SF/SA/HAp复合水凝胶研究及其生物相容性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨作为人体最大的组织器官,承担着生命活动的重要职责,我国每年因交通事故、股骨头坏死等原因导致骨缺损的患者超过百万人,骨组织修复一直是再生医学领域的难题和研究热点之一。临床修复过程中迫切需要具有生物相容性和生物降解性的再生骨修复支架材料。现有研究表明丝素蛋白(SF)具有良好的生物相容性及再生加工性能。由于人体本身是一典型的胶体系统,制备类细胞外基质结构的SF基水凝胶支架用作骨修复材料成为新的研究方向。本文在研究SF的silk I结构及纤维化水凝胶的制备方式基础上,引入海藻酸钠(SA),制备SF/SA纤维水凝胶,研究纤维凝胶的制备条件及理化性能,在此研究基础上,采用仿生矿化原理,探讨纤维凝胶体系对羟基磷灰石(HAp)晶体生长形貌的调控;通过体外细胞培养实验,研究骨髓间充质干细胞在纤维凝胶材料上的生长情况。
     本文通过改变环境温湿度等影响因素,调控SF溶液的干燥速率,成功制备SF的silk I结晶结构,并建立SF溶液形成silk I结构的干燥速率方程。系统地对silk I结构形成影响因素进行分析,溶液浓度和干燥速率均会影响silk I结构的形成;silk I结构的形成过程中伴随着SF分子通过氢键、亲疏水性及静电作用等形成稳定纳米纤维网状形貌。Silk I结构膜的性能研究结果表明:材料断面有大量的纳米纤维存在,可在相对较低的温度条件(5或-20℃)下长期保持silk I结构;silk I结构膜在干态下表现出良好的力学性能,其断裂应力为38.68±6.21MPa。
     以酸/盐为溶解体系溶解SF纤维获得再生SF溶液,并采用9.3M溴化锂溶液再溶解,获得SF水溶液,该溶液中SF为纳米线状形貌,且为无规卷曲结构;采用该两步法溶解制备的SF溶液的凝胶过程为自上而下渐进式进行的,凝胶形成过程中SF分子形成纤维网状形貌的同时其结构也由无规卷曲转变成β-sheet;此外,SF纤维凝胶具有良好的压缩力学性能,为类细胞外基质结构水凝胶的制备提供了前提条件。
     将两步法获得的SF溶液与SA溶液共混,制备SF/SA纤维凝胶。研究结果表明SA添加量增加,会延迟胶凝时间;SF/SA纤维凝胶中SF的二级结构以β-sheet为主,同时,纤维凝胶的力学性能随SA含量的增加,其压缩应力呈现下降趋势。从化学组成和结构仿生的角度出发,以SF/SA纤维凝胶为矿化模板,在纤维凝胶体系中诱导HAp晶体的生长。实验结果表明,通过改变矿化过程中的矿化温度、矿化时间及溶液pH值等影响因素,可以调控获得形貌相近的棒状HAp晶体。同时,运用有机基质诱导成核理论中的静电积累-Ionotropic模型,对纤维凝胶体系中HAp晶体形貌的调控进行了探讨。
     根据激光共聚焦显微镜、扫描电子显微镜及MTT测试结果可知,人骨髓间充质干细胞(hMSCs)和小鼠骨髓间充质干细胞(BMSCs)在SF基纤维凝胶上有良好的粘附和增殖能力。同时,SF/SA纤维凝胶中SA含量的变化对hMSCs细胞的粘附和增殖影响不明显。
     通过本文的研究,阐明了SF基纤维水凝胶的制备方法及其形成机理,并发现纤维凝胶体系能够调控棒状HAp晶体的生长,为制备骨组织修复材料提供了一定的实验依据。
As the body’s largest tissues and organs, bone has an important responsibility of lifeactivities. At present, the number of patients is more than one million people every year inChina, which are caused by traffic accident, femoral head necrosis and other reasons. Bonetissue repair is one of difficult problem and research topic in the field of regenerativemedicine, what’s more, clinical rehabilitation urgently needs a large number of regeneratedscaffold materials with biocompatibility and biodegradability. Up to now, many literaturesindicate silk fibroin (SF) has good biocompatibility and regeneration processingperformance. At the same time, human body itself is a typical colloid system, how toprepare the similar extracellular matrix structure of SF-based hydrogel scaffold serving asbone repair materials has been a new research field.
     Based on these researches such as silk I conformation of SF and the preparation of SFnanofiber hydrogels, this paper prepares silk fibroin/sodium alginate (SF/SA) nanofiberhydrogels through simply mixing solution. And then, it researches the preparationconditions and physicochemical properties of SF/SA nanofiber hydrogels. Moreover, usingbiomimetic mineralization principle, this paper also discusses hydroxyapatite (HAp)crystals growth regulating and controlling in nanofiber hydrogels. In addition, through cellculture in vitro, the proliferation of bone marrow stem cells is discussed on the nanofiberhydrogels.
     Firstly, the drying rate of SF solution is controlled by changing temperature, humidityand other factors, and on this basis, the silk I conformation of SF is successfully prepared,simultaneously, the drying rate equation of silk I conformation is established. At the sametime, this paper systematically analyzes some factors affecting silk I formation. The resultsshow solution concentration and drying rate will affect the conformation of silk I formation.Furthermore, in the silk I formation process, SF molecules are self-assembled into stablenanofiber network through hydrogen bond, hydrophilicity and electrostatic interactions etc.In addition, SF films with silk I conformation are analyzed and the results are as follows: many nanofibers are existed in the cross-section of films; silk I conformation of SF issustained for a long time at relatively low temperature condition such as5℃or-20℃.At the same time, SF film with silk I conformation shows excellent mechanical propertiesand its breaking stress reaching up to38.68±6.21MPa.
     Secondly, SF fibers are dissolved in acid/salt solution, and then, the regenerated SFmaterials are dissolved in9.3M lithium bromide solution, obtaining SF aqueous solution.This dissolution process is called two-step dissolution method. In SF aqueous solution, SFmolecules are nanofiber structure and its secondary structure is random coil. The gelationprocess of SF solution is top-down, simultaneously, SF molecules are self-assembled intonanofiber networks, and its secondary structure is transferred from random coil to β-sheet.In addition, SF nanofiber hydrogels have excellent compressive strain. The preparationprocess of SF nanofiber hydrogels is provided a method for preparing similar extracellularmatrix structure of hydrogels.
     SF/SA nanofiber hydrogels are prepared by mixing SF and SA solution with variousproportions, which SF solution is prepared by two-step dissolution method. It is found thatthe content of SA increasing, the gelation time of nanofiber hydrogel delaying. Thesecondary structure of SF is mainly β-sheet in nanofiber hydrogels, at the same time, thecompressive stress of SF/SA nanofiber hydrogels is trending downward with increasing SAcontent in hydrogels. Furthermore, from the perspective of chemical composition andstructural bionics, SF/SA nanofiber hydrogel as a template is used to control HAp crystalgrowth in hydrogel system. The results demonstrate that HAp nanorods crystals are grownthrough changing temperature, mineralization times, pH and other factors in mineralprocess. At the same time, the morphology of HAp crystals controlling by nanofiberhydrogels is discussed by using electrostatic accumulation-Ionotropic model in nucleationtheory induced by organic matrix.
     Based on confocal scanning laser microscope, scanning electron microscope, andMTT assay, human mesenchymal stem cells (hMSCs) and bone marrow mesenchymalstem cells (BMSCs) have individually good adhesion and proliferation on SF-basednanofiber hydrogels, at the same time, there are no signs of inhibition of SF/SA nanofiberhydrogel to attachment and proliferation of hMSCs under changing the SA content inhydrogels.
     Through above researches, this paper clarifies the preparation method and physicochemical properties of SF-based nanofiber hydrogels and its formation mechanism.At the same time, HAp crystal growth is controlled in hydrogel systems. The researchideas may provide some experimental results for preparation of bone tissue repairmaterials.
引文
[1] F. Barrere, C.A. van Blitterswijk, K. de Groot. Bone regeneration molecular andcellular interactions with calcium phosphate ceramics. International Journal ofNanomedicine2006,1(3):317-332.
    [2] Q. Fu, N. Zhou, W.H. Huang, D.P. Wang, L.Y. Zhang, H.F. Li. Effects of nano HAP onbiological and structural properties of glass bone cement. Journal of BiomedicalMaterials Research Part A2005,74A(2):156-163.
