铁电材料非线性力电耦合关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪是新技术和新材料飞速发展的世纪。随着计算机技术、通讯技术、生物技术以及微电子技术等的日益发展,人们对组成各个系统与结构的基本部分的性能提出了新的要求,不仅要求材料可靠与安全,更希望材料能根据其周围环境的变化来调整自身的某些参数以达到最优化的要求。关于“智能材料与结构”的研究正顺应这一趋势而蓬勃发展起来。铁电材料不仅是重要的电子功能材料,而且被认为是最有应用前景的智能基础材料。人们虽然对铁电现象很早就有了认识,但对其基本性能的认识还远未完善,对材料的微结构、疲劳、损伤、断裂、破坏失效的机理也不十分明了,迫切希望进行更深入、更全面的了解。本论文就是针对铁电材料的非线性力电耦合性能进行研究与分析,以期能对其本构关系作出简单明确的描述,为铁电元器件的材料设计、结构分析及寿命估计等提供依据。
     本文主要进行了以下研究工作:
     ①提出了新的铁电材料力电耦合模型,以描述复杂的力电耦合效应。其工作包括:
     ——在分析铁电材料电畴翻转基本特征的基础上,引入电畴的“连续翻转”模型,克服了“完全反转”假设对铁电特性描述的局限性,使电畴翻转模型的物理意义更为明确。
     ——建立了以电畴翻转时的体积分数增量为中心的,基于铁电畴壁运动特性的剩余应变及电位移的增量形式的演化方程,在其中包含有材料参数、畴壁运动、电畴形式、电畴体积分数及基体与夹杂、夹杂与夹杂等相互间能量作用等影响因素。
     ——依据晶体塑性理论,将铁电材料中的电畴翻转类比于晶体位错滑移面上的滑移系,定义铁电材料中相应的电畴反转系;采用电畴的体积分数表述电畴翻转的变化量,得到了电畴翻转的饱和特性的简单描述。
     ②初步提出了跨多尺度的铁电陶瓷材料的力电耦合分析方法,得到与实验结果相符合的铁电陶瓷本构行为的计算结果。主要内容包括:
     ——建立基于铁电材料微结构的夹杂单元体的均匀化方法,不但将材料的宏、细观力电响应关系连接起来,而且将材料细/微观结构的几何及材料特性与材料的宏观性能相统一,使对铁电多晶材料的损伤、疲劳及破坏等的研究更直接有效。
     ——通过采用基于Hill理论的扩展的自洽计算方法,将其从一般多晶材料、复合材料的纯力学性能描述,扩展到具有力电耦合的复杂情况,建立其整体迭代和局部迭代的计算方法,得到铁电多晶材料的非线性力电耦合关系的描述。
    
    重庆大学博士学位论文
    ③应用提出的模型与方法,针对层状微结构铁电材料的具体特点,进行了计算与
    分析,包括:
     建立了层状铁电材料的力电场边界条件,推导出在外加力电场作用下的各层
    材料的局部力电响应的表达关系。
     对各层材料的体积百分比及相对弹性模量对材料整体性能的影响进行了计算
    与分析。
     分析了不同空间取向分布的铁电夹杂体,获得了其等效应力及等效应变的分
    布情况与演化关系,指明因夹杂的空间分布而引起的非均匀性因素对损伤与破坏
    的影响。
    ④发展了能采用多轴加载方式的计算程序。该程序不仅适用于四方—立方结构
    相变的钙钦矿型铁电材料,而且通过简单修改,就可应用于其它结构相变形式的
    铁电材料电畴翻转的描述之中。
New technology and advanced materials are developing rapidly in the 21st century. With the development of computer, communication, biology and microelectronic technology, people now expect a common system and structure with moderate activity or intelligence to adapt itself to the changes of its surroundings. This is known as "Smart or Intelligent Material and Structure". Ferroelectric materials are not only vital electronic functional materials, but are thought of as the most interesting and promising intelligent materials of the future. Though ferro-electricity was recognized in the early 1920's, people still do not clearly understand even its basic characteristics and microstructure because descriptions of the behavior of ferro-electric ceramics remain in their infancy. The mechanism of damage, fatigue, crack and fracture of ferro-electrics should be studied more concretely not only in theory but also in application. The purpose behind this thesis is to study the nonlinear electro-mechanical coupling perfo
    rmance, and to have relatively simple yet substantial constitutive relations of ferro-electrics, that can eventually provide guidance for material design, sensor or actuator structural analysis and life expectancy for ferro-electric structure and system. The main work and result of this dissertation include the following aspects: (1) A new mechanical-electric model of ferro-electric materials is proposed to describe the complicated electromechanical coupling phenomena.
