二氧化钛与四氧化三锰纳米晶体生长控制及其功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究纳米晶形貌控制的方法、探索纳米晶形貌与性能之间的关系,实现纳米材料的性能设计与优化是目前材料科学研究领域中的重大主题。介观尺度下,纳米晶体的晶粒粗化与生长机制既包括经典晶体生长理论所描述的“奥斯特瓦尔德熟化(Ostwald Ripening)"也包括非经典晶体生长理论所涵盖的“定向附着生长(Oriented Attachment)"和“介观晶体生长(Mesocrystal)"等。非经典晶体生长理论基于初级纳米晶体的组装与融合,为纳米晶的形貌控制与结构设计提供了崭新的思路和更多的可能性。
     本文以两种典型的过渡金属氧化物:锐钛矿相的二氧化钛(TiO2)与黑锰矿相的四氧化三锰(Mn3O4)为研究对象,探索不同晶体生长机制的诱导方式过程控制方法,研究不同晶体生长机制对纳米晶体形貌的影响规律,解决纳米晶形貌控制中的一些相关问题。根据纳米晶自身的形貌与结构特点,开展它们在光催化降解有机污染物、染料敏化太阳能电池以及锂离子电池等方面的性能研究,解决纳米材料功能应用中的一些相关问题。论文的研究工作分为以下几个方面:
     一、奥斯特瓦尔德熟化机制下TiO2纳米晶体的生长控制
     在双表面配体控制纳米晶生长的基础上,提出以卤素离子作为表面配体协同油酸分子控制TiO2纳米晶体形貌的方法。发现卤素离子中的氟离子对锐钛矿(001)晶面的吸附能力最强,在其参与下TiO2纳米晶的形貌为截角四方双锥体,其暴露晶面包括两个(001)晶面和八个(101)晶面。
     二、定向附着生长机制下TiO2纳米项链的生长控制
     发展了一种两步溶剂热的策略制备了具有一维单晶结构的锐钛矿TiO2纳米项链。第一步溶剂热过程被经典结晶过程所主导,获得具有一定程度(001)晶面暴露的初级TiO2纳米晶粒。第二步溶剂热过程被定向附着生长过程所主导,通过初级晶粒在[001]晶向上的组装与晶面融合,获得一维项链状纳米结构。在此合成策略的基础上我们研究了诱发和控制定向附着生长的关键条件。
     三、TiO2纳米项链对染料敏化太阳能电池性能的影响规律
     通过TiO2纳米项链增强了染料敏化太阳能电池的性能。利用TiO2纳米项链独特的一维单晶结构减少电子在纳米晶薄膜中的散射和复合,增强薄膜对电子的传输性能。当纳米晶薄膜内TiO2纳米项链的质量百分比为30~40%时,电池的光电转换效率为7.5%与基于纳米颗粒的薄膜电极的光电转换效率(4.2%)相比提升了78%。
     四、非经典结晶过程中Mn3O4介观/介孔晶体的生长控制
     发展了一种简单易于放大化生产的化学沉淀法制备了Mn3O4纳米晶。所得的纳米晶具有均一的尺寸和形貌,通过调节锰源的种类或添加量以及水合肼的添加量实现了对纳米晶的形貌控制(类长方体状介观晶体、圆盘状介观晶体、介孔纳米片、介孔纳米方台、介孔纳米多面体等)。考察介孔纳米方台的形貌演变过程,发现其晶体生长过程包括两个阶段:初期的晶粒自组装以及后期介观晶体的熟化。晶粒的自组装也是介孔晶体中产生孔结构的原因,在其生长过程中会出现具有介观晶体结构特征的中间产物。
     五、研究Mn3O4/氧化石墨烯纳米复合材料在锂离子电池上的应用
     在室温化学沉淀法合成Mn3O4介观晶体和介孔晶体的基础上,合成出Mn3O4纳米晶体/氧化石墨烯纳米复合材料。介观晶体与介孔晶体内部具有较高的孔隙率,可以吸收因为锂离子进出而引起的体积变化。同时将Mn3O4与氧化石墨烯复合,解决了Mn3O4导电性不足的问题。该纳米复合材料在锂离子电池的应用中表现出优异的循环稳定性和倍率性能。
Controlling the morphology of nanocrystals and exploring the relationship between their morphologies and properties are the most interesting topics in material science and technology. Controlling the nanocrystal growth process is essential for its morphology tuning, property designing and functionalizing. In mesoscopic scales, crystal growth process normally follows the classical mechanism "Ostwald ripening" and the non-classical mechanisms, including "Oriented attachment" and "Mesocrystal". Generally the non-classical crystal growth mechanisms are based on the assembly and fusion of primary nanocrystals. Providing innovative pathways and diverse possibility for controlling the morphologies of nanocrystals.
