series reversion [J].IEEE Geoscience and Remote Sensing Letters,2007,4(1):93-96.
    [69]易予生,张林让,刘昕,等.一种弹载侧视SAR大场景成像算法[J].电子与信息学报.2010,32(3):587-592.
    [70]刘高高,张林让,刘昕,等.一种曲线轨迹下的大场景前斜视成像算法[J].电子与信息学报,2011,33(3):628-633.
    [71]刘高高,张林让,易予生,等.一种曲线轨迹下的弹载前斜视成像算法[J].西安电子科技大学学报,2011,38(1):123-130.
    [72] http://www.dlr.de/hr/sirev/home.html.
    [73] T. Sutor, S. Buckreuss, etc. SIREV: Sector Imaging Radar for Enhanced Vision
    [C]. Proc. EUSAR2000Conf., Munich, Germany,2000:357-359.
    [74]徐刚,李亚超,张磊,等.基于多视角快拍InSAR干涉技术的前视SAR三维成像[J].电子与信息学报,2011,33(3):634-641.
    [75]刘光炎.斜视及前视合成孔径雷达系统的成像与算法研究[D].成都:电子科技大学,2003.
    [76]陈琦.机载斜视及前视合成孔径雷达系统研究[D].北京:中科院电子学研究所,2007.
    [77] Xiaozhen Ren, Jiantao Sun, and Ruliang Yang, A New Three-DimensionalImaging Algorithm for Airborne Forward-Looking SAR [J]. IEEE GRS Letters,January2011,8(1):153-157.
    [78] YI Yusheng, Zhang Linrang, LI Yan, Liu Nan, Liu Xin,“Range DopplerAlgorithm for Bistatic Missile-borne Forward-looking SAR”,20092ndAsian-Pacific Conference on Synthetic Aperture Radar, Oct.26-30,2009, Xian,China, pp.960-963.
    [79] Xiaolan Qiu, Donghui Hu, and Chibiao Ding, Some Reflections on Bistatic SARof Forward-Looking Configuration [J]. IEEE Trans on GRS, October2008,5(4):735-739.
    [80] Thomas Espeter, Ingo Walterscheid, Jens Klare, Andreas R. Brenner, and JoachimH. G. Ender, Bistatic Forward-Looking SAR: Results of a Spaceborne–AirborneExperiment [J]. IEEE Trans on GRS, July2011,8(4):765-768.
    [81] Wenchao Li, Yulin Huang, Jianyu Yang, Junjie Wu, and Lingjiang Kong, AnImproved Radon-Transform-Based Scheme of Doppler Centroid Estimation forBistatic Forward-Looking SAR [J]. IEEE GRS Letters, March2011,8(2):379-383.
    [82] S. Dai, and W. Wiesbeck,“The Imaging Mode of Forward Looking SAR withTwo Receiving Antennas,” in Proc. IEEE IGARSS, Han Burg, Germany, Jun.9–13,1999, vol.3, pp.1433–1435
    [83] Shengli Dai, Min Liu and Werner Wiesbeck. The Latest Development of HighResolution Imaging for Forward Looking SAR with Multiple Receiving Antennas.In Proc. IEEE, GRS. Symp., IGARSS2001, July,2001, USA, pp.1433-1435.
    [84] Shengli Dai, and Werner Wiesbeck. System Configuration And ProcessingMethod For Forward Looking SAR With Two Receiving Antennas. Proceedings ofthe International Symposium on Digital Earth,1999, USA, pp.1433-1435.
    [85] Shengli Dai. A new approach to achieve high azimuth resolution forforward-looking SAR. Proceedings of SPIE,2004, Bellingham, WA, Vol.4135,pp.235-242.
    [1] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA: Artech House,2005.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [3] Giorgio Franceschetti and Ricccardo Lanari. Synthetic Aperture Radar Processing[M]. Boca Raton, London, New York, Washington, D. C.: CRC Press,1999.
    [4]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [5] C. Wu, K. Y. Liu, and M. J. Jin,“Modeling and a correlation algorithmforspaceborne SAR signals,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-18, no.5,pp.563–575, Sep.1982.