    _Based on the domain switching behavior of ferroelectrics, a model of "Successive
    Switching" for ferroelectric domains is introduced. This may help to avoid some of the intrinsic limitations of the "Complete Switching" hypothesis, and be a more physical representation.
    _Incremental form of evolution law of domain switching is developed by taking the
    volume fraction of domains as key intrinsic factors. The main factors that have great influence on domain switching are material parameters, domain wall motion, domain volume fraction and the interaction energy between inclusion and matrix. Inclusion and its neighbors could be addressed in the description as well.
    _The phenomenon of saturation or "lock up" when all of the grains have transformed,
    is described in a rattier simple form through domain volume fractions by the proposed model, in which domain switching in ferro-electrics is analogous to that of dislocation movement on crystal slip planes in metals.
    
    
    (2) A primary multi-scale method for the electromechanical coupling analysis of ceramics is developed and show good agreement between the calculated results and the related experiments.
    The equivalent inclusion method is modified to include the geometrical and physical parameters of the ferroelectric inclusion units, and be expanded into piezo/ferro-electric media. The inclusion cell is the bridge of macro and micro mechanical-electrical responses, but also provides a direct relationship between meso/micro grain characteristic parameters and between globe macro performance, which could become a great help for the study on damage, fatigue and fracture mechanism of ferro-electrics.
    The self-consistent method based on Hill's theory is extended to be applicable to ferroelectrics. The introduction of global iteration and local iteration under loading of electric and/or stress fields calculate the nonlinear electromechanical coupling behavior.
    (3) The electro-mechanical coupling behavior of layer-structured ferroelectric composites is investigated and predicted.
    The electrical and mechanical boundary conditions are obtained considering the characteristics of layered ferroelectrics; the local electric-mechanical response equations of each structural layer of units are derived under the coupling of electric and mechanical loads.
    Various calculations are conducted when the volume fraction of each layer differs, as well as when the ratio of Yang's modular between layers changes. The influence of these factors to material performance is studied.
    The distributi
引文
[1] 师昌绪.高技术新材料的现状与展望.机械工程材料,1994,18:3-6
    [2] 姚熹.材料机敏化与智能化的若干问题.西安交通大学学报,1996,30(4):18-29.
    [3] 黄尚廉.智能结构—工程学科萌生的一场革命.压电与声光,1993,15(1):13-15
    [4] 杨卫.电致失效力学.力学进展,1996,26(3):338-352
    [5] 姚康德等.智能材料.天津:天津大学出版社,1996
    [6] Lines ME, Glass AM. Principles and Applications of Ferroelectrics and Related Materials. Oxford: Oxford University Press, 1977
    [7] 钟维烈.铁电体物理学.北京:科学出版社,1998
    [8] 许煜寰.铁电与压电材料.北京:科学出版社,1978
    [9] Xu Y. Ferroelectric materials and their applications. Amsterdam: Elsevier Press, 1991
    [10] Valasek J. Piezoelectric and allied phenomena in Rochelle salt. Phys Rev, 1920, 15: 537
    [11] 张福学,孙慷.压电学.北京:国防工业出版社,1984
    [12] J.范兰德拉特,R.E.塞德林顿.压电陶瓷.北京:科学出版社,1981
    [13] 刘梅冬,许毓春.压电铁电材料与器件.武汉:华中理工大学出版社,1990
    [14] 田莳.功能材料.北京:北京航天航空大学出版社,1995
    [15] 宋道仁,肖鸣山.压电效应及其应用.北京:科学普及出版社,1987
    [16] 王矜奉.压电振动.北京:科学出版社,1987
    [17] 栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,1990
    [18] Devonshire A F. Theory of Barium Titanate Part Ⅰ. Phli Mag, 1949, 40: 1040
    [19] Devonshire A F. Theory of Barium Titanate Part Ⅱ. Phli Mag, 1951; 42: 1065
    [20] Devonshire A F. Theory of ferroeletrics. Adv Phys, 1954, 3: 85
    [21] 姚熹,张良莹.电介质物理.西安:西安交通大学出版社,1991.