     Anatase TiO2nanocrystals and hausmannite Mn3O4nanocrystals are two typical transition metal oxide nanomaterials. In this article we investigated the influence of crystal growth mechanism on the morphology of nanocrystals, aiming at solving the related problem on the crystal growth controlling. The potential applications of nanocrystals with specified morphology on photocatalytic degradation of organic pollutants, dye-sensitized solar cells and lithium-ion batteries were investigated. The thesis consists of following contents:
     1. The TiO2nanocrystals were synthesized by solvethermal method, using halogen ion and oleic acid as surfactants to control the morphology. The two surfactants showed distinct absorption capability on specified facets, tuning the growth rate of different facets. Thus, with the help of surfactants, the morphology of TiO2nanocrystals could be effectively controlled. It was also found that fluoride had stronger tendency to selectively absorb on (001) facet compared with other halogen ions. Using fluoride as surfactant, truncated nanobipyramids were obtained, surfaced by two (001) and eight (101) facets.
     2. A two step synthetic strategy has been developed to prepare one-dimension chain-like TiO2nanocrystals via oriented attachment process. The primary crystals followed oriented attachment and were able to assemble in solution and fuse along specified facets, forming one-dimension chain-like TiO2nanocrystals with single crystal characteristic. The two-step strategy employed in the experiment effectively separated the Ostwald ripening and oriented attachment growth process. The different absorption capability of fluoride and oleic acid on different facets of TiO2 nanocrystals reduced steric hindrance on (001) facet, facilitating oriented attachment growth. It is worth noticing that relative high temperature drives the crystals to overcome the energy barrier for fusion. Moreover, the hydroxyl in the reaction system has great influence on the length of TiO2nanochains.
     3. Applying TiO2nanochain to enhance the photoelectric conversion efficiency in dye-sensitized solar cells (DSSCs). TiO2nanocrystal film is the most important component in DSSCs. It has been proved that one-dimensional TiO2nanochains with single crystal structure possessed high electron conductivity. In this work, TiO2nanochains and nanoparticles were mixed to prepare nanocrystal films. TiO2nanochains could reduce the possibility of scattering and annihilation of electrons in the transmission process, thus increasing the conductivity of the film. It was found that the addition of30~40wt.%TiO2nanochains in the film increased the photoelectric conversion efficiency to7.5%, which is a78%increase comparing with nanoparticle films (4.2%).
     4. Preparation of Mn3O4mesoscopic crystals and mesoporous crystals through non-classical crystallization process. The synthesis was carried out at room temperature via chemical precipitation. Mn3O4nanocrystals with uniform morphology were obtained using hydrazine as precipitation agent. The size and morphology of Mn3O4could be effectively controlled by adjusting experiment conditions. The growth process of mesoporous nanocrystals was monitored. It was found that based on the assembly and fusion of primary nanoparticles, nanocrystals with mesoscopic characteristic were formed, then a ripening process occurred, resulting mesoporous nanocrystals. It was also found that the magnetic properties of Mn3O4nanocrystals were affected by the size and morphology.
     5.Applying Mn3O4mesoscopic and mesoporous nanocrystals as the cathode for high-performance lithium-ion battery. The high porous rate in nanocrystals could mitigate the volume change cause by insertion of lithium ions. Mn3O4/graphene oxide composites were prepared to compensate the conductivity. Such nanocomposites exhibit high performance in lithium-ion batteries
引文
[1]M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385):2013-2016.
    [2]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. nature,1972,238:37-38.
