烷基二苯醚双磺酸钠的合成、性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂是一类具有亲水基和憎水基的双亲结构的化合物。其分子可通过弱相互作用力自组装成具有多种重要功能的各种有序分子组合体。烷基二苯醚双磺酸钠(ADPODS)是一类当前备受瞩目的新型多功能双亲水基型阴离子表面活性剂。
     本研究以脂肪醇和二苯醚为原料,采用烷基化—磺化—中和的合成路线,合成了一系列烷基二苯醚双磺酸钠表面活性剂(C_8-MADS,C_9-MADS,C_(16)-MADS),并通过IR、XRD等物理化学表征手段研究了它们的表面活性及胶团聚集体系的性能。同时,研究了C_(16)-MADS与Gemini酯基季铵盐表面活性剂(Ⅱ-12-n,n=3,4,6)组成的二元复配体系(C_(16)-MADS/Ⅱ-12-n)、以及C_(16)-MADS与十二烷基二甲基羟乙基氯化铵(K_3)和脂肪醇聚氧乙烯醚(AEO_9)组成的三元复配体系(C_(16)-MADS/K_3/AEO_9)时的复配性能,并考察此类表面活性剂在水溶液中的界面张力性能及其对皮肤的安全性能。
     1、采用成本相对低廉的中碳醇(C_8、C_9、C_(16))和二苯醚为原料,在浓硫酸催化下制备系列烷基二苯醚。然后采用发烟硫酸对其进行磺化,制备得到目标产物—系列烷基二苯醚双磺酸钠。通过对产物的表征分析,对其结构进行了鉴定,并对合成反应的影响因素进行了分析讨论,优化了合成条件。
     2、测定了所合成的系列烷基二苯醚双磺酸钠(C_8-MADS,C_9-MADS,C_(16)-MADS)的表面化学性能,结果表明:合成样品在质量分数高达10%的无机酸、无机碱及无机盐溶液中表面化学性能稳定,同时显示出优良的乳化性能和在硬水条件下较好的去污洗涤性能。
     3.复配体系具有降低表面张力效率的协同效应和形成胶团能力的协同效应。通过测定C_(16)-MADS与Ⅱ-12-n混合溶液的表面张力(γ),并作γ~1gc曲线,对C_(16)-MADS/Ⅱ-12-n复配体系的表面化学性质进行了研究。利用正规溶液理论计算出了复配表面活性剂组分分子间的相互作用参数β~σ和β~m,研究了其增效作用情况。
     结果表明随着混合溶液浓度的增大,临界胶束浓度cmc值和相应的表面张力γ_(cmc)值随之有显著的降低。C_(16)-MADS/Ⅱ-12-n复配体系显示出比单一表面活性剂更高的表面活性。
     4.通过对C_(16)-MADS/K_3/AEO_9复配体系的研究表明,正规溶液理论用来处理非理想溶液中二元表面活性剂的方法,在很大程度上适于处理C_(16)-MADS/K_3/AEO_9三元表面活性剂混合体系。方法是先确定二元体系(C_(16)-MADS/K_3)的相互作用参数,再按与第三种组分AEO_9组成新的二元混合体系来进行处理。C_(16)-MADS/K_3复配体系产生最大增效作用的摩尔比为0.33:0.67,即二者等电荷比;C_(16)-MADS/K_3与AEO_9复配体系产生最大增效作用的摩尔比为7:3。另外该方法在处理三元体系时仍存在着一定的缺陷,它不能用二元体系协同作用理论对三元复配体系进行全面的解释。
     5.首次以C_(16)-MADS为分散剂,将纳米ZnO分散于水和陶瓷釉料中。将1-6%比例的纳米ZnO分散于水和日用陶瓷釉料中,釉料的分散性和流动性良好,施釉后釉面不开裂,解决了釉料中加入纳米ZnO而产生的团聚问题。用含有纳米ZnO的釉料施釉后,烧成品的光泽度和显微硬度明显提高,并降低了烧成温度。
     6.首次在较高浓度条件下,通过对C_(16)-MADS与十六烷基三甲基溴化铵(CTAB)复配溶液性质的研究,得出以下结论:在常温下,C_(16)-MADS/CATB混合体系在适当的浓度下,可形成明显的双水相,且随两个组分的比例不同,其两相的体积比呈现规律性的变化。通过偏光显微测试,其混合溶液呈现明显的晶相结构。以C_(16)-MADS与CTAB为共模板剂合成新型分子筛,将产物进行XRD、N_2吸脱附和HTEM表征,结果显示:该分子筛具有类六方孔道的双介孔分子筛(MCM-41),孔径分别为2.2nm和3.9nm。形成的双介孔的可能机理为:由于C_(16)-MADS/CATB溶液体系形成双水相所致。在两相中两组分的浓度、两相的体积均不同。因此在溶液中形成两种分子聚集体,即形成两种胶团。在胶团结构的导向下,形成两种孔结构。另外,两相体积的不同造成两种聚集体胶团的比例不同。故最终形成两种不同尺寸的孔道分子筛,且两种孔道的比例亦不同,也无规律性地排列。
Surfactants are important molleculars with double affinity.By weak mutual-function force various sequencial molleculars can be self-assembled, which have multiple significant functions.Alkyl diphenyl ether sodium disulfonate(ADPODS)is a kind of multifunctional anionic surfactants with double hydrophilic groups.As a noval type of surfactants,it has attracted remarkbale attention nowadays.