    [22] 方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,2000.
    [23] Bassiouny E, Ghaleb AF, Maugin GA. Thermodynamical formulation for coupled electromechanical hysteresis effects--Ⅰ. Basic equations. Int J Engng Sci, 1988, 26(12): 1279-1295
    [24] Bassiouny E, Ghaleb AF, Mangin GA. Thermodynamical formulation for coupled electromechanical hysteresis effects--Ⅱ. Poling of ceramics. Int J Engng Sci, 1988, 26(12): 1297-1306
    [25] Bassiouny E, Ghaleb AF, Mangin GA. Thermodynamical formulation for coupled electromechanical hysteresis effects--Ⅲ. Parameter identification. Int J Engng Sci, 1989,
    
    27(8): 975-987
    [26] Bassiouny E, Ghaleb AF, Maugin GA. Thermodynamical formulation for coupled electromechanical hysteresis effect--Ⅳ. Combined electromechanical loading. Int J Engng Sci, 1989, 27(8): 989-1000
    [27] Chen X, Fang DN, Hwang KC. A mesoseopic model of the constitutive behavior of monocrystalline ferroelectfies. Smart Mater Struct, 1997, 6: 145-151
    [28] Chen X, Fang DN, Hwang KC. Micromechanics simulation of ferroeleetric polarization switching. Acta Materiala, 1997, 45: 3181-3189
    [29] Chen X, Fang DN, Hwang KC. A nonlinear constitutive theory for ferroelectrics. Key Engineering Materials, 1998, 145-149: 977-982
    [30] Cocks ACF, McMeeking RM. A phenomenological constitutive law for the behaviour of ferroelectrie ceramics. Ferroelectrics, 1999, 228: 219-228
    [31] Kamlah M, Jiang Q. A constitutive model for ferroelectric PZT ceramics under uniaxial loading. Smart Mater Struct, 1999, 8(4): 441-459
    [32] Kamlah M, Tsakmakis C. Phenomenological modeling of the nonlinear electromechanical coupling in ferroelectrics, Int J Solids & Structs, 1999, 36: 669-695
    [33] Kamlah M, Bohle U, Munz D. On a non-linear finite element method for piezoelectric structures made of hysteretic ferroelectric ceramics. Computational Materials Science, 2000, 19(1-4): 81-86
    [34] Landis CM, McMeeking RM. A phenomenological constitutive law for ferroelastie switching and a resulting asymptotic crack tip solution. Journal of Intelligent Material Systems and Structures, 1999, 10(2): 155-163
    [35] Jiang B, Fang DN, Hwang KC. Constitutive model of ferroelectric composites with a viscoelastic and dielectric relaxation matrix I--Theory. Science in China, Series A, 1999, 42(11): 1193-1200
    [36] Jiang B, Karihaloo BL. Constitutive modeling of ferroelectric composites with a PSZ matrix. Proceedings of the Royal Society of London, Series A--Mathematical Physical and Engineering Sciences, 2001, 457:837-864
    [37] Maugin G A. The mechanical behavior of electromagnetic solid continua, Amsterdam: Nortg-Holland, 1995
    [38] Jiang Q. On modeling of phase transformations in ferroelectric materials. Acta Mech, 1994, 102: 149-165
    [39] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Roy Soe Lond, 1957, A241: 376-396
    
    
    [40] Eshelby J D. The elastic field otuside an ellipsoidal inclusion. Proc Roy Soc Lond, 1959, A252:561-569
    [41] Deeg WF. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. [Ph. D Dissertation], Stanford University, USA, 1980
    [42] Wang B. Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J Solids & Structs, 1992, 29: 293-308
    [43] Dunn ML. Electroelastic Green's functions for transversely isotropie piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. Int. J. Engng Sci, 1994, 32: 119-131
    [44] Dunn ML, Wienecke HA. Green's function for transversely isotropic piezoelectric solids. Int. J. Solids & Structs, 1996, 33: 4571-4581
    [45] Dunn ML, Taya M. Micromechanics predictions of the effective electroelastic moduli of the piezoelectric composites. Int J Solids & Structs, 1993, 30: 161-175
    [46] Chen TY. Green's functions and the nonuniform transformation problem in piezoelectric medium. Mech Res. Corem, 1993, 20: 271-278