    [3]I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science,2005,310(5747):462-465.
    [4]D. V. Talapin, C. B. Murray. PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science,2005,310(5745):86-89.
    [5]B. Lim, M. J. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. M. Lu, Y. M. Zhu, Y. N. Xia. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science,2009, 324(5932):1302-1305.
    [6]N. Q. Wu, J. Wang, D. Tafen, H. Wang, J.G. Zheng, J.P. Lewis, X.G. Liu, S.S. Leonard, A. Manivannan. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. Journal of the American Chemical Society,2010,132(19):6679-6685.
    [7]Y. Yin, A.P. Alivisatos. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature,2005,437(7059):664-670.
    [8]Y. N. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics?. Angewandte Chemie International Edition,2009,48(1):60-103.
    [9]C. N. R. Rao, A. K. Cheetham. Science and technology of nanomaterials:current status and future prospects. Journal of Materials Chemistry,2001,11(12):2887-2894.
    [10]C. N. R. Rao, S. R. C. Vivekchand, K. Biswas, A. Govindaraj. Synthesis of inorganic nanomaterials. Dalton Transactions,2007 (34):3728-3749.
    [11]C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed. Chemistry and properties of nanocrystals of different shapes. Chemical reviews,2005,105(4):1025-1102.
    [12]G. M. Whitesides. Nanoscience, nanotechnology, and chemistry. Small,2005,1(2):172-179.
    [13]Z. L. Wang, J. H. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science,2006,312(5771):242-246.
    [14]A. Selloni. Crystal growth:Anatase shows its reactive side. Nature materials,2008,7(8): 613-615.
    [15]M. H. Huang, P. H. Lin. Shape-Controlled Synthesis of Polyhedral Nanocrystals and Their Facet-Dependent Properties. Advanced Functional Materials,2012,22(1):14-24.
    [16]C. H. Sun, X. H. Yang, J. S. Chen, Z. Li, X. W. Lou, C. Li, S. C. Smith, G. Q. Lu, H. G. Yang. Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chemical Communications,2010,46(33):6129-6131.
    [17]J. S. Chen, X. W. Lou. Anatase TiO2 nanosheet:An ideal host structure for fast and efficient lithium insertion/extraction. Electrochemistry Communications,2009,11(12):2332-2335.
    [18]S. W. Liu, J. G. Yu, M. Jaroniec. Anatase TiO2 with dominant high-energy{001} facets: synthesis, properties, and applications. Chemistry of Materials,2011,23(18):4085-4093.
    [19]X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos. Shape control of CdSe nanocrystals. Nature,2000,404(6773):59-61.
    [20]Z. A. Peng, X. Peng. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society,2001,123(1):183-184.
    [21]W. W. Yu, L. H. Qu, W. Z. Guo, X. G. Peng. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials,2003,15(14): 2854-2860.
    [22]W. W. Yu, Y. A. Wang, X. G. Peng. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals:ligand effects on monomers and nanocrystals. Chemistry of Materials,2003,15(22):4300-4308.
    [23]V. K. Lamer, R. H. Dinegar. Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society,1950,72(11): 4847-4854.
    [24]J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon. Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie International Edition,2007,46(25):4630-4660.
    [25]X. G. Peng, J. Wickham, A. P. Alivisatos. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth:"focusing" of size distributions. Journal of the American Chemical Society,1998,120(21):5343-5344.
    [26]A. L. Rogach, D. V. Talapin, E. V. Shevchenko, A. Kornowski, M. Haase, H. Weller. Organization of matter on different size scales:Monodisperse nanocrystals and their superstructures. Advanced Functional Materials,2002,12(10):653-664.
    [27]P. G. Vekilov. The two-step mechanism of nucleation of crystals in solution. Nanoscale,2010, 2(11):2346-2357.
    [28]P. S. Wong, B. L. Liang, R. Molecke, J. Tatebayashi, D. L. Huffaker. Controlled formation and dynamic Wulff simulation of equilibrium crystal shapes of GaAs pyramidal structures on nanopatterned substrates. Crystal Growth & Design,2010,10(6):2509-2514.