    [3] P. Ducheyne, Q. Qiu. Bioactive ceramics the effect of surface reactivity on boneformation and bone cell function. Biomaterials1999,20(23-24):2287-2303.
    [4] X.H. Liu, P.X. Ma. Polymeric scaffolds for bone tissue engineering. Annals ofBiomedical Engineering2004,32(3):477-486.
    [5] D. Puppi, F. Chiellini, A.M. Piras, E. Chiellini. Polymeric materials for bone andcartilage repair. Progress in Polymer Science2010,35(4):403-440.
    [6] S.S. Liao, F.Z. Cui, W. Zhang, Q.L. Feng. Hierarchically biomimetic bone scaffoldmaterials nano-HA/collagen/PLA composite. Journal of Biomedical MaterialsResearch Part B Applied Biomaterials2004,69B(2):158-165.
    [7] H.R. Lin, Y.J. Yeh. Porous alginate/hydroxyapatite composite scaffolds for bone tissueengineering preparation characterization and in vitro studies. Journal of BiomedicalMaterials Research Part B Applied Biomaterials2004,71B(1):52-65.
    [8] H. Suh, J.C. Park, D.W. Han, D.H. Lee, C.D. Han. A bone replaceable artificial bonesubstitute cytotoxicity cell adhesion proliferation and alkaline phosphatase activity.Artificial Organs2001,25(1):14-21.
    [9] Y.M. Kong, S. Kim, H.E. Kim, I.S. Lee. Reinforcement of hydroxyapatite bioceramicby addition of ZrO2coated with Al2O3. Journal of the American Ceramic Society1999,82(11):2963-2968.
    [10] G.W. Jiang, D.L. Shi. Coating of hydroxyapatite on highly porous Al2O3substrate forbone substitutes. Journal of Biomedical Materials Research1998,43(1):77-81.
    [11] Y. Josset, Z.O. Hamed, A. Zarrinpour, M. Lorenzato, J.J. Adnet, D. Laurent-Maquin.In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics.Journal of Biomedical Materials Research1999,47:481-493.
    [12] J.E. Gough, J.R. Jones, L.L. Hench. Nodule formation and mineralization of humanprimary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials2004,25(11):2039-2046.
    [13] D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, Y.F. Missirlis. Effect of surfaceroughness of hydroxyapatite on human bone marrow cell adhesion proliferationdifferentiation and detachment strength. Biomaterials2000,22(1):87-96.
    [14] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini. Biodegradable and bioactiveporous polymer/inorganic composite scaffolds for bone tissue engineering.Biomaterials2006,27(18):3413-3431.
    [15] T.D. Roy, J.L. Simon, J.L. Ricci, E.D. Rekow, V.P. Thompson, J.R. Parsons.Performance of degradable composite bone repair products made via threedimensional fabrication techniques. Journal of Biomedical Materials Research Part A2003,66A(2):283-291.
    [16] R. Murugan, S. Ramakrishna. Bioresorbable composite bone paste usingpolysaccharide based nano hydroxyapatite. Biomaterials2004,25(17):3829-3835.
    [17] L. Chen, J.X. Hu, J.B. Ran, X.Y. Shen, H. Tong. Preparation and evaluation ofcollagen silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering.International Journal of Biological Macromolecules2014,65:1-7.
    [18] O. Wichterle, D. Lim. Hydrophilic gels for biological use. Nature1960,185:117-118.
    [19] J.L. Drury, D.J. Mooney. Hydrogels for tissue engineering scaffold design variablesand applications. Biomaterials2003,24(24):4337-4351.
    [20] Y. Luo, K.R. Kirker, G.D. Prestwich. Cross-linked hyaluronic acid hydrogel films newbiomaterials for drug delivery. Journal of Controlled Release2000,69(1):169-184.
    [21] A. Khademhosseini, R. Langer. Microengineered hydrogels for tissue engineering.Biomaterials2007,28(34):5087-5092.
    [22] L. Yu, J.D. Ding. Injectable hydrogels as unique biomedical materials. ChemicalSociety Reviews2008,37:1473-1481.
    [23] S.R. Van Tomme, G. Storm, W.E. Hennink. In situ gelling hydrogels forpharmaceutical and biomedical applications. International Journal of Pharmaceutics2008,355(1-2):1-18.
    [24] N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa. Hydrogels in pharmaceuticalformulations. European Journal of Pharmaceutics and Biopharmaceutics2000,50(1):27-46.
    [25] B. Jeong, Y.H. Bae, S.W. Kim. Drug release from biodegradable injectablethermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. Journal ofControlled Release2000,63(1-2):155-163.
    [26] E. Wenk, H.P. Merkle, L. Meinel. Silk fibroin as a vehicle for drug deliveryapplications. Journal of Controlled Release2011,150(2):128-141.
    [27] G. Liu, D.C. Zhao, A.P. Tomsia, A.M. Minor, X.Y. Song, E. Saiz. Three-dimensionalbiomimetic mineralization of dense hydrogel templates. Journal of the AmericanChemical Society2009,131(29):9937-9939.
    [28] Y.F. Ma, Q.L. Feng, X. Bourrat. A novel growth process of calcium carbonate crystalsin silk fibroin hydrogel system. Materials Science and Engineering C2013,33(4):2413-2420.
    [29] E. Asenath-Smith, H.Y. Li, E.C. Keene, Z.W. She, L.A. Estroff. Crystal growth ofcalcium carbonate in hydrogels as a model of biomineralization. Advanced FunctionalMaterials2012,22(14):2891-2914.
    [30] R.I. Petrova, J.A. Swift. Habit changes of sodium bromate crystals grown from gelmedia. Crystal Growth&Design2002,2(6):573-578.
    [31] J.M. Ouyang, S.P. Deng, X.P. Li, Y.H. Tan, T.K. Bernd. Effects of temperature andsodium carboxylate additives on mineralization of calcium oxalate in silica gelsystems. Science in China Series B Chemistry2004,47(4):311-319.
    [32] H.B. Wen, J. Moradian-Oldak, A.G. Fincham. Dose-dependent modulation ofoctacalcium phosphate crystal habit by amelogenins. Journal of Dental Research2000,79(11):1902-1906.
    [33] G. Gafni, D. Septier, M. Goldberg. Effect of chondroitin sulfate and biglycan on thecrystallization of hydroxyapatite under physiological conditions. Journal of CrystalGrowth1999,205(4):618-623.
    [34] S. Boggavarapu, J. Chang, P. Calvert. A test for mineralization inhibition for calciumsalts using agarose hydrogels. Materials Science and Engineering C2000,11(1):47-49.
    [35] T.K. Anee, M. Palanichamy, M. Ashok, N.M. Sundaram, S.N. Kalkura. Influence ofiron and temperature on the crystallization of calcium phosphates at the physiologicalpH. Materials Letters2004,58(3-4):478-482.
    [36] D. Yang, L.M. Qi, J.M. Ma. Well-defined star-sharped calcite crystals formed inagarose gels. Chemical Communications2003:1180-1181.
    [37] S. Eiden-Amann, M. Viertelhaus, A. Hei, K.A. Hoetzer, J. Felsche. The influence ofamino acids on the biomineralization of hydroxyapatite in gelatin. Journal ofInorganic Biochemistry2002,91(3):481-486.
    [38] L.A. Estroff, L. Addadi, S. Weiner, A.D. Hamilton. An organic hydrogel as a matrixfor the growth of calcite crystals. Organic&Biomolecular Chemistry2004,2(1):137-141.
    [39] J.J. Watanabe, M. Akashi. Novel biomineralization for hydrogels electrophoresisapproach accelerates hydroxyapatite formation in hydrogels. Biomacromolecules2006,7(11):3008-3011.
    [40]曹正兵.丝素蛋白自组装行为及其在生物医药方面的应用研究[D].复旦大学2005.
    [41] J. Kirimura. Studies on amino acid composition and chemical structure of silk proteinby microbiological determination. Bulletin Sericultural Experiment Station Japan1962,17:447-522.
    [42] Y.Q. Zhang. Application of natural silk protein sericin in biomaterials. BiotechnologyAdvances2002,20(2):91-100.
    [43] C.Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z.G. Li, J. Janin. Silk fibroinstructural implications of a remarkable amino acid sequence. Proteins StructureFunction and Bioinformatics2001,44(2):119-122.
    [44] B. Lotz, F.C. Cesari. The chemical structure and the crystalline structures of Bombyxmori silk fibroin. Biochimie1979,61(2):205-214.