    [47] Chen PJ. Three dimensional dynamic electromechanical constitutive relations for ferroelectric materials. Int. J Solids & Structs, 1980, 16: 1059-1067
    [48] Benveniste Y. Universal relations in piezoelectric composites with eigenstress and polarization fields Ⅰ. binary media: local fields effective behavior. ASME J Applied Mechanics, 1993, 60: 265-269
    [49] Benveniste Y. Universal relations in piezoelectric composites with eigenstress and polarization fields Ⅱ. multiphase media: effective behavior. ASME J Applied Mechanics, 1993, 60: 270-275
    [50] Benveniste Y. Exact results concerning the local fields and effective properties in piezoelectric composites. ASME J Eng. Mater and Tech, 1994, 116: 260-267
    [51] Hwang SC, Lynch CS, McMeeking RM. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta MetaU Mater, 1995, 43: 2073-2084
    [52] Hwang SC, Huber JE, McMeeking RM, et al. The simulation of switching in polycrystalline ferroelectric ceramics. J Appl Phys, 1998, 84(3): 1530-1540
    [53] Hwang SC, Waser R. Study of electrical and mechanical contribution to switching in ferroelectric/ferroelastic polycrystals. Acta Materialia, 2000, 48(12): 3271-3282
    [54] Hwang SC, Arlt G. Switching in ferroelectric polycrystals. Journal of Applied Physics, 2000, 87(2): 869-875
    [55] Hwang SC, McMeeking RM. A finite element model of ferroelastic polycrystals. Inter J
    
    Solids & Strncts, 1999, 36: 1541-1556
    [56] Hwang SC, McMeeking RM. A finite elernent model of ferroelectric polycrystals. Ferroelectrics, 1998, 211: 177-194
    [57] Lu W, Fang DN, Hwang KC. Nonlinear electric-mechanical behavior and micromechanics modeling of ferroelectric domain evolution. Acta Mater, 1999, 47(10): 2913-2926
    [58] Lu W, Fang DN, Hwang KC. Numerical analysis of ferroelectric/ferroelastic domain switching in ferroelectric ceramics. Computational Materials Science, 1997, 8: 291-308
    [59] Lu W, Fang DN, Hwang KC. A constitutive theory for ferroelectric ceramics. Key Engineering Materials, 1998, 145-149: 983-988
    [60] Hill R. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids, 1965, 13: 89-101
    [61] Hill R. A self-consistent mechanics of composite material. J. Mech. Phys. Solids, 1965, 13: 213-222
    [62] Budiansky B., Wu TT. Theoretical prediction of plastic strains of polycrystals, Proc. 4th U. S. Nat. Cong. Appl. Mech. 1962, 1175
    [63] Brerveiller M., Zaoui A.. An extension of the self-consistent scheme to plastically flowing polycrystals. J. Mech. Phys. Solids, 1979, 26: 325-344
    [64] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfiting inclusion. Acta Mectallargica, 1973, 21: 517-574
    [65] Weng G J. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int J Engng Sci, 1984, 22(7): 845-856
    [66] Benvenist Y. A new approach to the application of Mori-Tanaka's theory in composite materials. Mech Mater, 1987, 6: 147-157
    [67] Qi H, Fang DN, Yao ZH. FEM analysis of electro-mechanical coupling effect of piezoelectric materials. Computational Materials Science, 1997, 8: 283-290
    [68] Horn CL, Shankar N. A numerical analysis of relaxor ferroelectric multilayered actuators and 2-2 composite arrays. J Smart Mater Struct, 1995, 4: 266-273
    [69] Horn CL, Shankar N. A fully coupled constitutive model for electrostrictive ceramic materials. J Intell Mater Syst Struct, 1994, 5: 795-801
    [70] Huber JE, Fleck NA, McMeeking RM. A crystal plasticity model for ferroelectrics. Ferroelectrics, 1999, 228: 39-52
    [71] Huber JE, Fleck NA, Landis CM, et al. A constitutive model for ferroelectric polycrystals. J Mmech Phys Solids, 1999, 47: 1663-1697
    [72] Huber JE, Feleck NA. Multi-axial electric switching of a ferroelectric: theory versus
    