    [29]A. Seyed-Razavi, I. K. Snook, A. S. Barnard. Surface area limited model for predicting anisotropic coarsening of faceted nanoparticles. Crystal Growth & Design,2010,11(1): 158-165.
    [30]R. Q. Song, H. Colfen. Additive controlled crystallization. CrystEngComm,2011,13(5): 1249-1276.
    [31]M. Niederberger, H. Colfen. Oriented attachment and mesocrystals:non-classical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics,2006,8(28):3271-3287.
    [32]S. Wohlrab, N. Pinna, M. Antonietti, H. Colfen. Polymer-induced alignment of dl-alanine nanocrystals to crystalline mesostructures. Chemistry-A European Journal,2005,11(10): 2903-2913.
    [33]H. Colfen, M. Antonietti. Mesocrystals:inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie International Edition,2005, 44(35):5576-5591.
    [34]R. L. Penn, J. F. Banfield. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:Insights from titania. Geochimica et cosmochimica acta,1999,63(10):1549-1557.
    [35]R. L. Penn, J. F. Banfield. Imperfect oriented attachment:dislocation generation in defect-free nanocrystals. Science,1998,281(5379):969-971.
    [36]A. P. Alivisatos. Naturally aligned nanocrystals. Science,2000,289(5480):736-737.
    [37]E. J. Lee, C. Ribeiro, E. Longo, E. R. Leite. Oriented attachment:An effective mechanism in the formation of anisotropic nanocrystals. The Journal of Physical Chemistry B,2005, 109(44):20842-20846.
    [38]W. H. Lee, P. Shen. On the coalescence and twinning of cubo-octahedral CeO2 condensates. Journal of crystal growth,1999,205(1):169-176.
    [39]P. Shen, W. H. Lee. (111)-Specific Coalescence Twinning and Martensitic Transformation of Tetragonal ZrO2 Condensates. Nano Letters,2001,1(12):707-711.
    [40]R. L. Penn, G. Oskam, T. J. Strathmann, P. C. Searson, A. T. Stone, D. R. Veblen. Epitaxial assembly in aged colloids. The Journal of Physical Chemistry B,2001,105(11):2177-2182.
    [41]C. Pacholski, A. Kornowski, H. Weller. Self-Assembly of ZnO:From Nanodots to Nanorods. Angewandte Chemie International Edition,2002,41(7):1188-1191.
    [42]N. Gehrke, H. Colfen, N. Pinna, M. Antonietti, N. Nassif. Superstructures of calcium carbonate crystals by oriented attachment. Crystal growth & design,2005,5(4):1317-1319.
    [43]V. R. Calderone, A. Testino, M. T. Buscaglia, M. Bassoli, C. Bottino, M. Viviani, V. Buscaglia, P. Nanni. Size and shape control of SrTiO3 particles grown by epitaxial self-assembly. Chemistry of materials,2006,18(6):1627-1633.
    [44]B. Liu, H. C. Zeng. Semiconductor rings fabricated by self-assembly of nanocrystals. Journal of the American Chemical Society,2005,127(51):18262-18268.
    [45]M. Nesterova, J. Moreau, J. F. Banfield. Model biomimetic studies of templated growth and assembly of nanocrystalline FeOOH. Geochimica et Cosmochimica Acta,2003,67(6): 1185-1195.
    [46]K. S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. Journal of the American Chemical Society,2005,127(19):7140-7147.
    [47]W. K. Koh, A. C. Bartnik, F. W. Wise, C. B. Murray. Synthesis of monodisperse PbSe nanorods:A case for oriented attachment. Journal of the American Chemical Society,2010, 132(11):3909-3913.
    [48]W. H. Evers, B. Goris, S. Bals, M. Casavola, J. de Graaf, R. van Roij, M. Dijkstra, D. Vanmaekelbergh. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Letters,2012,13(6):2317-2323.
    [49]C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller. Ultrathin PbS sheets by two-dimensional oriented attachment. Science,2010,329(5991):550-553.
    [50]A. Naravanaswamy, H. F. Xu, N. Pradhan, X. G. Peng. Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection. Angewandte Chemie,2006,118(32):5487-5490.