     In this research,a series of MADS surfactants(C_8-MADS,C_9-MADS、C_(16)-MADS)were synthesized using fatty alcohol and diphenyl ether as raw materials with alkylation-sulfonation-neutralization synthetic route.The surface activity and properties of micelle aggregation system were characterized by IR and XRD method.The return-service characterstic of the binary and ternary mixed system of C_(16)-MADS and conventional surfactants were studied, including with esterquat Gemini surfantantsⅡ-12-n(n=3,4,6)and with polyethyl eneglycol(9)mono-dodecylether(AEO_9)and dodecyldimethyl hydroxyethyl ammonium chloride(K_3),labeled by C_(16)-MADS/Ⅱ-12-n and C_(16)-MADS/K_3/AEO_9 respectively.The interracial tension in aqueous solution and the biodegradation of these mixed surfactants were investigated as well.
     1.A series of alkyl diphenyl ether were synthesized with low cost raw materials,diphenyl ether and aliphatic alcohol,catalyzed by concentrated sulfuric acid,and followed by sulfonation to produce MADS.On the basis of analysis and characterization,structure of the products was identified,effect factors of the preparation reactions were investigated and the optimum reaction conditions were obtained.
     2.The surface chemical properties of C_8,C_9,C_(10)-MADS were determined. Experimental results indicated MADS posessed stable surface properties in inorganic acid、base or salt aqueous solutions even up to 10%mass percent.At the same time,MADS exhibited an excellent emulsifying power with a better decontamination and detergency power in hardwater than conventional sulfactants.
     3.The regular solution theory is entirely suitable according to the study of C_(16)-MADS/Ⅱ-12-n binary mixed system.The mixed system has synergism effect of reducing interfacial force efficency and forming micelle groups.Theγ~lgc curves was obtained by measuring interfacial force of C_(16)-MADS andⅡ-12-n aqueous solution.Thus the surface chemical properties of the system was studied.The intermolecular interaction parameters(β~σandβ~m)of surfactants were calculated through the orthodox solution theory,and the enforcement function was also researched.
     Results showed that critical micelle concentration(cmc)and the corresponding surface tension(γ_(cmc))decreased significantly along with the increase of solution's concentration.The C_(16)-MADS/Ⅱ-12-n mixed system revealed a higher surface activity than the single surfactant.
     4.Research on the C_(16)-MADS/K_3/AEO_9 showed that the method of processing binary surfactants in unperfect solutions with orthodox solution theory was mostly applicable to the tertary surfactants such as C_(16)-MADS/K_3/ AEO_9 system.Details were to determine the interaction parameter of the binary system(C_(16)-MADS/K_3),then to process the new binary system by mixing with the third ingredient AEO_9.The mole ratio when C_(16)-MADS/K_3 system could make greatest enforcement was 0.33:0.67,that was when they had equal electricity ratio,while the ratio of C_(16)-MADS/K_3/AEO_9 system was 7:3. However,the method was not so perfect when applied in tertary system for it couldn't give a fully explaination with the cofunction theory in binary system.
     5.Using C_(16)-MADS as dispersant for the first time,nano ZnO was dispersed in the water and the ceramic glaze.The domestic ceramic glaze dispersed with 1-6%of nano ZnO showed good dispersibility and liquidity.The dehiscence had not appeared on the glazed ceramic surface after being doped, thus the bottleneck problem of nano ZnO agglomerating was solved.The glossiness and microhardness of the ultimate product was improved obviously, while the calcine temperature was decreased.
     6.In the high concentration,the C_(16)-MADS/CTAB solution had such properties that double aqueous phase would be formed apparently under a suitableconcentration,and volume ratio of the two phase showed disciplinary changes with different ratio of the two ingredients.Polarizing microscope determination showed the mixed solution had a obvious crystal phase structure. Mesoporous molecular sieves were furtherly synthesized using C_(16)-MADS and CTAB as templates.XRD,N_2 adsorption-desorption and HTEM characterization of the obtained samples showed that the obtained samples had structures similar to MCM-41 of two different mesoporous with pore diameters 2.2nm and 3.9nm. Mechanism of the two mesoporous may be atribute to the formation of double aqueous solution in the C_(16)-MADS/CATB system.The difference of the concentration and volume of the two ingredients in the two phases resulted in the formation of two molecular congeries,and two pore structures were formed induced by the two kinds of micelle group structure.Besides,volume difference of the two phase caused the ratio difference of the two micelle congeries,thus the two molecular sieves would have different size with different ratio and unregular disposion.
引文
[1]牛金平,董万田,韩向丽.烷基二苯醚双磺酸盐类表面活性剂的多功能性和应用前景[J].日用化学品科学,2002,25(3):39-41.
    [2]赵剑曦.新一代表面活性剂:Geminis[J].化学进展,1999,11(4):348-357.
    [3]杨秀全.可裂解的表面活性剂[J].日用化学品科学,2000,23(6):1-2.