    experiment. J Mech Phys Solids, 2001, 49: 785-811
    [73] Yan W Y, Sun Q P, Hwang K C. A generalized micromechanics constitutive theory of single crystal with thermoelastic martensitic transformation. Science in China, 1998, A41 (8): 878-886
    [74] Sun Q P, Hwang K C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys-I. Derivation of general relations. J Mech Phys Solids, 1993, 41(1): 1-17
    [75] Zheng, Q. S., Du, D. X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution, J. Mech. Phys. of Solids, 2001, 49: 2765-2788
    [76] Rubia TD, Kaxiras T, Bulatov V, et al. Multiscale Modeeling of Materials, MRS Publication, Boston, USA, 1998
    [77] Rudd RE, Broughton JQ. Concurrent Coupling of Length Scales in Solid State Systems, Phys. Stat. Sol., 2000, 217: 251-291
    [78] Zbib HM. A Multiscale Model of Plasticity, Proceedings of International Conference on Multiscale Materials Modeling. UK, 2002
    [79] Fan J. A Micro/Macroscopic analysis for cyclic plasticity of dual-phase materials. ASME Journal of Applied Mechanics, 1999, 66(3): 124-136
    [80] Fan, J., Gao, Z, and Zeng, X., Multi-Scale Dual-Phase Cyclic Plasticity with Quantitative Transitions and Size Effects of Layered Structures, Acta Mechanica Solid Sinica, 2002, 15(1): 9-22
    [81] Peng, X., Fan, J., Yang, Y., Microstructure-Based Description for Cyclic Plasticity of Pealitic Steel with Experimental Verification, Int J of Solids Struc, 2002, 39: 419-434.
    [82] Peng, J., Fan, J., Zeng, J., Microstructure-based Description for Mechanical Behavior of Single Pealitic Colony, Int J of Solids and Struct, 2002, 39: 435-448
    [83] Fan, J., McDowell, D., Horstemeyer, M., Gall, K. Computational Micromechanies Analysis of Cyclic Crack Tip Behavior for Microstructurally Small Cracks in Dual-Phase Al-Si Alloys, Engineering Fracture Mechanics, 2001, 68(15): 1687-1706
    [84] Peng, X., Zheng, X. , Fan, J., A Physically Based Description for Coupled Plasticity and Creep Deformation, Int J Of Solids Struct, 1998, 35 (21): 2733-2747
    [85] Newnham RE, Skinner DP, Cross LE. Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull, 1978, 13: 525-536
    [86] Banno H. Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles. Ferroelectrics, 1983, 50: 3-12
    
    
    [87] Smith WA, Auld B. A modeling 1-3 composite piezoelectrics: thickness-mode oscillations. IEEE Trans Ultrasonics Ferroelectrics Frequency Control, 1991, 38: 40-47
    [88] Grekov AA, Kramarov SO, Kuprienko A A. Effective properties of a transversely isotropic piezocomposite with cylindrical inclusions. Ferroelectrics, 1989, 99: 115-126
    [89] Furukawa T., Fujino K., Fukada E. Electromechanical properties in the composites of piezoelectric composites, Jap. J. Appl. Phys., 1976, 15: 2119-2129
    [90] Dunn ML, Taya M. Electromechanical properties of porous piezoelectric ceramics, J. Am. Ceram. Soc., 1993, 76: 1697-1706
    [91] Dunn ML. Micromechanics of coupled electroelastic composites: effective thermal expansion and pyroelectric coefficients, J. Appl. Phys., 1993, 73: 5131-5140
    [92] Dunn ML. The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids, Eng. Fracture Mech., 1994, 48: 25-39
    [93] Dunn ML. Effects of grain shape anisotropy, porosity, and microcracks on the elastic and dielectric constants of polycrystalline piezoelectric ceramics, J. Appl. Phys., 1995, 78: 1533-1541
    [94] Dunn ML. A theoretical framework for the analysis of thermoelectroelastic heterogeneous media with applications, J. Intell. Mater. Sys. Structures, 1995, 6: 255-265
    [95] Chen TY. Piezoelectric properties of mutiphase fibrous composites: some theoretical results, J. Mech. Phys. Solids., 1993, 41: 1781-1794
    [96] Chen TY. Micromechanical estimates of the overall thermoelectroelastic moduli multiphase fibrous composites, Int. J. Solids Struct., 1994, 31: 3099-3111