    [51]J. S. Chen, T. Zhu, C. M. Li, X. W. Lou. Building hematite nanostructures by oriented attachment. Angewandte Chemie International Edition,2011,50(3):650-653.
    [52]X. Chen, M. Qiao, S. Xie, K. Fan, W. Zhou, H. He. Self-construction of core-shell and hollow zeolite analcime icositetrahedra:a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core. Journal of the American Chemical Society,2007,129(43):13305-13312.
    [53]H. G. Yang, H. C. Zeng. Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites. Angewandte Chemie,2004,116(44): 6056-6059.
    [54]C. Ribeiro, E. J. H. Lee, E. Longo, E. R. Leite. Oriented attachment mechanism in anisotropic nanocrystals:A "polymerization" approach. ChemPhysChem,2006,7(3):664-670.
    [55]C. Ribeiro, E. J. H. Lee, E. Longo, E. R. Leite. A kinetic model to describe nanocrystal growth by the oriented attachment mechanism. ChemPhysChem,2005,6(4):690-696.
    [56]J. Zhang, Z. Lin, Y. Lan, G. Ren, D. Chen, F. Huang, M. Hong. A multistep oriented attachment kinetics:Coarsening of ZnS nanoparticle in concentrated NaOH. Journal of the American Chemical Society,2006,128(39):12981-12987.
    [57]F. Huang, H. Z. Zhang, J. F. Banfield. The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS. The Journal of Physical Chemistry B,2003, 107(38):10470-10475.
    [58]F. Huang, H. Z. Zhang, J. F. Banfield. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Letters,2003,3(3):373-378.
    [59]S. Yin, F. Huang, J. Zhang, J. Zheng, Z. Lin. The effects of particle concentration and surface charge on the oriented attachment growth kinetics of CdTe nanocrystals in H2O. The Journal of Physical Chemistry C,2011,115(21):10357-10364.
    [60]L. Yang, H. Yang, Z. Yang, Y. Cao, X. Ma, Z. Lu, Z. Zheng. Observation of rotated-oriented attachment during the growth of Ag2S nanorods under mediation of protein. The Journal of Physical Chemistry B,2008,112(32):9795-9801.
    [61]M. A. van Huis, L. T. Kunneman, K. Overgaag, Q. Xu, G. Pandraud, H. W. Zandbergen, D. Vanmaekelbergh. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Letters,2008,8(11):3959-3963.
    [62]J. Polleux, N. Pinna, M. Antonietti, M. Niederberger. Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Advanced Materials,2004,16(5): 436-439.
    [63]J. Polleux, N. Pinna, M. Antonietti, C. Hess, U. Wild, R. Schlogl, M. Niederberger. Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Advanced Materials,2004,16(5):436-439.
    [64]L. Zhou, P. O'Brien. Mesocrystals properties and applications. The Journal of Physical Chemistry Letters,2012,3(5):620-628.
    [65]Z. P. Zhang, H. P. Sun, X. Q. Shao, D. F. Li, H. D. Yu, M. Y. Han. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Advanced Materials,2005,17(1):42-47.
    [66]R. Q. Song, H. Colfen. Mesocrystals-ordered nanoparticle superstructures. Advanced Materials,2010,22(12):1301-1330.
    [67]J. F. Ye, W. Liu, J. G. Cai, S. A. Chen, X. W. Zhao, H. H. Zhou, L. M. Qi. Nanoporous anatase TiO2 mesocrystals:additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. Journal of the American Chemical Society,2010, 133(4):933-940.
    [68]X. Chen, S. S. Mao. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chemical reviews,2007,107(7):2891-2959.
    [69]M. Gratzel. Photoelectrochemical cells. Nature,2001,414(6861):338-344.
    [70]B. O'regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized, nature, 1991,353:737-740.
    [71]Y. Bai, I. Mora-Sero, J. B. Filippo De Angelis, P. Wang. Titanium dioxide nanomaterials for photovoltaic applications. Chemical Reviews,2014, DOI:10.1021/cr400606n.