    [4]Holmberg K.Polymable surfactants[J].Progress in organic coatings,1992,20:325-327.
    [5]牛金平.新型表面活性剂的结构特点与物化性能[J].日用化学品科学,2000, 23(2):1-4.
    [6]Dawe Bob,Oswald Tom.Reduced adsorption and separtion of blended surfactants on sand and clay[J].J Can Pet Technol,1991,30(2):133-137.
    [7]Dawe Rober,et al.Gas-drive petroleum recovery using alkylated diphenyl oxide—based mobility control agents and foam forming amphother betaine and sultaine surfactants[P].美国专利,5203411,1993-04-20.
    [8]J D Rouse,et al.Minimizing surfactants losses using twin-head anionic surfactants in subsurface remediation[J].Environ Technol,1993,27:2072.
    [9]Bin Wu,et al.Alcohol-free dipenyl oxide disulfonates middle-phase micro-mulsion systems[J].J Surf and Detg,2000,3(4):465-473.
    [10]S Kokkle-Hall,et al.Evaluation of alkylated diphenyl oxide disulfonates as hydrotropes in cleaning formulations[A].4th World Surfactants Conference [C].Barcelona,1996:192-199.
    [11]徐寿昌.有机化学(第二版)[M].北京:高等教育出版社,1993,130-131.
    [12]Lisa Quencer,T J Loughney.Detergency properties of alkylated diphenyl oxide disulfonates[M].FloydE.Friedli Deter gency of speciality suffactants [M].NewYork:MarcelDekker,INC,2001,145-165.
    [13]J D Weaver,et al.Supported fluorocarbonsulfonic acid catalyst[J].Catalyst Today,1992,14(2):195-209.
    [14]刘杨,邸进申.Friedel-Crafts反应催化剂的研究进展[J].精细石油化工,2001,6:19-22.
    [15]韩雪,郭亚军,吴伟.负载型Lewis酸催化剂的制备与应用进展[J].石油化工,2006,35(1):88-93.
    [16]黄向红,曹高库,陈燕.膨润土上负载AlCl_3固体酸催化剂的制备[J].工业催化,2001,9(2):24-26.
    [17]陈其凤,王鼎聪,赵杉林等.固体超强酸催化剂及其在异丁烷/丁烯烷基化中的应用研究进展[J].工业催化,2006,14(10):15-20.
    [18]申凤善,彭军,孔育梅,等.杂多酸催化剂在烷基化反应中的研究进展[J].分子科学学报,2006,22(2):28-31.
    [19]李会鹏,刘传宾,高军.固载杂多酸催化剂研究进展[J].河南化工,2006,23(4):8-10.
    [20]刘祥.固体超强酸催化合成十二烷基二苯醚磺酸盐[J].四川化工,2004,10(4):10-13.
    [21]寇元,朴玲钰,付晓等.一种合成直链烷基的方法[P].CN1524839A.
    [22]朴玲钰,韩扬,寇元.二苯醚烷基化反应中酸性离子液体的循环使用[J].物理化学学报,2004,20(9):1083-1088.
    [23]王鹏,高金森,王大喜等.离子液体催化烷基化反应的研究进展[J].分子催化,2006,20(3):278-283.
    [24]徐军,许虎君,黄辉等.十二烷基苯醚磺酸盐的合成与表面性能研究[J].日用化学品科学,2000,23(增刊1):71-72.
    [25]金燕.用APCI/ESILC/MS跟踪烷基二苯醚磺化反应[J].质谱学报,2001,22(1):15-20.
    [26]苏瑜,马德浮,薛仲华.十二烷基二苯醚二磺酸钠的合成[J].精细化工,2002,19(8):443-445.
    [27]许芳萍,方银军,高慧等.烷基二苯醚双磺酸盐的合成与性能[J].江南大学学报(自然科学版),2006,5(2):216-219.
    [28]L B Quencer,et al.The detergency propertiesof mono and disufonated diphenyl oxide surfactants[A].4th World Surfactants Conference[C].Barcelona,1996:192-199.
    [29]梁金龙,许虎君,奚文红等.烷基二苯醚二磺酸钠与普通离子型表面活性剂的复配研究[J].日用化学工业,2005,35(1):1-5.
    [30]许虎君,吕春绪,叶志文等.十六烷基二苯醚双磺酸钠溶液状态的研究[J].2004(第八届)国际表面活性剂和洗涤剂会议.
    [31]杨福廷.十二烷基二苯醚二磺酸钠预处理对脱墨浆漂白的影响[J].精细化工,2005,22(Z):40-42.
    [32]杨福廷.十二烷基二苯醚二磺酸钠对棉短绒NaOH-H202制浆的影响[J].精细化工,2005,22(Z):43-45.
    [33]杨福廷.聚乙二醇型非离子表面活性剂对纸上油墨增溶作用的研究[J].精 细化工,1990,7(4,5):45-51.
    [34]周建红,王栋,周集体.表面活性剂在分离技术中的应用[J].日用化学工业,2005,35(2):97-100.
    [35]李奠础,马建杰,曹毅轩,李瑞丰,王志忠.表面活性剂在陶瓷工业中的应用[J].日用化学工业,2005,35(5):309-313.