    [6] R. K. Raney, H. Runge, R. Bamler, I. G. Cumming, and F. H. Wong“,Precision SARprocessing using chirp scaling,” IEEE Transactions on Geoscience and RemoteSensing, vol.32, no.4, pp.786–799, Jul.1994.
    [7] C. Cafforio, C. Prati, and F. Rocca. SAR Data Focusing Using Seismic MigrationTechniques. IEEE Trans. On Aerospace and Electronic Systems,27(2): pp.194–207, March1991.
    [8] Lanari R. A new method for the compensation of the SAR range cell migrationbased on the chirp Z-transform [J]. IEEE Transactions on Geoscience and RemoteSensing,1995,33(5):1296-1299.
    [9] R. Bamler. A Comparison of Range-Doppler and Wave-number Domain SARFocussing Algorithms. IEEE Transactions on Geoscience and Remote Sensing,30(4):706–713, July1992.
    [10]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [11] A. Martinez and J. L. Marchhand. SAR Iamge Quality Assessment [J]. Revista deTeledeteccion, Nov.1993.
    [12]W G Carrara,R S Goodman,R M Majewski. Spotlight Synthetic Aperture Radar:Signal Processing Algorithms [M]. Boston: Artech House,1995.
    [13]黄源宝.机载合成孔径雷达成像算法及运动补偿的研究[D].西安电子科技大学.2005.
    [14]易予生,张林让,刘楠,等.基于级数反演的俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术.2009,31no.12:2863-2866.
    [15]韩子鹏.弹箭外弹道学[M].北京:北京理工大学出版社,2008.
    [16]Weisstein E W. CRC Concise Encyclopedia of Mathematics [M]. Boca Raton,London, New York, Washington D. C.: CRS Press LLC,1999,362-365.
    [17]P. M. Morse and H. Feshbach, Methods of Theoretical Physics,1st ed.New York:McGraw-Hill,1953.
    [18]H. B. Dwight, Table of Integrals and Other Mathematical Data,4th ed.New York:Macmillan,1961.
    [19]Neo Y L, Wong F H, Cumming I. A two-dimensional spectrum for bistatic SARprocessing using series reversion [J]. IEEE Geoscience and Remote Sensing Letters,2007,4(1):93-96.
    [20]Loffeld O., Nies H., Peters V., and Knedlik S.. Models and useful relations forbistatic SAR processing. IEEE Trans. Geosci. Remote Sens., vol.42, no.10, pp.2031-2038, Oct.2004.
    [21]Wang R., Loffeld O., Ul-Ann Q., Nies H., and Medrano Ortiz A., and Samarah A..A bistatic point target reference spectrum for general bistatic SAR processing.IEEE Geosci. Remote Sens. Lett., vol.5, no.3, pp.517-521, Jul.2008.
    [22]孙进平,白霞,毛士艺.双基地合成孔径雷达的扩展ETF成像算法.电子学报.2007年12月,vol.35(12).2394-2398.
    [23]Zhang Z., Xing M., Ding J., and Bao Z.. Focusing parallel bistatic SAR data usingthe analytic transfer function in the wavenumber domain. IEEE Trans. Geosci.Remote Sens., vol.45, no.11, pp.3633-3645, Nov.2007.
    [24]Neo Y. L., Wong F. H., and Cumming I. G.. Processing of Azimuth-InvariantBistatic SAR Data Using the Range Doppler Algorithm. IEEE Trans. Geosci.Remote Sens., vol.46, no.1, pp.14-21, Jan.2008.
    [25]Wong F. H., Cumming I. G., and Neo Y. L.. Focusing Bistatic SAR Data Using theNonlinear Chirp Scaling Algorithm. IEEE Trans. Geosci. Remote Sens., vol.46, no.9, pp.2493-2505, Sep.2008.
    [26]Liu B., Wang T., Wu Q., and Bao Z.. Bistatic SAR Data Focusing Using anOmega-K Algorithm Based on Method of Series Reversion. IEEE Trans. Geosci.Remote Sens., vol.47, no.8, pp.2899-2912, Aug.2009.
    [1]秦玉亮,黄宗辉,邓彬,等. INS/双天线弹载SAR组合弹体定位技术[J].电子学报,2009,37(6):1216-1221.