    [97] Zhang QM, Cao H, Wang H. et al. Characterization of the performance of 1-3 type piezocomposites for low frequency applications, J. Appl. Phys., 1993, 73: 1403-1410
    [98] Li L, Sottos NR, Predictions of static displacements in 1-3 piezocomposites, J. Intell. Mater. Sys. Structures, 1995, 6: 169-180
    [99] Taya M. Micromechanics modeling of electronic composites, J. Eng. Mater. Tech., 1995, 117: 462-469
    [100] Furuta A, Uchino K. Dynamic observation of crack propagation in piezoelectric multilayer actuators. Y Am Ceram Soc, 1993, 76: 1615-1617
    [101] Pisarenko GG, Chushko VM, Kovalev SP. Anisotropy of fracture toughness of piezoelectric ceramics. J Am Ceram Soc, 1985, 68: 259-265
    [102] Mehta K, Virkar AV. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate(Zr:Ti=0.54:0.46) ceramics. J Am Ceram Soc, 1990, 73: 567-574
    [103] Park ET, Routbort JL, Li Z, et al. Anisotropic microhardness in single-crystal and
    
    polycrystalline BaTiO3. J Mater Sci, 1998, 33: 669-673
    [104] Fang F, Yang W. Poling enhanced fracture resistance of lead zirconate titanate. Ferroelectric Ceramics Materials Letters, 2000, 46: 131-135
    [105] Wang H, Singh RN. Crack propagation in piezoelectric ceramics: effects of applied electric field. J Appl Phys, 1997, 81: 7471-7479
    [106] Park SB, Sun CT. Fracture criteria for piezoelectric ceramics. J Am Ceram Soc, 1995, 78: 1475-1480
    [107] Fu R, Zhang TY. Effect of an applied electric field on the modulus of rupture of poled lead zirconate titanate ceramics. J of Amer Cerara Society, 1998, 81: 1058-1060
    [108] Fu R, Zhang TY. Effect of an applied electric field on the fracture toughness of poled lead zirconate titanate ceramics. J of Amer Ceram Society, 2000, 83: 1215-1218
    [109] Fu R, Zhang TY. Influences of temperature and electric field on the bending strength of lead zirconate ceramics. Acta Mater, 2000: 1729-1740
    [110] Bing QD, Fang DN. Investigation on fracture behavior of ferroelectric ceramics under combined electromechanical combined loading by using a moir-interferometry technique, ICEM2001, Washington: SPIE, 2001
    [111] Paxton VZ. Fracture behaviour of piezoelectric materials. Acta Astronaut, 1976, 3: 671-683
    [112] McMeeking RM. Electrostrictive forces near crack-like flaws. J. Appl Math Phys, 1989, 40: 615-627
    [113] Suo Z, Kuo CM, Barnet DM, et al. Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids, 1992, 40: 739-765
    [114] Hao TH, Shen ZY. A new electric boundary condition of electric fracture mechanics and its applications. Engineering Fracture Mechanics, 1994, 47: 793-802
    [115] Sosa H, Khutoryansky N. New developments concerning piezoelectric materials with defects. Int J Solids & Structs, 1996, 33: 3399-3414
    [116] Zhang TY, Tong P. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material. Int J Solids & Structs, 1996, 33: 343-359
    [117] McMeeking RM. Crack tip energy release rate for a piezoelectric compact tension specimen. Engng Fract Mech, 1999, 64: 217-244
    [118] Fang DN, Sob AK Finite element modeling of electro-mechanical coupled analysis for ferroeleetric ceramic materials with defects. Computer Methods in Applied Mechanics and Engineering, 2001, 190/22-23: 2771-2787
    [119] Qi H, Fang DN, Yao ZH. Analysis of electric boundary condition effect on crack propagation in piezoelectric ceramics. Acta Mechanics Sinica, 2001, 17(1): 59-70
    
    
    [120] Liu B, Fang DN, Hwang KC. On the effect of remnant polarization on electromechanical fields near an elliptic cavity in poled or depolarized piezoelectric ceramics, Int J. Fracture, 2000, 103: 189-204
    [121] McMeeking RM. A J-integral for the analysis of electrically induced mechanical stress at craeks in elastic dielectrics. Int J Engng Sci, 1990, 28: 605--,613