    [36]邓丽,吉捷,蒋惠亮,等.表面活性剂工业应用新探—制备超细碳酸钙[J].日用化学工业,2002,32(5):14-16.
    [37]张巨先,高陇桥,李发.包覆型陶瓷粉体的研究进展[J].硅酸盐通报,2000(2):53-55.
    [38]刘茜,高濂,严东生.无团聚SiC粒子复合Sialon陶瓷[J].无机材料学报,1996,11(2):281-285.
    [39]周吉高,李包顺,黄校先等.纳米氧化锆粉体的表面改性研究[J].无机材料学报,1996,11(2):237-240.
    [40]Zhu Y W,Hen X Q,Feng Z J,et al.Study on the dispersion of nanodiamond aggregates[J].Key Engineering Materials Vols,2004,259-260:78-81.
    [41]郝保红,郑水林,毛钜凡.粉石英细磨过程中的团聚现象[J].粉体技术,1997,3(4):6-11.
    [42]潘志东,李竟先,鄢程.表面活性剂在陶瓷超细粉制备中的应用[J].陶瓷学报,2001,22(4):263-267.
    [43]胡永平.白土矿物超细磨中的助磨剂的研究[J].化工矿物与加工,1996,3:24-26.
    [44]刘志国.建筑卫生陶瓷釉料添加剂[J].山东陶瓷,2003,26(5):17-19.
    [45]马建中,储芸,高党鸽.表面活性剂在纳米材料领域中的应用[J].日用化学工业,2004,34(6):374-376.
    [46]沈钟,赵振国,王果庭.胶体与表面化学(第三版)[M].北京:化学工业出版社,2004:94-106.
    [47]刘阳,胡晓力,汪永清等.表面活性剂在陶瓷釉料中的应用[J].中国陶瓷,2001,37(3):23-26.
    [48]刘宣勇,苏文强,钱端芬等.陶瓷粉料在液体介质中分散的稳定机制[J].陶 瓷工程,1999,33(1):52-55.
    [49]Liang W,Bognolo G,Tadros Th F.Stability of dispersions in the presence of graft copolymer.1.Adsorption of graft copolymers on latex dispersions and the stability and rheology of the resulting dispersions[J].Langmuir,1995,11(8):2899-2904.
    [50]仝建峰,陈大明,陈宇航,等.纳米陶瓷复合材料制备工艺中nano-SiC与基体AL_2O_3粉末的均匀分散[J].硅酸盐通报,2000(3):24-27.
    [51]Joseph C,Ilhan A A.Processing of highly concentrated aqueous α-alumina suspensions stabilized with polyelectrolytes[J].J Am Ceram Soc,1988,71(12):1062-1067.
    [52]Jean J H,Wang H R.Dispersion of aqueous barium titanate suspensions with ammonium salt of poly(methacrylic acid)[J].J Am Ceram Soc,1998,81(6):1589-1599.
    [53]杨静漪,李理,蔺玉胜等.纳米ZrO_2水悬浮液稳定性的研究[J].无机材料学报,1997,12(5):665-669.
    [54]郭小龙,陈沙鸥,潘秀宏.SiC和Si_3N_4纳米颗粒分散中的介质因素[J].陶瓷工程,2001(2):6-9.
    [55]王昕,尹衍升,李镇江等.溶胶-悬浮液混合制备ZrO_2(n)-AL_2O_3纳米复合陶瓷[J].化工学报,1999,50(3):362-366.
    [56]侯耀永,李理,杨静漪等.高分散高稳定a-AL_2O_3和纳米SiC单相及混合水悬浮液的制备[J].硅酸盐学报,1998,26(2):171-176.
    [57]沈一丁,李小瑞.陶瓷添加剂[M].北京:化学工业出版社,2004:44-48.
    [58]应皆荣,万春荣,姜长印等.聚乙二醇对无机盐的胶束增溶作用及在溶胶配制中的应用[J].功能材料,2001,32(2):118-120.
    [59]德鲁·迈尔斯(Drew Myers).表面、界面和胶体——原理及应用[M].吴大诚,朱谱新,王罗新等译.北京:化学工业出版社,2005:176-184.
    [60]刘旭俐,马峻峰,唐竹兴,等.氧化锆陶瓷注凝成型研究[J].硅酸盐通报,2000(3):32-35.
    [61]徐如人,庞文琴,于吉红等.分子筛与材料化学[M].北京:科学出版社, 2004:649-650.
    [62]Kresge C T,leonowicz M E,Roth W J,et al.Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359:710-712.
    [63]Beck J S,Vartuli J C,Roth W J,et al.A new family of mechanism-sieves prepared with liquid-crystal template[J].Am Chem.Soc,1992,114:10834-10843.
    [64]Tuli J C,Schmith K D,Kresge C T,et al.Development of a Formation Mechanism for M41s Materials[J].Zeolites and Related Microporous Mater:State of the Art,1994:53-60.
    [65]Vartuli J C,Kresge C T,Leonowecz M E et al.Synthesis of mwsoporous matenials liquid-crysted templating versus Intercalation of Layered Silicates [J].Chem Mater,1994,6:2070-2077.