    [2]陈东,李飚,沈振康,等. SAR与可见光图像匹配方法的研究[J].中国图像图形学报,2001,6(3):223-227.
    [3] Currie A, Brown M A. Wide-swath SAR [J]. IEE Proc. of F,1992,139(2):122~135.
    [4]王小青,朱敏慧.一种宽测绘带SAR新方法的探讨[J].电子与信息学报.2003,25(10):1424-1429.
    [5] Moore R K. Scanning spaceborne synthetic aperture radar with integratedradiometer [J]. IEEE Trans. AES,1981,17(3):410-420.
    [6]井伟,张磊,邢孟道,等.非匀速平台SAR成像算法研究[J].西安电子科技大学学报,2008,35(4):605-608.
    [7]俞根苗,尚勇,邓海涛,等.弹载侧视合成孔径雷达信号分析及成像研究[J].电子学报,2005,33(5):778-782.
    [8]孙兵,周荫清,陈杰,等.基于俯冲模型的SAR成像处理和几何校正[J].北京航空航天大学学报.2006,32(4):435-439.
    [9]孙兵,周荫清,陈杰,等.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报.2006,34(9):1595-1599.
    [10]房丽丽,王岩飞.俯冲加速运动状态下的SAR信号分析及运动补偿.[J].电子与信息学报,2008,30(6):1316-1320.
    [11]秦玉亮,王建涛,王宏强,等.基于距离-多普勒算法的俯冲弹道条件下弹载SAR成像[J].电子与信息学报.2009,31(11):2563-2568.
    [12]贺知明,朱江,周波.弹载SAR实时信号处理研究[J].电子与信息学报,2008,30(4):1011-1013.
    [13]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [14] I. G. Cumming and Frank H. Wong, Digital Processing of Synthetic ApertureRadar Data: Algorithms and Implementation [M]. Norwood, MA: Artech House,2005.
    [15]邢孟道,保铮.基于运动参数估计的SAR成像[J].电子学报,2001,29(12A):1824-1828.
    [16]李勇,朱岱寅,朱兆达.环视SAR成像处理中的几何失真校正算法[J].南京航空航天大学学报,2009,41(2):232-237.
    [17]俞根苗,邓海涛,吴顺君.弹载SAR图像几何失真校正方法[J].西安电子科技大学学报,2006,33(3):387-389.
    [18]邵永社.雷达图像定位方法与关键技术研究[D].上海:同济大学,2006.
    [1]房丽丽,王岩飞.俯冲加速运动状态下的SAR信号分析及运动补偿.[J].电子与信息学报,2008,30(6):1316-1320.
    [2]秦玉亮,王建涛,王宏强,黎湘.基于距离-多普勒算法的俯冲弹道条件下弹载SAR成像[J].电子与信息学报.2009,31(11):2563-2568
    [3]孙兵,周荫清,陈杰,李春升.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报.2006,34(9):1595-1599.
    [4]俞根苗,尚勇,邓海涛,张长耀,葛家龙,吴顺君.弹载侧视合成孔径雷达信号分析及成像研究[J].电子学报,2005,33(5):778-782.
    [5]易予生,张林让,刘楠,刘昕,申东.基于级数反演的俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术.2009,31(12):2863-2866.
    [6]易予生,张林让,刘昕,刘楠,申东.一种弹载侧视SAR大场景成像算法[J].电子与信息学报.2010,32(3):587-592.
    [7] Neo Y L, Wong F H, Cumming I. A two-dimensional spectrum for bistatic SARprocessing using series reversion [J].IEEE Geoscience and Remote SensingLetters,2007,4(1):93-96.
    [8] Lanari R. A new method for the compensation of the SAR range cell migrationbased on the chirp Z-transform [J]. IEEE Transactions on Geoscience and RemoteSensing,1995,33(5):1296-1299.
    [9]熊涛,张然,邢孟道.基于级数反演法的聚束式广义双基成像算法研究.[J].电子与信息学报,2010,32(4):932-936.
    [10]麻丽香,程黎,唐禹.一种高分辨率聚束SAR运动补偿算法研究.[J].电子与信息学报,2010,32(3):599-603.