    [45] T. Asakura, J. Ashida, T. Yamane, T. Kameda, Y. Nakazawa, K. Ohgo, K. Komatsu. Arepeated β-turn structure in Poly(Ala-Gly) as a model for silk I of Bombyx mori silkfibroin studied with two-dimensional spin diffusion NMR under off magic anglespinning and rotational echodouble resonance. Journal of Molecular Biology2001,306(2):291-305.
    [46] S. Sofia, M.B. McCarthy, G. Gronowicz, D.L. Kaplan. Functionalized silk-basedbiomaterials for bone formation. Journal of Biomedical Materials Research2001,54(1):139-148.
    [47] Y.M. Yang, X.M. Chen, F. Ding, P.Y. Zhang, J. Liu, X.S. Gu. Biocompatibilityevaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials2007,28(9):1643-1652.
    [48] S. Hofmann, C.T.W.P. Foo, F. Rossetti, M. Textor, G. Vunjak-Novakovic, D.L. Kaplan,H.P. Merkle, L. Meinel. Silk fibroin as an organic polymer for controlled drugdelivery. Journal of Controlled Release2006,111(1-2):219-227.
    [49] E. Wenk, A.J. Wandrey, H.P. Merkle, L. Meinel. Silk fibroin spheres as a platform forcontrolled drug delivery. Journal of Controlled Release2008,132(1):26-34.
    [50] Y.Q. Zhang. Natural silk fibroin as a support for enzyme immobilization.Biotechnology Advances1998,16(5-6):961-971.
    [51] H. Yoshimizu, T. Asakura. Preparation and characterization of silk fibroin powder andits application to enzyme immobilization. Journal of Applied Polymer Science1990,40(1-2):127-134.
    [52] C. Vepari, D.L. Kaplan. Silk as a biomaterial. Progress in Polymer Science2007,32(8-9):991-1007.
    [53] L. Uebersax, M. Mattotti, M. Papaloizos, H.P. Merkle, B. Gander, L. Meinel. Silkfibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials2007,28(30):4449-4460.
    [54] S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, S. Mizuno. Silk fibroin ofBombyx mori is secreted assembling a high molecular mass elementary unitconsisting of H-chain L-chain and P25with a6:6:1molar ratio. The Journal ofBiological Chemistry2000,275(51):40517-40528.
    [55] K. Tanaka, S. Inoue, S. Mizuno. Hydrophobic interaction of P25containingAsn-linked oligosaccharide chains with the H-L complex of silk fibroin produced byBombyx mori. Insect Biochemistry and Molecular Biology1999,29(3):269-276.
    [56] A.M. Mathur, S.K. Moorjani, A.B. Scranton. Methods for synthesis of hydrogelnetworks a review. Journal of Macromolecular Science Part C Polymer Reviews1996,36(2):405-430.
    [57] K. Kabiri, H. Omidian, M.J. Zohuriaan-Mehr, S. Doroudiani. Superabsorbenthydrogel composites and nanocomposites a review. Polymer Composites2011,32(2):277-289.
    [58] J. Kopecek. Hydrogel biomaterials a smart future. Biomaterials2007,28(34):5185-5192.
    [59] T. Yucel, P. Cebe, D.L. Kaplan. Vortex-induced injectable silk fibroin hydrogels.Biophysical Journal2009,97(7):2044-2050.
    [60] U.J. Kim, J. Park, C.M. Li, H.J. Jin, R. Valluzzi, D.L. Kaplan. Structure and propertiesof silk hydrogels. Biomacromolecules2004,5(3):786-792.
    [61] X. Hu, Q. Lu, L. Sun, P. Cebe, X.Q. Wang, X.H. Zhang, D.L. Kaplan. Biomaterialsfrom ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.Biomacromolecules2010,11(11):3178-3188.
    [62] X.Q. Wang, J.A. Kluge, G.G. Leisk, D.L. Kaplan. Sonication-induced gelation of silkfibroin for cell encapsulation. Biomaterials2008,29(8):1054-1064.
    [63] A. Motta, C. Migliaresi, F. Faccioni, P. Torricelli, M. Fini, R. Giardino. Fibroinhydrogels for biomedical applications preparation characterization and in vitro cellculture studies. Journal of Biomaterials Science Polymer Edition,2004,15(7):851-864.
    [64] E.S. Gil, D.J. Frankowski, R.J. Spontak, S.M. Hudson. Swelling behavior andmorphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules2005,6(6):3079-3087.
    [65] E.S. Gil, R.J. Spontak, S.M. Hudson. Effect of β-sheet crystals on the thermal andrheological behavior of protein-based hydrogels derived from gelatin and silk fibroin.Macromolecular Bioscience2005,5(8):702-709.
    [66] W.Q. Xiao, J.K. He, J.W. Nichol, L.Y. Wang, C.B. Hutson, B. Wang, Y.N. Du, H.S.Fan, A. Khademhosseini. Synthesis and characterization of photocrosslinkable gelatinand silk fibroin interpenetrating polymer network hydrogels. Acta Biomaterialia2011,7(6):2384-2393.
    [67] N. Guziewicz, A. Best, B. Perez-Ramirez, D.L. Kaplan. Lyophilized silk fibroinhydrogels for the sustained local delivery of therapeutic monoclonal antibodies.Biomaterials2011,32(10):2642-2650.
    [68] G.M. Nogueira, M.A. de Moraes, A.C.D. Rodas, O.Z. Higa, M.M. Beppu. Hydrogelsfrom silk fibroin metastable solution formation and characterization from abiomaterial perspective. Materials Science and Engineering C2011,31(5):997-1001.
    [69] A. Matsumoto, J.S. Chen, A.L. Collette, U.J. Kim, G.H. Altman, P. Cebe, D.L. Kaplan.Mechanism of silk fibroin sol-gel transitions. The Journal of Physical Chemistry B2006,110(43):21630-21638.
    [70] S.S. Silva, T.C. Santos, M.T. Cerqueira, A.P. Marques, L.L. Reys, T.H. Silva, S.G.Caridade, J.F. Mano, R.L. Reis. The use of ionic liquids in the processing ofchitosan/silk hydrogels for biomedical applications. Green Chemistry2012,14:1463-1470.
    [71] I. Karakutuk, F. Ak, O. Okay. Diepoxide-triggered conformational transition of silkfibroin formation of hydrogels. Biomacromolecules2012,13(4):1122-1128.
    [72] G.D. Kang, J.H. Nahm, J.S. Park, J.Y. Moon, C.S. Cho, J.H. Yeo. Effects of poloxameron the gelation of silk fibroin. Macromolecular Rapid Communications2000,21(11):788-791.
    [73] T.Y. Zhong, C.M. Deng, Y.F. Gao, M. Chen, B.Q. Zuo. Studies of in situ-forminghydrogels by blending PLA-PEG-PLA copolymer with silk fibroin solution. Journalof Biomedical Materials Research Part A2012,100A(8):1983-1989.
    [74] W.Q. Xiao, W.L. Liu, J. Sun, X.L. Dan, D. Wei, H.S. Fan. Ultrasonication and genipincrosslinking to prepare novel silk fibroin-gelatin composite hydrogel. Journal ofBioactive and Compatible Polymers2012,27(4):327-341.
    [75] X.L. Wu, J. Hou, M.Z. Li, J.N. Wang, D.L. Kaplan, S.Z. Lu. Sodium dodecylsulfate-induced rapid gelation of silk fibroin. Acta Biomaterialia2012,8(6):2185-2192.
    [76] S. Nagarkar, A. Patil, A. Lele, S. Bhat, J. Bellare, R.A. Mashelkar. Some mechanisticinsights into the gelation of regenerated silk fibroin sol. Industrial and EngineeringChemistry Research2009,48(17):8014-8023.
    [77] K. Numata, T. Katashima, T. Sakai. State of water molecular structure and cytotoxicityof silk hydrogels. Biomacromolecules2011,12(6):2137-2144.
    [78] W. Shen, R.G.H. Lammertink, J.K. Sakata, J.A. Kornfield, D.A. Tirrell. Assembly ofan artificial protein hydrogel through leucine zipper aggregation and disulfide bondformation. Macromolecules2005,38(9):3909-3916.
    [79] L. Huang, C. Li, W.J. Yuan, G.G. Shi. Strong composite films with layered structuresprepared by casting silk fibroin-graphene oxide hydrogels. Nanoscale2013,5:3780-3786.
    [80] M.K. Yoo, H.Y. Kweon, K.G. Lee, H.C. Lee, C.S. Cho. Preparation ofsemi-interpenetrating polymer networks composed of silk fibroin and poloxamermacromer. International Journal of Biological Macromolecules2004,34(4):263-270.