    [122] Pak YE. Crack extension force in a piezoelectric material. J Appl Mech, 1990, 57: 647-653
    [123] Fang DN, Liu B, Hwang KC. Energy analysis on fracture of ferroelectric ceramics. Inter J Fracture, 2000, 100(4): 401-408
    [124] Wang TC. Analysis of strip electric saturation model of crack problem in piezoelectric materials. Int J Solids Structs, 2000, 37: 6031-6049
    [125] Fulton CC, Gao H. Effect of local polarization switching on piezoelectric fracture. J Mech Phys Solids, 2001, 49: 927-952
    [126] Xu XL, Rajapakse R. Analytical solution for an arbitrarily oriented void/crack and fracture of piezoceramics. Acta Mater, 1999, 47: 1735-1747
    [127] Zuo JZ, Sih GC. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theor Appl Fract Mech, 2000, 34: 17-33
    [128] Wang BL, Noda N. Mixed mode crack initiation in piezoelectric ceramic strip. Theor Appl Fraet Mech, 2000, 34:35-47
    [129] Soh AK, Fang DN, Lee GL. Fracture analysis of piezoelectric materials with defects using energy density theory, accepted by Int J Solids & Structs, 2001
    [130] Yang W, Zhu T. Switch-toughening of ferroelectrics gauged by electric fields. J Mech Phys Solids, 1998, 46: 291-311
    [131] Zhu T, Yang W. Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater, 1997, 45(11): 4695-4702
    [132] Zeng X, Rajapakse RKND. Domain switching induced fracture toughness variation in ferroelectrics. Smart Mater Struct, 2001, 10: 203-211
    [133] Fang F, Yang W. Poling enhanced fracture resistance of lead zirconate titanate ferroelectric ceramics. Materials Letters, 2000, 46: 131-135
    [134] Giannakopoulos AE, Suresh S. Theory of indentation of piezoelectric materials. Acta Mater, 1999, 47(7): 2153-2164
    [135] Jiang LZ, Sun CT. Analysis of indentation cracking in piezoceramics, Int d Solids & Struets, 2001, 38: 1903-1918
    [136] Jiang QY, Cross LE. Effects of porosity on electric fatigue behavior in PLZT and PZT ferroelectric ceramics. J Mater Sci, 1993, 28: 4536-4543
    
    
    [137] Lynch CS, Chen L, Suo Z, et al. Crack growth in ferroelectric ceramics driven by cyclic polarization switching. J of Intell Mater Sysm and Strut, 1995, 6: 191-198
    [138] Hill MD, White GS, Hwang CS. Cyclic damage in lead zirconate titanate. J Am Ceram Soc, 1996, 79(7): 1915-1920
    [139] Tai WP, Kim SH. Relationship between cyclic loading and degradation of piezoelectric properties in Pb(Zr, Ti)Os ceramics. Mater Sci and Engng, 1996, B38: 182-185
    [140] Zhu T, Fang F, Yang W. Fatigue crack growth in ferroelectrics ceramics below the coercive field. J Mater Sci Letters, 1999, 18: 1025-1027
    [141] Winzer H, Schneider GA, Steffens J, et al. Cyclic fatigue due to electric loading in ferroelectrfic ceramics. J. of the European Ceramic Soc., 1999, 19: 1333-1337
    [142] Jiang QY, Coo WW, Cross LE. Electric fatigue in lead zirconate titanate ceramics. J Am Ceram Soc, 1994, 77(1): 211-215
    [143] Zhu T, Yang W. Fatigue crack growth in ferroelectrics driven by cyclic electric loading. J Mech Phys Solids, 1999, 47: 81-97
    [144] Yang W, Zhu T, Fang F. Electric fatigue crack growth in ferroelectdcs: theory and experiment. Proceedings of the 7th International Fatigue Congress, Beijing: Higher Education Press, 1999. 1857-1864
    [145] Jaffe W G, Cook E R, Jaffw H. Piezoelectric ceramics. New York: Academic Press Inc, 1971
    [146] Cao HC, Evans AG. Nonlinear deformation of ferroelectric ceramics. J Am Ceram Soc, 1993, 76: 890-896
    [147] Schaufele AB, Hardtl KH. Ferroelastic properties of lead zirconate titanate ceramics. J Am Ceram Soc, 1996, 79: 2637-2640
    [148] Fang DN, Li CQ. Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic. Journal of Materials Science, 1999, 34: 4001-4010
    [149] 李长清,方岱宁.铁电陶瓷PZT的实验本构研究.力学学报,2000,32(1):34-41.