    [11] Tang Yu, Xing Meng-dao, and Bao Zheng. The polar format imaging algorithmbased on double Chirp-Z transforms [J]. IEEE Geoscience and Remote SensingLetters,2008,5(4):610-614.
    [12] Cumming I G and Wong F H, Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA: Artech House,2005, chapter11.
    [1] G. Fornaro, G. Franceschetti, and S. Perna,“On Center-Beam Approximation inSAR Motion Compensation,” IEEE Geoscience and Remote Sensing Letters, vol.3,no.2, pp.276–280, April,2006.
    [2] T. Michel and S. Hensley,“Wavenumber Domain Focusing of Squinted SAR Datawith a Curved Orbit Geometry,” in42nd Asilomar Conference on Signals, Systemsand Computers, Pacific Grove, CA, USA, Oct.2008, pp26-29.
    [3] Y. L. Neo, F. H. Wong, and I. G. Cumming,“A two-dimensional spectrum forbistatic SAR processing using series reversion,” IEEE Geoscience and RemoteSensing Letters, vol.4, no.1, pp.93-96, January,2007.
    [4]易予生,张林让,刘楠,刘昕,申东.基于级数反演的俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术.2009,31(12):2863-2866.
    [5]易予生,张林让,刘昕,刘楠,申东.一种弹载侧视SAR大场景成像算法[J].电子与信息学报.2010,32(3):587-592
    [6]刘高高,张林让,刘昕,等.一种曲线轨迹下的大场景前斜视成像算法[J].电子与信息学报,2011,33(3):628-633.
    [7]刘高高,张林让,易予生,等.一种曲线轨迹下的弹载前斜视成像算法[J].西安电子科技大学学报,2011,38(1):123-130.
    [8] I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture Radar:Algorithms and Implementation. Norwood, MA: Artech House,2004.
    [9] P. Zhou, S. Zhou, T. Xiong, Ya. LI, and M. Xing,“A Novel High ResolutionImaging Method for the Missile-borne SAR,” Journal of Electronic&InformationTechnology (In Chinese), vol.33, no.3, pp.622–627, March,2011.
    [10]R. K. Raney, H. Runge, R. Bamler, I. G. Cumming, and F. H. Wong,“PrecisionSAR processing using chirp scaling,” IEEE Trans. Geosci.Remote Sens., vol.32, no.4, pp.786–799, Jul.1994.
    [1]房丽丽,王岩飞.俯冲加速运动状态下的SAR信号分析及运动补偿.[J].电子与信息学报,2008,30(6):1316-1320.
    [2] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA: Artech House,2005,47-48.
    [3] Weisstein E W. CRC Concise Encyclopedia of Mathematics [M]. Boca Raton,London, New York, Washington D. C.: CRS Press LLC,1999,362-365.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [5]秦玉亮,王建涛,王宏强,黎湘.基于距离-多普勒算法的俯冲弹道条件下弹载SAR成像[J].电子与信息学报.2009,31(11):2563-2568
    [6]俞根苗,尚勇,邓海涛,张长耀,葛家龙,吴顺君.弹载侧视合成孔径雷达信号分析及成像研究[J].电子学报,2005,33(5):778-782.
    [7]孙兵,周荫清,陈杰,李春升.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报.2006,34(9):1595-1599.
    [8]秦玉亮,王建涛,王宏强,黎湘.基于RD算法的横向规避弹道弹载SAR成像[J].系统工程与电子技术.2010,32(4):731-733.
    [9]易予生,张林让,刘楠,刘昕,申东.基于级数反演的俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术.2009,31(12):2863-2866.
    [10]易予生,张林让,刘昕,刘楠,申东.一种弹载侧视SAR大场景成像算法[J].电子与信息学报.2010,32(3):587-592.
    [11] Neo Y L, Wong F H, Cumming I. A two-dimensional spectrum for bistatic SARprocessing using series reversion [J].IEEE Geoscience and Remote SensingLetters,2007,4(1):93-96.
    [12] Eldhuset K. A new fourth-order processing algorithm for spaceborne SAR [J].IEEE Transactions on Aerospace and electronic systems,1998,34(3):824-835.