    [72]A. Kubacka, M. Fernandez-Garcia, G. Colon. Advanced nanoarchitectures for solar photocatalytic applications. Chemical Reviews,2011,112(3):1555-1614.
    [73]M. Gratzel. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry,2005,44(20):6841-6851.
    [74]S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E. Sung. Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency. Advanced Materials,2008,20(1):54-58.
    [75]B. H. Lee, M. Y. Song, S. Y. Jang, S. M. Jo, S. Y. Kwak, D. Y. Kim. Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes. The Journal of Physical Chemistry C,2009,113(51):21453-21457.
    [76]A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, K. G. U. Wijayantha. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B,2000,104(5):949-958.
    [77]M. Gratzel. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2003,4(2):145-153.
    [78]A. I. Hochbaum, P. D. Yang. Semiconductor nanowires for energy conversion. Chemical Reviews,2009,110(1):527-546.
    [79]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang. Nanowire dye-sensitized solar cells. Nature Materials,2005,4(6):455-459.
    [80]B. Liu, E. S. Aydil. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society,2009,131(11):3985-3990.
    [81]M. K. Wang, J. Bai, F. Le Formal, S. J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Gratzel, S. M. Zakeeruddin, M. Gratzel. Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. The Journal of Physical Chemistry C,2012,116(5):3266-3273.
    [82]J. H. Park, T. W. Lee, M. G. Kang. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays:use in dye-sensitized solar cells. Chemical Communications,2008 (25): 2867-2869.
    [83]D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS nano,2008,2(6):1113-1116.
    [84]K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters,2007,7(1):69-74.
    [85]O. K. Varghese, M. Paulose, C. A. Grimes. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotechnology,2009, 4(9):592-597.
    [86]L. L. Li, Y. J. Chen, H. P. Wu, N. S. Wang, E. W. G. Diau. Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells. Energy & Environmental Science,2011,4(9):3420-3425.
    [87]H. P. Jen, M. H. Lin, L. L. Li, H. P. Wu, W. K. Huang, P. J. Cheng, E. W. G. Diau. High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays. ACS Applied Materials & Interfaces,2013,5(20):10098-10104.
    [88]C. M. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. The Journal of Physical Chemistry B,2005,109(33):15754-15759.
    [89]S. P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G. E. Thompson, J. M. Macak, P. Schmuki. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Advanced Materials,2008,20(21):4135-4139.
    [90]S. H. Hwang, C. Kim, H. Song, S. Son, J. Jang. Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. ACS Applied Materials & Interfaces,2012,4(10):5287-5292.
    [91]Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim, W. I. Lee. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Advanced Materials,2009,21(36):3668-3673.
    [92]R. Buonsanti, E. Carlino, C. Giannini, D. Altamura, L. De Marco, R. Giannuzzi, M. Manca, G. Gigli, P. D. Cozzoli. Hyperbranched anatase TiO2 nanocrystals:nonaqueous synthesis, growth mechanism, and exploitation in dye-sensitized solar cells. Journal of the American Chemical Society,2011,133(47):19216-19239.
    [93]S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S. H. Han, S. Ogale. Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2 MWCNT nanocomposites. ACS Applied Materials & Interfaces,2009,1(9): 2030-2035.
    [94]G. Cheng, M. S. Akhtar, O. B. Yang, F. J. Stadler. Novel preparation of anatase TiO2@ reduced graphene oxide hybrids for high-performance dye-sensitized solar cells. ACS Applied Materials & Interfaces,2013,5(14):6635-6642.
    [95]M. Armand. In materials for advanced batteries. [M] Plenum Press, New York.1980:145.
    [96]M. V. Reddy, G. V. S. Rao, B. V. R. Chowdari. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical Reviews,2013,113(7):5364-5457.
    [97]L. Ding, S. He, S. Miao, M. R. Jorgensen, S. Leubner, C. Yan, S. G. Hickey, A. Eychmuller, J. Xu, O. G. Schmidt. Ultrasmall SnO2 nanocrystals:hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage. Scientific Reports,2014,4. 4647.
    [98]Y. X. Yin, S. Xin, L. J. Wan, C. J. Li, Y. G. Guo. Synthesis of nanostructured SnO2/C microfibers with improved performances as anode material for Li-ion batteries. Journal of Nanoscience and Nanotechnology,2012,12(3):2581-2585.