    [81] M.Z. Li, S.Z. Lu, Z.Y. Wu, K. Tan, N. Minoura, S. Kuga. Structure and properties ofsilk fibroin-poly(vinyl alcohol) gel. International Journal of BiologicalMacromolecules2002,30(2):89-94.
    [82] Y.P. Huang, B.P. Zhang, G.W. Xu, W.T. Hao. Swelling behaviours and mechanicalproperties of silk fibroin-polyurethane composite hydrogels. Composites Science andTechnology2013,84:15-22.
    [83] J.G. Hu, B. Chen, F. Guo, J.Y. Du, P.C. Gu, X.J. Lin, W.P. Yang, H.L. Zhang, M. Lu,Y.P. Huang, G.W. Xu. Injectable silk fibroin/polyurethane composite hydrogel fornucleus pulposus replacement. Journal of Materials Science Materials in Medicine2012,23(3):711-722.
    [84] B.B. Mandal, S. Kapoor, S.C. Kundu. Silk fibroin/polyacrylamidesemi-interpenetrating network hydrogels for controlled drug release. Biomaterials2009,30(14):2826-2836.
    [85] H. Guo, J.M. Zhang, T. Xu, Z.D. Zhang, J.R. Yao, Z.Z. Shao. The robust hydrogelhierarchically assembled from a pH sensitive peptide amphiphile based on silk fibroin.Biomacromolecules2013,14(8):2733-2738.
    [86] B. Balakrishnan, R. Banerjee. Biopolymer-based hydrogels for cartilage tissueengineering. Chemical Reviews2011,111:4453-4474.
    [87] F.P. Seib, E.M. Pritchard, D.L. Kaplan. Self-assembling doxorubicin silk hydrogels forthe focal treatment of primary breast cancer. Advanced Functional Materials2013,23(1):58-65.
    [88] X. Liu, X.M. Wang, X.J. Wang, H. Ren, J. He, L. Qiao, F.Z. Cui. Functionalizedself-assembling peptide nanofiber hydrogels mimic stem cell niche to control humanadipose stem cell behavior in vitro. Acta Biomaterialia2013,9(6):6798-6805.
    [89] M.Z. Li, M. Ogiso, N. Minoura. Enzymatic degradation behavior of porous silkfibroin sheets. Biomaterials2003,24(2):357-365.
    [90] R.L. Horan, K. Antle, A.L. Collette, Y.Z. Wang, J. Huang, J.E. Moreau, V. Volloch,D.L. Kaplan, G.H. Altman. In vitro degradation of silk fibroin. Biomaterials2005,26(17):3385-3393.
    [91] Y.M. Yang, Y.H. Zhao, Y. Gu, X.L. Yan, J. Liu, F. Ding, X.S. Gu. Degradationbehavior of nerve guidance conduit made up of silk fibroin in vitro and in vivo.Polymer Degradation and Stability2009,94(12):2213-2220.
    [92] J.M. Wasikiewicz, F. Yoshii, N. Nagasawa, R.A. Wach, H. Mitomo. Degradation ofchitosan and sodium alginate by gamma radiation, sonochemical and ultravioletmethods. Radiation Physics and Chemistry2005,73(5):287-295.
    [93] J.W. Rhim. Physical and mechanical properties of water resistant sodium alginatefilms. LWT-Food Science and Technology2004,37(3):323-330.
    [94] J.W. Lu, Y.L. Zhu, Z.X. Guo, P. Hu, J. Yu. Electrospinning of sodium alginate withpoly(ethylene oxide). Polymer2006,47(23):8026-8031.
    [95] F.A. Johnson, D.Q.M. Craig, A.D. Mercer. Characterization of the block structure andmolecular weight of sodium alginates. Journal of Pharmacy and Pharmacology1997,49(7):639-643.
    [96] M.A. LeRoux, F. Guilak, L.A. Setton. Compressive and shear properties of alginategel: effects of sodium ions and alginate concentration. Journal of BiomedicalMaterials Research1999,47(1):46-53.
    [97] K. Liu, H.J. Ding, J. Liu, Y. Chen, X.Z. Zhao. Shape-controlled production ofbiodegradable calcium alginate gel microparticles using a novel microfluidic device.Langmuir2006,22(22):9453-9457.
    [98] B.T. Stokke, K.I. Draget, O. Smidsrod, Y. Yuguchi, H. Urakawa, K. Kajiwara. Smallangle X-ray scattering and rheological characterization of alginate gels Ca-alginategels. Macromolecules2000,33(5):1853-1863.
    [99] A.D. Augst, H.J. Kong, D.J. Mooney. Alginate hydrogels as biomaterials.Macromolecular Bioscience2006,6(8):623-633.
    [100] X. Liu, D.W. Chen, L.P. Xie, R.Q. Zhang. Oral colon-specific drug delivery for beevenom peptide development of a coated calcium alginate gel beads-entrappedliposome. Journal of Controlled Release2003,93(3):293-300.
    [101] A. Thomas, K.G. Harding, K. Moore. Alginate from wound dressings activate humanmacrophages to secrete tumour necrosis factor-α. Biomaterials2000,21(17):1797-1802.
    [102] T. Hashimoto, Y. Suzuki, M. Tanihara, Y. Kakimaru, K. Suzuki. Development ofalginate wound dressings linked with hybrid peptides derived from laminin andelastin. Biomaterials2004,25(7-8):1407-1414.
    [103] C.K. Kuo, P.X. Ma. Ionically crosslinked alginate hydrogels as scaffolds for tissueengineering Part1structure gelation rate and mechanical properties. Biomaterials2001,22(6):511-521.
    [104] A.J. Thornton, E. Alsberg, M. Albertelli, D.J. Mooney. Shape-defining scaffolds forminimally invasive tissue engineering. Experimental Transplantation2004,77(12):1798-1803.
    [105] J.S. Yang, Y.J. Xie, W. He. Research progress on chemical modification of alginate areview. Carbohydrate Polymers2011,84(1):33-39.
    [106]谭荣伟.海藻酸基可注射骨修复材料的研究[D].清华大学,2011.
    [107] M. Tanihara, Y. Suzuki, E. Yamamoto, A. Noguchi, Y. Mizushima. Sustained releaseof basic fibroblast growth factor and angiogenesis in a novel covalently crosslinkedgel of heparin and alginate. Journal of Biomedical Materials Research2001,56(2):216-221.
    [108] S.T. Moe, G. Skjaak-Braek, A. Elgsaeter, O. Smidsroed. Swelling of covalentlycrosslinked alginate gels influence of ionic solutes and nonpolar solvents.Macromolecules1993,26(14):3589-3597.
    [109] P. Eiselt, K.Y. Lee, D.J. Mooney. Rigidity of two-component hydrogels preparedfrom alginate and poly(ethylene glycol) diamines. Macromolecules1999,32(17):5561-5566.
    [110] K.Y. Lee, D.J. Mooney. Alginate properties and biomedical applications. Progress inPolymer Science2012,37(1):106-126.
    [111] K.A. Smeds, M.W. Grinstaff. Photocrosslinkable polysaccharides for in situ hydrogelformation. Journal of Biomedical Materials Research2001,54(1):115-121.
    [112] M.Z. Lu, H.L. Lan, F.F. Wang, S.J. Chang, Y.J. Wang. Cell encapsulation withalginate and α-phenoxycinnamyldiene-acetylated poly(allylamine). Biotechnologyand Bioengineering2000,70(5):479-483.
    [113] K.S. Khairou, W.M. Al-Gethami, R.M. Hassan. Kinetics and mechanism of sol-geltransition between sodium alginate polyelectrolyte and some heavy divalent metalions with formation of capillary structure polymembranes ionotropic gels. Journal ofMembrane Science2002,209(2):445-456.
    [114] T. Andersen, J.E. Melvik, O. Gaserod, E. Alsberg, B.E. Christensen. Ionically gelledalginate foams physical properties controlled by type amount and source of gellingions. Carbohydrate Polymers2014,99:249-256.
    [115] A. Haug, O. Smidsrod. The effect of divalent metals on the properties of alginatesolutions. Acta Chemica Scandinavica1965,19:341-351.
    [116] A. Blandino, M. Macias, D. Cantero. Formation of calcium alginate gel capsulesinfluence of sodium alginate and CaCl2concentration on gelation kinetics Journal ofBioscience and Bioengineering1999,88(6):686-689.