    [13] Eldhuset K. Spaceborne bistatic SAR processing using the EETF4algorithm [J].IEEE Geoscience and Remote Sensing Letters,2009,6(2):194-198.
    [1]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [2] G. P. Cardillo,“On the use of gradient to determine bistatic SAR resolution,” inProc. Antennas Propag. Soc. Int. Symp.,1990, vol.2, pp.1032–1035.
    [3] Ingo Walterscheid, Thomas Espeter, Jens Klare, Andreas R. Brenner, and JoachimH. G. Ender,“Potential and Limitations of Forward-Looking Bistatic SAR,” inProc. IEEE IGARSS, Jun.9–13,2010, pp.216–219.
    [4] http://www.dlr.de/hr/sirev/home.html.
    [5] T. Sutor, S. Buckreuss, etc. SIREV: Sector Imaging Radar for Enhanced Vision.Proc. EUSAR2000Conf., Munich, Germany,2000:357-359.
    [6] Thomas Sutor, Franz Witte, Alberto Moreira. A New Sector Imaging Radar forEhanced Vision-SIREV. SPIE, Orland, Florida, USA,1999,369139-47.
    [7] Franz Witte, Thomas Sutor, Rudiger Scheunemann. A New Sector Imaging Radarfor Ehanced Vision-SIREV. SPIE, Orland, Florida, USA,1998,3364115-122
    [8]陈琦.机载斜视及前视合成孔径雷达系统研究[D].北京:中科院电子学研究所,2007.
    [9] Xiaozhen Ren, Jiantao Sun, and Ruliang Yang, A New Three-DimensionalImaging Algorithm for Airborne Forward-Looking SAR [J]. IEEE GRS Letters,January2011,8(1):153-157.
    [10]刘光炎.斜视及前视合成孔径雷达系统的成像与算法研究[D].成都:电子科技大学,2003.
    [11]YI Yusheng, Zhang Linrang, LI Yan, Liu Nan, Liu Xin,“Range Doppler Algorithmfor Bistatic Missile-borne Forward-looking SAR”,20092nd Asian-PacificConference on Synthetic Aperture Radar, Oct.26-30,2009, Xian, China,pp.960-963.
    [12] Xiaolan Qiu, Donghui Hu, and Chibiao Ding, Some Reflections on Bistatic SARof Forward-Looking Configuration [J]. IEEE Trans on GRS, October2008,5(4):735-739.
    [13]Thomas Espeter, Ingo Walterscheid, Jens Klare, Andreas R. Brenner, and JoachimH. G. Ender, Bistatic Forward-Looking SAR: Results of a Spaceborne–AirborneExperiment [J]. IEEE Trans on GRS, July2011,8(4):765-768.
    [14] Wenchao Li, Yulin Huang, Jianyu Yang, Junjie Wu, and Lingjiang Kong, AnImproved Radon-Transform-Based Scheme of Doppler Centroid Estimation forBistatic Forward-Looking SAR [J]. IEEE GRS Letters, March2011,8(2):379-383.
    [15] Shengli Dai, and Werner Wiesbeck.“The Imaging Mode of Forward Looking SARwith Two Receiving Antennas,” in Proc. IEEE IGARSS, Han Burg, Germany, Jun.9–13,1999, vol.3, pp.1433–1435
    [16] Shengli Dai, Min Liu and Werner Wiesbeck. The Latest Development of HighResolution Imaging for Forward Looking SAR with Multiple Receiving Antennas.In Proc. IEEE, GRS. Symp, IGARSS2001, July,2001, USA, pp.1433-1435.
    [17] Shengli Dai, and Werner Wiesbeck. System Configuration And Processing MethodFor Forward Looking SAR With Two Receiving Antennas. Proceedings of theInternational Symposium on Digital Earth,1999, USA, pp.1433-1435.
    [18] Shengli Dai. A new approach to achieve high azimuth resolution for forward-looking SAR. Proceedings of SPIE,2004, Bellingham, WA, vol.4135, pp.235-242.
    [19]黄源宝.机载合成孔径雷达成像算法及运动补偿的研究[D].西安:西安电子科技大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700