    [66]Huo Q S,Margolese D I,Ciesla V etc.Generalized Synthesis of Periodic Surfac- tant Inorganic Composite-Materials[J].Nature,1994,368:317-321.
    [67]高川波,车顺爱.以阴离子表面活性剂为模板剂的二氧化硅介孔材料(AMS)[J].石油学报(石油加工),2006,22(z1):22-32.
    [68]Wei Wenlong,Bai Yadong,Li Dianchu,et al.Synthesis research of alkyl diphenyl ether sulphonate[J].China Surfanctant Detergent & Cosmetics,2006,36(3):196-198.
    [69]Koudelka L,Horak J.Morphology of polyerystalline ZnO and its physical properties[J].J Mater Sci,1994,29:1497-1499.
    [70]Chttofrati A,Matiffevic E.Uniform particles of zinc oxide of different morphologies[J].Colloid Sand Surfaces,1990,48:65-67.
    [1]M Ye R Walkup,K Hill.Determination of alkylaed and sulfonated diphenyl oxide surfactant by high perfomamce liquid chromatography[J].Liq chrom &technol,1996(8):1229-1240.
    [2]陈波.新型固体酸催化剂的设计、制备及其在烷基化反应中应用研究[D].华东师范大学,2004,5.
    [3]Chevalier S,Franck R,Suqet H,etal.Al-pillared Saponite,Part Ⅰ-IR Studies[J].J Chem S℃ Faraday Trans,1994,90(4):667-674.
    [4]http://www.hg001.com/hgbase/f/fk.htm
    [5]李希章,钱建华.芳香族亲电取代反应的研究[J].石油化工高等学校学报(自然科学版),1995,3(8):1-5.
    [6]Jennifer A Field,Thomas E Sawyer.High-performance liquid chromatography-diode array detedtion of trichloroethene and aromatic and aliphatic anionic surfactants used for surfactant-enhanced aquifer remediation[J].Journal of Chromatography A,2000,893:253-260.
    [7]王问波,刘玉芬,申书昌.表面活性剂使用仪器分析[M].北京:化学工业出版社,2003,8:283-313.
    [1]刘程.表面活性剂应用手册(第二版)[M].北京:化学工业出版社,1994:12-20.
    [2]方云,夏咏梅.表面活性剂的安全性和温和性[J].日用化学工业,1998(6):22-27.
    [3]A Dom Sch,B Irrgang,C.Mollor Mild.Surfactants-Are They Really Possible[C].Proceedings of 96' International Seminar of Surfactants and Detergents (Nanjing),1996:84.
    [4]乔斯卢,斯伯纳,华章熙.表面活性剂生物降解性和环境安全性[J].日用化学品科学,25(4):11-13.
    [5]http://oem.prccn.com/中国国际美容网.2005年10月18日.
    [6]郭丽梅.双烷基二苯醚二磺酸钠的制备与性能[J].皮革化工,2006,23(6):25-29.
    [7]徐军,许虎君,黄辉等.十二烷基苯醚磺酸盐的合成与表面性能研究[J].日用化学品科学,2000(S1):1-5.
    [8]秦玉慧.化妆品管理及安全性和功效性评价[M],北京:化学工业出版社,2007:132-150.
    [9]谢勇,盛国荣.祛白酊动物安全性试验[J].天津药学,2001,8,13(4):33-34.
    [10]李仪奎.中药药理实验方法学[M].上海:科学技术出版社,2004.180-210
    [11]朱亚丽,盛国荣.复方咪康唑乳膏动物实验研究[J].海峡药学,2005,17(6):59-60.
    [12]Ru-Dong Wei,E B Smalley,F M Strong.Improved Skin Test for Detection of T-2 Toxin[J].Applied and Environmental Microbiology,1972,23(5):5-10.
    [13]顾亚凤.蝇蛆油对实验动物皮肤的刺激性、过敏性及烫伤治疗药效研究[J].中国兽药杂志,2004,38(10):16-17.
    [1]Holand P M.Rubingh D N.Mixed surfactant systems[M].ACS Symposium Series:Vol.501.Washington,DC:Am Chem Soc,1992:274-278.
    [2]邹利宏,方云,吕栓锁.阴-阳离子表面活性剂复配研究与应用[J].日用化学工业,2001(5):37-38.
    [3]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003,344-438.
    [4]Clint J H.Micellization of mixed nonionic surface active agents[J].Joumal of the chemical society,Faraday transactions,1975,71:1327-1334.
    [5]Rubingh D N.Solution Chemistry of Surfactants[M].New York:Plenum Press,1979
    [6]Li F,Milton J.Rosen,Sulthana S.B.Surface properties of cationic Gemini surfactants and their interaction with alkylglucoside or maltoside surfactants[J].Langmuir,2001,17(4):1037-1042
    [7]赵国玺.表面活性剂物理化学.修订版[M].北京:北京大学出版社,1984,66-78
    [8]梁金龙,许虎君,奚文红等.烷基二苯醚二磺酸钠与普通离子型表面活性剂的复配研究[J].日用化学工业,2005,35(1):1-5.