    [117] K. Potter, B.J. Balcom, T.A. Carpenter, L.D. Hall. The gelation of sodium alginatewith calcium ions studies by magnetic resonance imaging (MRI). CarbohydrateResearch1994,257(1):117-126.
    [118] J.L. Drury, R.G. Dennis, D.J. Mooney. The tensile properties of alginate hydrogels.Biomaterials2004,25(16):3187-3199.
    [119] K.Y. Lee, J.A. Rowley, P. Eiselt, E.M. Moy, K.H. Bouhadir, D.J. Mooney.Controlling mechanical and swelling properties of alginate hydrogels independentlyby cross-linker type and cross-linking density. Macromolecules2000,33:4291-4294.
    [120] Y. Park, M. Sugimoto, A. Watrin, M. Chiquet, E.B. Hunziker. BMP-2induces theexpression of chondrocyte-specific genes in bovine synovium-derived progenitor cellscultured in three dimensional alginate hydrogel. Osteoarthritis and Cartilage2005,13(6):527-536.
    [121] C.A. Simmons, E. Alsberg, S. Hsiong, W.J. Kim, D.J. Mooney. Dual growth factordelivery and controlled scaffold degradation enhance in vivo bone formation bytransplanted bone marrow stromal cells. Bone2004,35(2):562-569.
    [122] F.B. Basmanav, G.T. Kose, V. Hasirci. Sequential growth factor delivery fromcomplexed microspheres for bone tissue engineering. Biomaterials2008,29(31):4195-4204.
    [123] A. Moshaverinia, S. Ansari, C. Chen, X.T. Xu, K. Akiyama, M.L. Snead, H.H. Zadeh,S.T. Shi. Co-encapsulation of anti-BMP2monoclonal antibody and mesenchymalstem cells in alginate microspheres for bone tissue engineering. Biomaterials2013,34(28):6572-6579.
    [124] J.T. Connelly, A.J. Garcia, M.E. Levenston. Inhibition of in vitro chondrogenesis inRGD-modified three dimensional alginate gels. Biomaterials2007,28(6):1071-1083.
    [125] M.A. Lawson, J.E. Barralet, L. Wang, R.M. Shelton, J.T. Triffitt. Adhesion andgrowth of bone marrow stromal cells on modified alginate hydrogels. TissueEngineering2004,10(9-10):1480-1491.
    [126] L. Zhao, M.D. Weir, H.H.K. Xu. An injectable calcium phosphate-alginatehydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering.Biomaterials2010,31(25):6502-6510.
    [127] S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, M.Nakajima. Size control of calcium alginate beads containing living cells usingmicro-nozzle array. Biomaterials2005,26(16):3327-3331.
    [128] G. Turco, E. Marsich, F. Bellomo, S. Semeraro, I. Donati, F. Brun, M. Grandolfo, A.Accardo, S. Paoletti. Alginate/hydroxyapatite biocomposite for bone ingrowth atrabecular structure with high and isotropic connectivity. Biomacromolecules2009,10(6):1575-1583.
    [129] M.D. Weir, H.H.K. Xu, C.G. Simon. Strong calcium phosphate cement chitosan meshconstruct containing cell encapsulating hydrogel beads for bone tissue engineering.Journal of Biomedical Materials Research Part A2006,77A(3):487-496.
    [130] S. Weiner, W. Traub, H.D. Wagner. Lamellar bone structure function relations.Journal of Structural Biology1999,126(3):241-255.
    [131] S. Weiner, W. Traub. Bone structure from angstroms to microns. The FASEB Journal1992,6(3):879-885.
    [132] C.P.A.T. Klein, A.A. Driessen, K. de Groot, A. van den Hoff. Biodegradationbehavior of various calcium phosphate materials in bone tissue. Journal of BiomedicalMaterials Research1983,17(5):769-784.
    [133]刘莹.功能性纳米羟基磷灰石的制备表征及性能研究[D].吉林大学.2009
    [134]李世普,王友法.磷灰石纳米粒子的制备改性及其生物安全性[M].科学出版社,2010.
    [135]张海斌.羟基磷灰石晶粒/粒子的水热控制合成[D].中南大学,2011.
    [136]崔福斋等著.生物矿化[M].清华大学出版社,2006.
    [137] J.D. Currey. The mechanical adaptations of bones. Princeton: Princeton UniversityPress,1984.
    [138] T.G. Bromage, H.M. Goldman, S.C. McFarlin, J. Warshaw, A. Boyde, C.M. Riggs.Circularly polarized light standards for investigations of collagen fiber orientation inbone. The Anatomical Record Part B The New Anatomist2003,274B(1):157-168.
    [139] M.G. Patino, M.E. Neiders, S. Andreana, B. Noble, R.E. Cohen. Collagen anoverview. Implant Dentistry2002,11(3):280-285.
    [140] C.H. Lee, A. Singla, Y. Lee. Biomedical application of collagen. InternatioanlJournal of Pharmaceutics2001,221(1-2):1-22.
    [141] W.F. Neuman, M.W. Neuman. The nature of the mineral phase of bone. ChemicalReviews1953,53(1):1-45.
    [142] N. Roveri, G. Falini, M.C. Sidoti, A. Tampieri, E. Landi, M. Sandri, B. Parma.Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembledcollagen fibers. Materials Science and Engineering C2003,23(3):441-446.
    [143] K. Hasegawa, C.H. Turner, D.B. Burr. Contribution of collagen and mineral to theelastic anisotropy of bone. Calcified Tissue International1994,55(5):381-386.
    [144] D. Lickorish, J.A.M. Ramshaw, J.A. Werkmeister, V. Glattauer, C.R. Howlett.Collagen-hydroxyapatite composite prepared by biomimetic process. Journal ofBiomedical Materials Research Part A2004,68A(1):19-27.
    [145] J.Y. Rho, L. Kuhn-Spearing, P. Zioupos. Mechanical properties and the hierarchicalstructure of bone. Medical Engineering&Physics1998,20(2):92-102.
    [146] C.V.M. Rodrigues, P. Serricella, A.B.R. Linhares, R.M. Guerdes, R. Borojevic, M.A.Rossi, M.E.L. Duarte, M. Farina. Characterization of a bovinecollagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomateirals2003,24(27):4987-4997.
    [147] M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya, J. Tanaka. Self-organizationmechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitroand its biological reaction in vivo. Biomateirals2001,22(13):1705-1711.
    [148] M. Kikuchi, T. Ikoma, S. Itoh, H.N. Matsumoto, Y. Koyama, K. Takakuda, K.Shinomiya, J. Tanaka. Biomimetic synthesis of bone-like nanocomposites using theself-organization mechanism of hydroxyapatite and collagen. Composites Science andTechnology2004,64(6):819-825.
    [149] J.K. Cha, J.S. Lee, M.S. Kim, S.H. Choi, K.S. Cho, U.W. Jung. Sinus augmentationusing BMP-2in a bovine hydroxyapatite/collagen carrier in dogs. Journal of ClinicalPeriodontology2014,41(1):86-93.
    [150] S. Sotome, T. Uemura, M. Kikuchi, J.N. Chen, S. Itoh, J. Tanaka, T. Tateishi, K.Shinomiya. Synthesis and in vivo evaluation of a novelhydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bonemorphogenetic protein. Materials Science and Engineering C2004,24(3):341-347.
    [151] A. Letic-Gavrilovic, A. Piattelli, K. Abe. Nerve growth factor β (NGF β) delivery viaa collagen/hydroxyapatite (Col/HAp) composite and its effects on new bone ingrowth.Journal of Materials Science Materials in Medicine2003,14(2):95-102.
    [152] J. Zhou, C.X. Xu, G. Wu, X.D. Cao, L.M. Zhang, Z.C. Zhai, Z.W. Zheng, X.F. Chen,Y.J. Wang. In vitro generation of osteochondral differentiation of human marrowmesenchymal stem cells in novel collagen hydroxyapatite layered scaffolds. ActaBiomaterialia2011,7(11):3999-4006.
    [153] L. Chen, J.X. Hu, J.B. Ran, X.Y. Shen, H. Tong. Preparation and evaluation ofcollagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering.International Journal of Biological Macromolecules2014,65:1-7.
    [154] D.A. Cardoso, J.J.J.P. van den Beucken, L.L.H. Both, J. Bender, J.A. Jansen, S.C.G.Leeuwenburgh. Gelation and biocompatibility of injectable alginate-calciumphosphate gels for bone regeneration. Journal of Biological Materials Research Part A2014,102(3):808-817.