    [99]J. Liang, W. Wei, D. Zhong, Q. Yang, L. Li, L. Guo. One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. ACS Applied Materials & Interfaces,2012,4(1):454-459.
    [100]U. Kasavajjula, C. Wang, A. J. Appleby. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources,2007,163(2):1003-1039.
    [101]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407(6803): 496-499.
    [102]B. Wang, H. B. Wu, L. Zhang, X. W. Lou. Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angewandte Chemie International Edition,2013,52(15):4165-4168.
    [103]C. N. He, S. Wu, N. Q. Zhao, C. S. Shi, E. Z. Liu, J. J. Li. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS nano,2013,7(5): 4459-4469.
    [104]Z. S. Wu, W. C. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li, H. M. Cheng. Graphene anchored with Co304 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS nano,2010,4(6):3187-3194.
    [105]S. N. Frank, A. J. Bard. Semiconductor electrodes.12. Photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes. Journal of the American Chemical Society,1977,99(14):4667-4675.
    [106]U. Diebold. The surface science of titanium dioxide. Surface Science Reports,2003,48(5): 53-229.
    [107]X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos. Shape control of CdSe nanocrystals. Nature,2000,404(6773):59-61.
    [108]X. G. Peng. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Advanced Materials,2003,15(5):459-463.
    [109]N. Pradhan, D. Reifsnyder, R. G. Xie, J. Aldana, X. G. Peng. Surface ligand dynamics in growth of nanocrystals. Journal of the American Chemical Society,2007,129(30): 9500-9509.
    [110]Z. H. Zhang, X. H. Zhong, S. H. Liu, D. F. Li, M. Y. Han. Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angewandte Chemie,2005, 117(22):3532-3536.
    [111]C. M. Liu, S. H. Yang. Synthesis of angstrom-scale anatase titania atomic wires. ACS nano, 2009,3(4):1025-1031.
    [112]C. T. Dinh, T. D. Nguyen, F. Kleitz, T. O. Do. Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS nano,2009,3(11):3737-3743.
    [113]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008, 453(7195):638-641.
    [114]X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie, L. S. Zheng. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society,2009,131(9):3152-3153.
    [115]X. H. Yang, Z. Li, G. Liu, J. Xing, C. Sun, H. G. Yang, C. Li. Ultra-thin anatase TiO2 nanosheets dominated with{001} facets:thickness-controlled synthesis, growth mechanism and water-splitting properties. CrystEngComm,2011,13(5):1378-1383.
    [116]W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong, A. R. Mohamed. Highly reactive{001} facets of TiO2-based composites:synthesis, formation mechanism and characterization. Nanoscale. 2014; 6(4):1946-2008.
    [117]S. Iijima. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58.
    [118]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan. One-dimensional nanostructures:synthesis, characterization, and applications. Advanced Materials,2003,15(5):353-389.
    [119]R L. Penn, J. F. Banfield. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases:Insights from nanocrystalline TiO2. American Mineralogist, 1998,83(9-10):1077-1082.
    [120]R K. Mallavajula, L. A. Archer. Nanocrystal Self-assembly assisted by oriented attachment. Angewandte Chemie International Edition,2011,50(3):578-580.
    [121]E. J. H. Lee, C. Ribeiro, E. Longo, E. R. Leite. Oriented attachment:An effective mechanism in the formation of anisotropic nanocrystals. The Journal of Physical Chemistry B,2005,109(44):20842-20846.
    [122]Q. Zhang, S. J. Liu, S. H. Yu. Recent advances in oriented attachment growth and synthesis of functional materials:concept, evidence, mechanism, and future. Journal of Materials Chemistry,2009,19(2):191-207.
    [123]J. Zhang, F. Huang, Z. Lin. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale,2010,2(1):18-34.
    [124]J. van de Lagemaat, A. J. Frank. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films:transient photocurrent and random-walk modeling studies. The Journal of Physical Chemistry B,2001,105(45):11194-11205.