    [9]Rosen M J,SULTHANA S B.The interaction of alkylglycosides with other surfactants[J].Journal of Colloid and Interface Science,2001,239(2):528-534.
    [10]Rosen,M.J.Surfactants and interracial phenomena,2th ed.[M],New York:John Wiley & Sons Inc,1988:207.
    [I1]Tsubone K.The interaction of an anionic Gemini surfactant with conventional anionic surfactants[J].Joumal of Colloid and Interface Science,2003,261(2):524-528
    [12]赵剑曦等.AESA与C10TABr混合水溶液的表面吸附和胶团化形象[J].物理化学报,2005,21(8):939-943.
    [13]王正武,李干佐,刘俊诚等.非理想二元表面活性剂复配增效理论的进一步研究[J].化学物理学报,2001,14(4):426-432.
    [14]李伟,刘方方,张向彬.C_(12)BE-SDS-TX-10三元表面活性剂非理想溶液复配增效作用[J].应用化学,2006,23(8):907-912.
    [15]丁振军,许虎君,梁金龙等.C_(16)-MADS与K_3复配性能研究[J].印染助剂,2007,24(3):19-22.
    [1]Mikrajuddin,Iskandar,F.okuyama,K.Stabphotoluminescenceof Zinc oxide quan tum.Dots in silica nanoparticles matrix prepared by the combined sol-gel and spray drying method[J].Applied Physics,2001,89(11):64-31.
    [2]Kirk-Othmer.Encyclopedia of Chemical Technology,3Ed.Vol,24.
    [3]Makoto,Shiojiri.Structure and growth of ZnO smoke particles prepared by gas evaporation technique[J].Journal of crystal growth,1981(52):173.
    [4]Yoshinaka,Asakura Misaki etal.Zinc oxide whiskers having a novel crystalline form and method for making same[P].美国专利,US5066475,1991.11.19.
    [5]Koudelka L,Horak J.Morphology of polyerystalline ZnO and its physical properties[J].J Mater Sci,1994,29:1497-1499.
    [6]Chttofrati A,Matiffevic E.Uniform particles of zinc oxide of different morphologies[J].Colloid Sand Surfaces,1990,48:65-67.
    [7]牛金平.新型表面活性剂的结构特点与物化性能[J].日用化学品科学,2000,23(2):1-4.
    [8]毋伟,陈建峰,卢寿慈,超细粉体表面修饰[M],北京,化学工业出版社,2004,251-257.
    [9]张喜梅,陈玲,李琳.等.纳米材料制备研究现状及其发展方向[J],现代化工,2000,20(7):13-16.
    [10]杨静漪,李理,蔺玉胜.等.纳米ZrO_2水悬浮液稳定性的研究[J].无机材料学报,1997,12(5):665-669.
    [11]刘雪宁,杨治中,表面改性的纳米氧化锌的制备及其吸收特性[J],物理化学学报,2000,16(8):746-748.
    [12]钱军民,李旭祥,黄海燕.纳米材料的性质及其制备方法[J],化工新型材料,2001,29(7):41-43.
    [13]Maganunibl,Smish C,Risbud L..ZnO nanoparticles embedded in polymerize matrices[J],Nanostructured Materide,1996,7(6):659.
    [14]刘大成,粉体团聚及解决措施[J],中国陶瓷,2000,36(6):33.
    [15]李奠础,马建杰,王娟丽,表面活性剂在无机材料工业中的应用[J],山西化工,2005(25)4,25-28.
    [16]荀金龙.纳米材料在纺织浆料中的应用[J],2001功能性纺织品及纳米技术应用研讨会论文集,北京:北京纺织工程学会:63.
    [17]J.F.Kelso et al.Efect of Powder surface Chemistry on stability of Concentrated Aqueous Dispersions of Alumina[J],Journal of the American Ceramics Society, 1989,72(4):625-627.
    [18]王娟丽,李奠础,马建杰.等.纳米ZnO水悬浮液稳定性的研究[J],化工时刊,2006,20(6):20-22.
    [19]Veronique Peyre,Oliver Spalla,Luc Belloni etal.Compression and Reswelling of Nanometric Zirconia Dispersions:Efect of Surface Complexants[J].Journal of the American Ceramics Society,1999,82(5):1121-1128.
    [20]Gong hou wang,Partho Sarkar and Patrick S.Nicbolson etal.Surface Chemistry and Rheology of Electrostatically(Ionically)stabilized Alumina Suspensions in Polar Organic Media[J].Journal of the American Ceramics Society,1999,82(4):849-856.
    [21]H.D.Bijsterbosch,M.A.Cohen Stuart,and G..J.Fleec Adsorption of Graft Copolymers onto Silica and Titania[J].Macromolecules,1998,31:8981-8987.
    [22]酒金婷,李春霞,王彩凤,等.纳米氧化锌在水中的分散行为及其作用[J].印染,2002(1):1-3.
    [23]沈钟,王果庭.胶体与表面化学[M].北京:北京大学出版社,2001:80-83.
    [24]姚志钢,李干佐,董凤兰,等.Gemini表面活性剂合成进展[J].化学进展,2004,16(3):249-363.