    [155] M. Wang, R. Joseph, W. Bonfield. Hydroxyapatite polyethylene composites for bonesubstitution effects of ceramic particle size and morphology. Biomateirals1998,19(24):2357-2366.
    [156] H.N. Wang, Y.B. Li, Y. Zuo, J.H. Li, S.S. Ma, L. Cheng. Biocompatibility andosteogenesis of biomimetic nano-hydroxyapatite/polyamide compostie scaffolds forbone tissue engineering. Biomateirals2007,28(22):3338-3348.
    [157] G.S. EI-Bahy, E.M. Abdelrazek, M.A. Allam, A.M. Hezma. Characterization of insitu prepared nano-hydroxyapatite/polyacrylic acid (HAp/PAAc) biocomposites.Journal of Applied Polymer Science2011,122(5):3270-3276.
    [1] H. Saito, R. Tabeta, T. Asakura, Y. Iwanaga, A. Shoji, T. Ozaki, I. Ando.High-resolution13C NMR study of silk fibroin in the solid state by thecross-polarization-magic angle spinning method conformational characterization ofsilk I and silk II type forms of Bombyx mori fibroin by the conformation-dependent13C chemical shifts. Macromolecules1984,17(7):1405-1412.
    [2] T. Asakura, R. Sugino, J.M. Yao, H. Takashima, R. Kishore. Comparative structureanalysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in theprocessed silk fiber (silk II) from Bombyx mori using solid-state13C15N and2HNMR. Biochemistry2002,41(13):4415-4424.
    [3] T. Asakura, Y. Suzuki, Y. Nakazawa. The silk I and lamella structures of (Ala-Gly)15asthe model of Bombyx mori silk fibroin studied with solid state NMR. Biotechnologyof Silk Biologically-Inspired Systems2014,5:49-68.
    [4] S.A. Fossey, G. Nemethy, K.D. Gibson, H.A. Scheraga. Conformational energy studiesof β-sheets of model silk fibroin peptides sheets of poly(Ala-Gly) chains.Biopolymers1991,31(13):1529-1541.
    [5] H.J. Jin, J. Park, V. Karageorgiou, U.J. Kim, R. Valluzzi, P. Cebe, D.L. Kaplan.Water-stable silk films with reduced β-sheet content. Advanced Functional Materials2005,15(8):1241-1247.
    [6] P. Zhou, X. Xie, D.P. Knight, X.H. Zong, F. Deng, W.H. Yao. Effects of pH and calciumions on the conformational transitions in silk fibroin using2D Raman correlationspectroscopy and13C solid-state NMR. Biochemistry2004,43(35):11302-11311.
    [7] C.W.P. Foo, E. Bini, J. Hensman, D.P. Knight, R.V. Lewis, D.L. Kaplan. Role of pHand charge on silk protein assembly in insects and spiders. Applied Physics A2006,82(2):223-233.
    [8] G. Freddi, P. Monti, M. Nagura, Y. Gotoh, M. Tsukada. Structure and molecularconformation of tussah silk fibroin films effect of heat treatment. Journal of PolymerScience Part B Polymer Physics1997,35(5):841-847.
    [9] H. Kweon, S.O. Woo, Y.H. Park. Effect of heat treatment on the structural andconformational changes of regenerated Antheraea Pernyi silk fibroin films. Journal ofApplied Polymer Science2001,81(9):2271-2276.
    [10] M. Tsukada, Y. Gotoh, M. Nagura, N. Minoura, N. Kasai, G. Freddi. Structuralchanges of silk fibroin membranes induced by immersion in methanol aqueoussolutions. Journal of Polymer Science Part B Polymer Physics1994,32(5):961-968.
    [11] X.G. Li, L.Y. Wu, M.R. Huang, H.L. Shao, X.C. Hu. Conformational transition andliquid crystalline state of regenerated silk fibroin in water. Biopolymers2008,89(6):497-505.
    [12] M. Rossle, P. Panine, V.S. Urban, C. Riekel. Structural evolution of regenerated silkfibroin under shear combined wide and small angle x-ray scattering experiments usingsynchrotron radiation. Biopolymers2004,74(4):316-327.
    [13] C.S. Ki, I.C. Um, Y.H. Park. Acceleration effect of sericin on shear-inducedβ-transition of silk fibroin. Polymer2009,50(19):4618-4625.
    [14] D. Wilson, R. Valluzzi, D. Kaplan. Conformational transitions in model silk peptides.Biophysical Journal2000,78(5):2690-2701.
    [15] N.D. Lazo, D.T. Downing. Crystalline regions of Bombyx mori silk fibroin mayexhibit β-turn and β-helix conformations. Macromolecules1999,32(14):4700-4705.
    [16] T. Asakura. NMR of silk fibroin6structure of Bombyx mori silk fibroin in aqueoussolution. Die Makromolekulare Chemie Rapid Communications1986,7(12):755-759.
    [17] X. Chen, D.P. Knight, Z.Z. Shao. β-turn formation during the conformation transitionin silk fibroin. Soft Matter2009,5:2777-2781.
    [18] Q. Lu, X. Hu, X.Q. Wang, J.A. Kluge, S.Z. Lu, P. Cebe, D.L. Kaplan. Water-insolublesilk films with silk I structure. Acta Biomaterialia2010,6(4):1380-1387.
    [19] B. Lotz, H.D. Keith. Crystal structure of poly(L-Ala-Gly)II a model for silk I. Journalof Molecular Biology1971,61(1):201-202.
    [20] K. Okuyama, R. Somashekar, K. Noguchi, S. Ichimura. Refined molecular and crystalstructure of silk I based on Ala-Gly and (Ala-Gly)2-Ser-Gly peptide sequence.Biopolymers2001,59(5):310-319.
    [21] O. Kratky, E. Schauenstein, A. Sekora. An unstable lattice in silk fibroin. Nature1950,165(4191):319-320.
    [22] T. Asakura, A. Kuzuhara, R. Tabeta, H. Saito. Conformational characterization ofBombyx mori silk fibroin in the solid state by high frequency carbon-13crosspolarization-magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy.Macromolecules1985,18(10):1841-1845.
    [23] G. Meyer, N.M. Amer. Novel optical approach to atomic force microscopy. AppliedPhysics Letters1988,53(12):1045-1047.
    [24] Q. Zhang, D. Inniss, K. Kjoller, V.B. Elings. Fractured polymer/silica fiber surfacestudied by tapping mode atomic force microscopy. Surface Science Letters1993,290(1-2):688-692.
    [25] I. Greving, M.Z. Cai, F. Vollrath, H.C. Schniepp. Shear-induced self-assembly ofnative silk proteins into fibrils studied by atomic force microscopy.Biomacromolecules2012,13(3):676-682.
    [26] I. Taketani, S. Nakayama, S. Nagare, M. Senna. The secondary structure control ofsilk fibroin thin films by post treatment. Applied Surface Science2005,244(1-4):623-626.
    [27] T. Hino, M. Tanimoto, S. Shimabayashi. Change in secondary structure of silk fibroinduring preparation of its microspheres by spray-drying and exposure to humidatmosphere. Journal of Colloid and Interface Science2003,266(1):68-73.
    [28] C. Yan, B. Yang, Z.C. Yu. Determination of silk fibroin secondary structure byterahertz time domain spectroscopy. Analytical Methods2014,6:248-252.
    [29] T. Asakura, M. Okonogi, Y. Nakazawa, K. Yamauchi. Structural analysis of alaninetripeptide with antiparallel and parallel β-sheet structures in relation to the analysis ofmixed β-sheet structures in Samia Cynthia ricini silk protein fiber using solid-stateNMR spectroscopy. Journal of the American Chemical Society2006,128(18):6231-6238.
    [30] K.C. Chou, G. Nemethy, H.A. Scheraga. Effect of amino acid composition on the twistand the relative stability of parallel and antiparallel beta-sheets. Biochemistry1983,22(26):6213-6221.
    [31] T. Asakura, K. Ohgo, K. Komatsu, M. Kanenari, K. Okuyama. Refinement of repeatedβ-turn structure for silk I conformation of Bombyx mori silk fibroin using13Csolid-state NMR and X-ray diffraction methods. Macromolecules2005,38(17):7397-7403.
    [32] K. Ohgo, F. Bagusat, T. Asakura, U. Scheler. Investigation of structural transition ofregenerated silk fibroin aqueous solution by Rheo-NMR spectroscopy. Journal of theAmerican Chemical Society2008,130(12):4182-4186.