    [125]H. Z. Zhang, J. F. Banfield. Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania. Chemistry of Materials,2002,14(10): 4145-4154.
    [126]S. Kumar, T. Nann. Shape control of Ⅱ-Ⅵ semiconductor nanomaterials. Small,2006,2(3): 316-329.
    [127]P. J. Thistlethwaite, M. S. Hook. Diffuse reflectance Fourier transform infrared study of the adsorption of oleate/oleic acid onto titania. Langmuir,2000,16(11):4993-4998.
    [128]J. F. Liu, Y. D. Li. Synthesis and Self-Assembly of Luminescent Ln3+-Doped LaVO4 Uniform Nanocrystals. Advanced Materials,2007,19(8):1118-1122.
    [129]J. C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang, L. Z. Zhang. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials,2002,14(9):3808-3816.
    [130]Q. F. Zhang, G. Z. Cao. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today,2011,6(1):91-109.
    [131]M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, F.M. Wang. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. Journal of the American Chemical Society,2004,126(45):14943-14949.
    [132]Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida. Dye-sensitized TiO2 nanotube solar cells:fabrication and electronic characterization. Physical Chemistry Chemical Physics,2005,7(24):4157-4163.
    [133]A. Hagfeldt, M. Gratzel. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews,1995,95(1):49-68.
    [134]Z. Chen, Z. Jiao, D. Pan, Z. Li, M. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai. Recent advances in manganese oxide nanocrystals:fabrication, characterization, and microstructure. Chemical Reviews,2012,112(7):3833-3855.
    [135]Y. Li, H. Y. Tan, X. Y. Yang, B. Goris, J. Verbeeck, S. Bals, P. Colson, R. Cloots, G. Van Tendeloo, B. L. Su. Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties. Small,2011,7(4):475-483.
    [136]R. Bussamara, W. W. M. Melo, J. D. Scholten, P. Migowski, G. Marin, M. J. M. Zapata, G. Machado, S. R. Teixeira, M. A. Novak, J. Dupont. Controlled synthesis of Mn3O4 nanoparticles in ionic liquids. Dalton Transactions.2013;40 (42):14473-14479.
    [137]N. Zhao, W. Nie, X. Liu, S. Tian, Y. Zhang, X. Ji. Shape- and size-controlled synthesis and dependent magnetic properties of nearly monodisperse Mn3O4 nanocrystals. Small,2008, 4(1):77-81.
    [138]J. Zhang, J. Du, H. Wang, J. Wang, Z. Qu, L. Jia. A novel mild route to hausmannite Mn3O4 nanocubes at room temperature and its catalytic performance. Materials Letters,2011, 65(17):2565-2567.
    [139]C. K. Tsung, J. Fan, N. Zheng, Q. Shi, A. J. Forman, J. Wang, G. D. Stucky. A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. Angewandte Chemie International Edition,2008,47(45):8682-8686.
    [140]Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou. Assembling carbon-coated a-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy & Environmental Science,2012,5(1):5252-5256.
    [141]L. Li, Z. Guo, A. Du, H. Liu. Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties. Journal of Materials Chemistry,2012, 22(8):3600-3605.
    [142]D.W. Wang, Y. Q. Li, Q. H. Wang, T. M. Wang. Facile synthesis of porous Mn3O4 nanocrystal-graphene nanocomposites for electrochemical supercapacitors. European Journal of Inorganic Chemistry,2012,2012(4):628-635.
    [143]H. L. Wang, L. F. Cui, Y. A. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H. J. Dai. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. Journal of the American Chemical Society,2010,132(40):13978-13980.
    [144]J. Jamnik, J. Maier. Nanocrystallinity effects in lithium battery materials Aspects of nano-ionics. Part IV. Physical Chemistry Chemical Physics,2003,5(23):5215-5220.
    [145]N. Lavoie, P. R. L. Malenfant, F. M. Courtel, Y. Abu-Lebdeh, I. J. Davidson. High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium-ion battery anodes. Journal of Power Sources,2012,213:249-254.
    [146]J. Gao, M. A. Lowe, H. D. Abruna. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chemistry of Materials,2011,23(13): 3223-3227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700