    [25]Chou Kansen,Lee Lijun.Effect of dispersants on the rheological properties and slip casting of concentrated alumina slurry[J].J Am Ceram Soc,1989,72(9):1622-1627.
    [1]李奠础,马建杰,王娟丽.表面活性剂在无机材料工业中的应用[J].山西化工,2005,4(25):25-28.
    [2]徐军,许虎君,黄辉,等.十二烷基苯醚磺酸盐的合成与表面性能研究[J].日用化学品科学,2000,23(Z1):1-5.
    [3]李家驹,陶瓷工艺学[M].北京:中国轻工业出版社,2001.89-97.
    [4]李奠础、王娟丽、马建杰,等.纳米ZnO在陶瓷釉料中的分散性研究[J].石油学报(石油加工),2006,22(Z):241-244.
    [5]时刻,黄英,廖梓珺.纳米功能陶瓷的研究与应用[J].中国陶瓷,2005,(01):20-21.
    [6]宋晓岚,杨振华,邱冠周,等.纳米陶瓷及纳米陶瓷粉体的制备[J].陶瓷科学与艺术,2003,(02):43-47.
    [7]陈景雨.陶瓷工业过程及设备[M].北京:中国轻工业出版社,2000.128-146.
    [8]林冠发.纳米陶瓷材料及其制备与应用[J].陶瓷,2002,(05):18-21.
    [9]李涛.纳米陶瓷粉体的应用分析[J].佛山陶瓷,2004,(08):5-7.
    [10]徐研,高雅春,李美霞.新型大红陶瓷色料的研制[J].陶瓷,2006,(04):24-27.
    [11]杨洁,张勇,易志慧.等.陶瓷印油表面张力变化的研究[J].中国陶瓷,2006,42(04):32-35.
    [12]侯耀永,李理,杨静漪.等.高分散高稳定α-Al_2O_3和纳米SiC单相及混合水悬浮液的制备[J].硅酸盐学报,1998,(02)
    [13]杨金龙,谢志鹏,汤强等.α-Al_2O_3悬浮体的流变性及凝胶注模成型工艺的研究[J].硅酸盐学报,1998,(01).
    [14]李涛.纳米陶瓷粉体的应用现状与展望[J].矿产保护与利用,2004,(03):52-54.
    [15]张秦娟.陶瓷工艺学[M].北京:武汉理工大学出版社,1998.128-155.
    [16]郝保红,郑水林,毛钜凡.粉石英细磨过程中的团聚现象[J].粉体技术,1997,3(4):6-11.
    [17]Chou Kansen,Lee Lijun.Effect of dispersants on the rheological properties and slip casting of concentrated alumina slurry[J].J Am Ceram Soc,1989,72(9):1622-1627.
    [18]Riccardo Ricceria,Silvia Ardizzoneb.Ceramic Pigments Obtained by Sol-gel Techniques and by Mechanochemical Insertion of Color Centers in Al_2O_3 Host Matrix[J].Journal of the European Ceramic Society,2002,(22):629-634.
    [19]Richard A Eppler.Kinetics of Formation of an Iron-zircon Pink Colour[J].J Am Ceram Sci.1979,62(1):47-49.
    [20]Kunio Esumi,Akihiro Toyoda,Adsorption characteristics of cationic surfactants on titanium dioxide with quatemary ammonium groups and their adsolubilization[J],Jourmal of Colloid and Interface Science,1998,202:317-384.
    [21]Koudelka L,Horak J.Morphology of polyerystalline ZnO and its physical properties[J].J Mater Sci,1994,29:1 497-1499.
    [22]Chttofrati A,Matiffevic E.Uniform particles of zinc oxide of different morphologies[J].Colloid Sand Surfaces,1990,48:65-67.
    [23]林冠发.纳米陶瓷材料及其制备与应用[J].陶瓷,2002,(05):18-21,
    [24]时刻,黄英,廖梓珺.纳米功能陶瓷的研究与应用[J].中国陶瓷,2005,41(01):20-23.
    [25]刘大成.粉体团聚及解决措施[J].中国陶瓷,2000,36(6):33.
    [1]http://www.21jxhg.com/chzj/jczs/200701/20062.shtml.
    [2]Monnier A,Schuth F,Huo QS,et al.Coperative Formation of Inorganic-organic Interfaces in the Syn-thesis of Silicate Mesostrures[J].Science,1993,14(13):1299-1302.
    [3]Ulagappan N,Rao CR N.Mesopprous phases based on Sno_2 and TiO_2[J].Chem Commun.1996:1685-1686.
    [4]周莉,汤皎宁,黄成,等.SDS/CPC混合表面活性剂双水相体系[J].深圳大学学报理工版.2007,1,24(1):59-63.
    [5]Water H,Johansen G,Brools D E,Anal.Biochem,1991,197,1.
    [6]Albertsson P-A,Partition of Cel Particles and Macrpmoleculds,Wiley Inter-science[M].New York,1986.
    [7]Haiqing Yin,Min Mao,Jianbin Huang,et al.Two-Phase region in the DTAB\SL mixedsurgactant system[J].Langmuir.2002.18:9198-9203.