    [33] Y.H. Yang, Z.Z. Shao, X. Chen, P. Zhou. Optical spectroscopy to investigate thestructure of regenerated Bombyx mori silk fibroin in solution. Biomacromolecules2004,5(3):773-779.
    [34] I.C. Um, H.Y. Kweon, Y.H. Park, S. Hudson. Structual characteristics and propertiesof the regenerated silk fibroin prepared from formic acid. International Journal ofBiological Macromolecules2001,29(2):91-97.
    [35] I.C. Um, H.Y. Kweon, K.G. Lee, Y.H. Park. The role of formic acid in solutionstability and crystallization of silk protein polymer. International Journal of BiologicalMacromolecules2003,33(4-5):203-213.
    [36] D.M. Phillips, L.F. Drummy, D.G. Conrady, D.M. Fox, R.R. Naik, M.O. Stone, P.C.Trulove, H.C. De Long, R.A. Mantz. Dissolution and regeneration of Bombyx morisilk fibroin using ionic liquids. Journal of the American Chemical Society2004,126(44):14350-14351.
    [37] J.F. Ming, Z. Liu, S.Y. Bie, F. Zhang, B.Q. Zuo. Novel silk fibroin films prepared byformic acid/hydroxyapatite dissolution method. Materials Science and Engineering C2014,37(1):48-53.
    [38] T. Lefevre, M.E. Rousseau, M. Pezolet. Protein secondary structure and orientation ofsilk as revealed by Raman spectromicroscopy. Biophysical Journal2007,92(8):2885-2895.
    [39] T. Asakura, K. Umemura, Y. Nakazawa, H. Hirose, J. Higham, D. Knight. Someobservations on the structure and function of the spinning apparatus in the silkwormBombyx mori. Biomacromolecules2007,8(1):175-181.
    [40] J. Magoshi, S. Nakamura. Studies on physical properties and structure of silk glasstransition and crystallization of silk fibroin. Journal of Applied Polymer Science1975,19(4):1013-1015.
    [41] J.F. Ming, B.Q. Zuo. A novel silk fibroin/sodium alginate hybrid scaffolds. PolymerEngineering&Science2014,54(1):129-136.
    [42] J.F. Ming, B.Q. Zuo. Silk I structure formation through silk fibroin self-assembly.Journal of Applied Polymer Science2012,125(3):2148-2154.
    [43] S.W. Ha, H.S. Gracz, A.E. Tonelli, S.M. Hudson. Structural study of irregular aminoacid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules2005,6(5):2563-2569.
    [44] O.N. Tretinnikov, Y. Tamada. Influence of casting temperature on the near surfacestructure and wettability of cast silk fibroin films. Langmuir2001,17(23):7406-7413.
    [45] X.H. Zong, P. Zhou, Z.Z. Shao, S.M. Chen, X. Chen, B.W. Hu, F. Deng, W.H. Yao.Effect of pH and copper on the conformation transitions of silk fibroin based on EPRNMR and Raman spectroscopy. Biochemistry2004,43(38):11932-11941.
    [46] J. Nam, Y.H. Park. Morphology of regenerated silk fibroin effects of freezingtemperature alcohol addition and molecular weight. Journal of Applied PolymerScience2001,81(12):3008-3021.
    [47] L.F. Drummy, D.M. Phillips, M.O. Stone, B.L. Farmer, R.R. Naik. Thermally inducedα-helix to β-sheet transition in regenerated silk fibers and films. Biomacromolecules2005,6(6):3328-3333.
    [48] P. Chen, H.S. Kim, C.Y. Park, H.S. Kim, I.J. Chin, H.J. Jin. pH-triggered transition ofsilk fibroin from spherical micelles to nanofibrils in water. Macromolecular Research2008,16(6):539-543.
    [49] S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, S. Mizuno. Silk fibroin ofBombyx mori is secreted assembling a high molecular mass elementary unitconsisting of H-chain L-chain and P25with a6:6:1molar ratio. The Journal ofBiological Chemistry2000,275(51):40517-40528.
    [50] R. Valluzzi, S. Winkler, D. Wilson, D.L. Kaplan. Silk molecular organization andcontrol of assembly. Philosophical Transactions of the Royal Society B BiologicalSciences2002,357(1418):165-167.
    [51] X.Y. Wang, H.J. Kim, P. Xu, A. Matsumoto, D.L. Kaplan. Biomaterial coatings bystepwise deposition of silk fibroin. Langmuir2005,21(24):11335-11341.
    [52] S.J. He, R. Valluzzi, S.P. Gibo. Silk I structure in Bombyx mori silk foams.International Journal of Biological Macromolecules1999,24(2-3):187-195.
    [53] K.Y. Lee, W.S. Ha. DSC studies on bound water in silk fibroin/S-carboxymethylkerateine blend films. Polymer1999,40(14):4131-4134.
    [54] X. Hu, D.L. Kaplan, P. Cebe. Effect of water on the thermal properties of silk fibroin.Thermochimica Acta2007,461(1-2):137-144.
    [55] N. Agarwal, D.A. Hoagland, R.J. Farris. Effect of moisture absorption on the thermalproperties of Bombyx mori silk fibroin films. Journal of Applied Polymer Science1997,63(3):401-410.
    [56] M. Tsukada, K. Hirabayashi. Change of silk fibroin structure by ultraviolet radiation.Journal of Polymer Science Polymer Letters Edition1980,18(7):507-511.
    [57] H. Zhang, J. Magoshi, M. Becker, J.Y. Chen, R. Matsunaga. Thermal properties ofBombyx mori silk fibers. Journal of Applied Polymer Science2002,86(8):1817-1820.
    [58] Z.Z. Shao, F. Vollrath. Materials surprising strength of silkworm silk. Nature2002,418:741.
    [59] H.J. Jin, J. Park, R. Valluzzi, P. Cebe, D.L. Kaplan. Biomaterial films of Bombyx morisilk fibroin with poly(ethylene oxide). Biomacromolecules2004,5(3):711-717.
    [60] R. Nazarov, H.J. Jin, D.L. Kaplan. Porous3D scaffolds from regenerated silk fibroin.Biomacromolecules2004,5(3):718-726.
    [61] U.J. Kim, J. Park, C.M. Li, H.J. Jin, R. Valluzzi, D.L. Kaplan. Structure and propertiesof silk hydrogels. Biomacromolecules2004,5(3):786-792.
    [62] M.B. Dickerson, S.P. Fillery, H. Koerner, K.M. Singh, K. Martinick, L.F. Drummy,M.F. Durstock, R.A. Vaia, F.G. Omenetto, D.L. Kaplan, R.R. Naik. Dielectricbreakdown strength of regenerated silk fibroin films as a function of proteinconformation. Biomacromolecules2013,14(10):3509-3514.
    [63] T. Asakura, Y. Suzuki, Y. Nakazawa, K. Yazawa, G.P. Holland, J.L. Yarger. Silkstructure studied with nuclear magnetic resonance. Progress in Nuclear MagneticResonance Spectroscopy2013,69:23-68.
    [64] H.Y. Kweon, Y.H. Park. Structural and conformational changes of regeneratedAntheraea Pernyi silk fibroin films treated with methanol solution. Journal of AppliedPolymer Science1999,73(14):2887-2894.
    [65] M.F. Silva, M.A. de Moraes, G.M. Nogueira, A.C.D. Rodas, O.Z. Higa, M.M. Beppu.Glycerin and ethanol as additives on silk fibroin films insoluble and malleable films.Journal of Applied Polymer Science2013,128(1):115-122.
    [66] S.K. Samal, D.L. Kaplan, E. Chiellini. Ultrasound sonication effects on silk fibroinprotein. Macromolecular Materials and Engineering2013,298(11):1201-1208.
    [67] S. Bai, S. Liu, C. Zhang, W. Xu, Q. Lu, H. Han, D.L. Kaplan, H. Zhu. Controllabletransition of silk fibroin nanostructures an insight into in vitro silk self-assemblyprocess. Acta Biomaterialia2013,9(8):7806-7813.
    [68] A. Matsumoto, J.S. Chen, A.L. Collette, U.J. Kim, G.H. Altman, P. Cebe, D.L. Kaplan.Mechanism of silk fibroin sol-gel transitions. The Journal of Physical Chemistry B2006,110(43):21630-21638.
    [69] Q. Dong, H.L. Su, D. Zhang. In situ depositing silver nanoclusters on silk fibroinfibers supports by a novel biotemplate redox technique at room temperature. TheJournal of Physical Chemistry B2005,109(37):17429-17434.