    [150] Lynch CS. The effect of uniaxial stress on the electro-mechanical response of 8/6/35 PLZT. Acta Mater, 1996, 44: 4137-4148
    [151] Lynch CS. On the development of multi-axial phenomenological constitutive laws for ferroelectric ceramics. J Intell Mater Systems Struct, 1998, 9: 555-563
    [152] Chen W, Lynch CS. A micro-electro-mechanical model for polarization switching of ferroelectric materials. Acta Materialia, 1998, 46(15): 5303-5311
    [153] Chen W, Lynch CS. Multiaxial constitutive behavior of ferroelectric materials. J. of Eng Materials and Tech., 2001, 123(2): 169-175
    [154] 吕炜,方岱宁,黄克智.铁电陶瓷宏细观本构模型.力学学报,1998,30(5):540-551
    
    
    [155] Lu W, Fang DN, Hwang KC. Micromechanics of ferroelectric domain switching behavior Part Ⅰ: Coupled electromechanical field of domain inclusions. Theoretical and Applied Fracture Mechanics, 2001, 37: 29-38
    [156] 贺岩松,范镜泓.铁电材料非线性力电耦合特性的模拟计算.重庆大学学报,2000,23(3):50-53
    [157] 贺岩松,范镜泓.铁电单晶材料力电耦合性能模型.重庆大学学报,2001,24(4):78-80
    [158] Wan S, Bowman K. Modeling of electric field induced texture in lead zirconate titanate ceramics. J. Mater. Res., 2001, 16(8): 2306-2313
    [159] Fan J., Stoll WA., Lynch CS. Nonlinear Constitutive Behavior of Soft and Hard PAT: Experiments and Modeling. Acta mater, 1999, 47(17): 4415-4425
    [160] Fan, J.. A Physically-Based Meso-Electro-Mechanical Model for PMN-PT Behavior, A Special Issue of Journal of Intelligent Material Systems and Structures, (in press).
    [161] 范镜泓,高芝晖.非线性连续介质力学基础.重庆:重庆大学出版社,1987
    [162] 黄克智,黄永刚.固体本构关系.北京:清华大学出版社,1999
    [163] 刘国勋.金属学原理.北京:冶金工业出版社,1979
    [164] 余宗森,田中卓.金属物理.北京:冶金工业出版社,1982
    [165] 曾祥国.非比例循环塑性与蠕变:复杂路径下非弹性变形的晶体塑性理论和现象学描述.重庆大学博士论文,1996
    [166] Tadmor E. B., Waghmare U. V., Smith G. S.. Polarization switching in PbTiO3: an Ab Initio finite element simulation. Acta Materialia, 2002, 50: 2989-3002
    [167] Fan J., Gao Z., Zeng X.. Cyclic Plasticity across Micro/Meso/Macroscopic Scales, Proceedings of the Royal Society London (in press)
    [168] 程守洙,江之永.普通物理学.北京:高等教育出版社,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700