    [8]Hu Song-qing,LI Lin,GUO Ai-yuan,et al.Advanes in aqueous two-phase extraction[J].Modern Chemical Industry,2 004(6):22-23(in Chinese).
    [9]Xian Jin-xin,Zhao Guo-xi.Phase bshavior of aqueous mixtures of cationic-artionic surfactants[J].Acta Physico-chimica Sinica,1995,9:815-823(in Chinese).
    [10]Wang Zhi-hua,Ma Hui-min,Ma Quan-li,et al.Study on two-phase aqueous extraction system[J].Chinese Journal of Applied Chemistry,2001,18(3):173-175(in Chinese).
    [11]Chen D H and Hall D G,Kolloid-Z.Z.Polym,1973,251,41.
    [12]Barnes H A,Eastwood A R,and Yaters B,rheol.Acta,1975,14,53.
    [13]Barker C A,Saul D,Tiddy G J T,Wheeler B A,and Willis E,J.Chem.Soc.Faraday Trans.1974,70,154.
    [14]Kaler E W,Hurrington K L,Murthy A K,et al,.J.Phys.Chem,1992,96,6698.
    [15]Hreeington K L,Kaler E W,Miller D D,et al.J.Phys.Chem,1993,97,13792.
    [16]Zhao G X and Xiao J X,J.Colloid Inteff.Sci,1996,177,513.
    [17]Tong A J,Wu Y,Tan S D,LiL D,et al.Anal.Chinica Acta,1998,369,11-16.
    [18]童爱军,王珊,周晓芬,等.分析化学[M].1998,26,5,535-537.
    [19]高莹,郑用玺.化学学报,1996,54,504-510.
    [20]滕弘霓.博士论文:十二烷基硫酸钠/十六烷基三甲基溴化铵/水混合系统双水相性质的研究.2001.4.20.
    [21]黄艺雄,姜蓉,赵剑曦,等.含成分的正负离子表面活性剂混合体系的双水相[J].精细化工,2005,12,22(增):100-103.
    [22]Sivars U,Bergfeldt K,Piculell LProtein partitioning in weakly charged polymer-surfactant aqueous two-phase systems[J].J.Chromatography B,1996,680:43-53.
    [23]Guan Y,Lilley T H,Garcia-Lisbona M N,Treffy T E,New approaches aqueous polymer systems:Theory,thermodynamics and applications to biomolecular separations[J].Pure and Appl.Chem.1995,67(6):955-962.
    [24]Liu C L,Kamei D T,king J A,Wang D I C,Blankschtein D.Separation of proteins and viruses using two-phase aqueous micellar systems [J].J.Chromatography B,1998,711:127-138.
    [25]Zhao G X,Xiao J X,Aqueous two-phase systems of the aqueous mixtures of cationic-anionic surfactants[J].Journal of colloid and interface science,1996,177:513-518.
    [26]Teng H N,Meng L,Liu N H,Liu H L.Phase Behavior of SDS-CTAB-H_2O-NaBr System[J].Huadong Ligong Daxue Xuebao,2002,28(2):200-2003.
    [27]滕弘霓,孙艳芝,周帆,等.化学研究与应用[J].2002,14(6):689-692.
    [28]Patist A,Chabra V,Pagidipati R,Shah R,Shah D O.Effect of chain length compatibility on micellar stability in sodium dodecyl sulphate/alkytrimethyl ammonium bromide solution[J].Langmuir,1997,13;432-434.
    [29]Birrell G B,Arch.Biochem.Biophys.1976,172,455..
    [30]Tardieu A,Luzzati V,and Reman F C,J.Mol.Biol,1973,75,711.
    [31]Goralczyk D,J.Collid Interf.Sci,1980,77(1),68.
    [32]王红霞.博士论文:表面活性剂溶液相行为的流变性研究.中国日化所,1997.7.
    [33]李刚桑,王红霞.流变方法研究液晶体系中苯乙米的聚合[J].日用化学工业,2006,10,36(5):273-276.
    [34]滕弘霓.博士论文:十二烷基硫酸钠/十六烷基三甲基溴化铵/水混合系统双水相性质的研究.2001.4.20.
    [35]Beck J S,Vartulli JC,Roth WJ,et al.A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates[J].Jam.Chen.Sco,1992,23(114):10835-10839.
    [36]沈绍典.博士论文:多头季铵盐表面活性剂导向下新结构介孔分子筛的合成与表征.2003,5,10.
    [37]Pindzala,B.A.,Jin,J.,G in,D.L.J.Am.Chem.Soc.2003.
    [38]Firouzi,A.Kumar,D.Bull,L.M.Besier,T.Sieger,P.Huo,Q.Walker,S.A.Zasadzinsky,J.A.Glinka,C.Nicol,J.Margolesse,D.Stucky,G.D.Chmelka,[J].B.F.Science1995,267,1138.
    [39]牛金平,董万田,韩向丽.烷基二苯醚双磺酸盐类表面活性剂的多功能性和应用前景[J].日用化学品科学,2002,25(3):39-41.
    [40]梁金龙,许虎君,奚文红,等.烷基二苯醚二磺酸钠与普通离子型表面活性剂的复配研究[J].日用化学工业,2005,35(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700