    [70] H. Shulha, C.W.P. Foo, D.L. Kaplan, V.V. Tsukruk. Unfolding the multi-length scaledomain structure of silk fibroin protein. Polymer2006,47(16):5821-5830.
    [71] R. Valluzzi, S.P. Gido, W.P. Zhang, W.S. Muller, D.L. Kaplan. Trigonal crystalstructure of Bombyx mori silk incorporating a threefold helical chain conformationfound at the air-water interface. Macromolecules1996,29(27):8606-8614.
    [72] R. Valluzzi, S.P. Gido. The crystal structure of Bombyx mori silk fibroin at theair-water interface. Biopolymers1997,42(6):705-717.
    [73] B. Lotz, F.C. Cesari. The chemical structure and the crystalline structures of Bombyxmori silk fibroin. Biochimie1979,61(2):205-214.
    [74] T. Asakura, M. Demura, T. Date, N. Miyashita, K. Ogawa, M.P. Williamson. NMRstudy of silk I structure of Bombyx mori silk fibroin with15N-and13C-NMRchemical shift contour plots. Biopolymers1997,41(2):193-203.
    [75]陆坤权,刘寄星.软物质物理学导论[M].北京大学出版社,2006.
    [76] J.D. Bernal, I. Fankuchen. Structure types of protein crystals from virus-infectedplants. Nature1937,139:923-924.
    [77] C.B. Anfinsen. Studies on the principles that govern the folding of protein chains [M].1972.
    [78] C.B. Anfinsen. The formation and stabilization of protein structure. BiochemicalJournal1972,128(4):737-749.
    [1] J. Perez-Rigueiro, M. Elices, J. Llorca, C. Viney. Effect of degumming on the tensileproperties of silkworm (Bombyx mori) silk fiber. Journal of Applied Polymer Science2002,84(7):1431-1437.
    [2] Z.Z. Shao, F. Vollrath. Materials surprising strength of silkworm silk. Nature2002,418:741.
    [3] D.L. Dunaway, B.L. Thiel, C. Viney. Tensile mechanical property evaluation of naturaland epoxide-treated silk fibers. Journal of Applied Polymer Science1995,58(3):675-683.
    [4] V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, D. Kaplan. Bonemorphogenetic protein-2decorated silk fibroin films induce osteogenic differentiationof human bone marrow stromal cells. Journal of Biomedical Materials Research PartA2004,71A(3):528-537.
    [5] A.R. Murphy, D.L. Kaplan. Biomedical applications of chemically-modified silkfibroin. Journal of Materials Chemistry2009,19:6443-6450.
    [6] A. Motta, C. Migliaresi, F. Faccioni, P. Torricelli, M. Fini, R. Giardino. Fibroinhydrogels for biomedical applications preparation characterization and in vitro cellculture studies. Journal of Biomaterials Science Polymer Edition2004,15(7):851-864.
    [7] B.B. Mandal, S.C. Kundu. Cell proliferation and migration in silk fibroin3D scaffolds.Biomaterials2009,30(15):2956-2965.
    [8] B.D. Lawrence, F. Omenetto, K. Chui, D.L. Kaplan. Processing methods to control silkfibroin film biomaterial features. Journal of Materials Science2008,43(21):6967-6985.
    [9] H.J. Jin, J.S. Chen, V. Karageorgiou, G.H. Altman, D.L. Kaplan. Human bone marrowstromal cell responses on electrospun silk fibroin mats. Biomaterials2004,25(6):1039-1047.
    [10] J.M. Yao, H. Masuda, C.H. Zhao, T. Asakura. Artificial spinning and characterizationof silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate.Macromolecules2002,35:6-9.
    [11] D.M. Phillips, L.F. Drummy, R.R. Naik, H.C. De Long, D.M. Fox, P.C. Trulove, R.A.Mantz. Regenerated silk fiber wet spinning from an ionic liquid solution. Journal ofMaterials Chemistry2005,15:4206-4208.
    [12] M. Fini, A. Motta, P. Torricelli, G. Giavaresi, N.N. Aldini, M. Tschon, R. Giardino, C.Migliaresi. The healing of confined critical size cancellous defects in the presence ofsilk fibroin hydrogel. Biomaterials2005,26(17):3527-3536.
    [13] E.S. Gil, D.J. Frankowski, R.J. Spontak, S.M. Hudson. Swelling behavior andmorphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules2005,6(6):3079-3087.
    [14] T. Arai, G. Freddi, R. Innocenti, M. Tsukada. Biodegradation of Bombyx mori silkfibroin fibers and films. Journal of Applied Polymer Science2004,91(4):2383-2390.
    [15] N. Minoura. Fine structure and oxygen permeability of silk fibroin membrane treatedwith methanol. Polymer1990,31(2):265-269.
    [16] G.M. Nogueira, A.C.D. Rodas, C.A.P. Leite, C. Giles, O.Z. Higa, B. Polakiewicz,M.M. Beppu. Preparation and characterization of ethanol-treated silk fibroin densemembranes for biomaterials application using waste silk fibers as raw material.Bioresource Technology2010,101(21):8446-8451.
    [17] L. Jeong, K.Y. Lee, J.W. Liu, W.H. Park. Time-resolved structural investigation ofregenerated silk fibroin nanofibers treated with solvent vapor. International Journal ofBiological Macromolecules2006,38(2):140-144.
    [18] G. Freddi, P. Monti, M. Nagura, Y. Gotoh, M. Tsukada. Structure and molecularconformation of tussah silk fibroin films effect of heat treatment. Journal of PolymerScience Part B Polymer Physics1997,35(5):841-847.
    [19] M. Tsukada, G. Freddi, M. Nagura, H. Ishikawa, N. Kasai. Structural changes of silkfibers induced by heat treatment. Journal of Applied Polymer Science1992,46(11):1945-1953.
    [20] B.M. Min, L. Jeong, K.Y. Lee, W.H. Park. Regenerated silk fibroin nanofibers watervapor-induced structural changes and their effects on the behavior of normal humancells. Macromolecular Bioscience2006,6(4):285-292.
    [21] S.S. Silva, A. Motta, M.T. Rodrigues, A.F.M. Pinheiro, M.E. Gomes, J.F. Mano, R.L.Reis, C. Migliaresi. Novel genipin-cross-linked chitosan/silk fibroin sponges forcartilage engineering strategies. Biomacromolecules2008,9(10):2764-2774.
    [22] B.B. Mandal, S. Kapoor, S.C. Kundu. Silk fibroin/polyacrylamidesemi-interpenetrating network hydrogels for controlled drug release. Biomaterials2009,30(14):2826-2836.
    [23] R. Liu, J.F. Ming, H.X. Zhang, B.Q. Zuo. EDC/NHS crosslinked electrospunregenerated tussah silk fibroin nanofiber mats. Fibers and Polymers2012,13(5):613-617.
    [24] J. Kopecek. Hydrogel biomaterials a smart future. Biomaterials2007,28(34):5185-5192.
    [25] S. Koutsopoulos, L.D. Unsworth, Y. Nagai, S.G. Zhang. Controlled release offunctional proteins through designer self-assembling peptide nanofiber hydrogelscaffold. Proceedings of the National Academy of Science of the United States ofAmerica2009,106(12):4623-4628.
    [26] F.T. Bosman, I. Stamenkovic. Functional structure and composite of the extracellularmatrix. The Journal of Pathology2003,200(4):423-428.
    [27] P.H.G. Chao, S. Yodmuang, X.Q. Wang, L. Sun, D.L. Kaplan, G. Vunjak-Novakovic.Silk hydrogel for cartilage tissue engineering. Journal of Biomedical MaterialsResearch Part B Applied Biomaterials2010,95B(1):84-90.
    [28] U.J. Kim, J. Park, C.M. Li, H.J. Jin, R. Valluzzi, D.L. Kaplan. Structure and propertiesof silk hydrogels. Biomacromolecules2004,5(3):786-792.
    [29] W.Q. Xiao, J.K. He, J.W. Nichol, L.Y. Wang, C.B. Hutson, B. Wang, Y.N. Du, H.S.Fan, A. Khademhosseini. Synthesis and characterization of photocrosslinkable gelatinand silk fibroin interpenetrating polymer network hydrogels. Acta Biomaterialia2011,7(6):2384-2393.
    [30] C.Q. Yan, D.J. Pochan. Rheological properties of peptide-based hydrogels forbiomedical and other application. Chemical Society Reviews2010,39:3528-3540.
    [31] A. Matsumoto, J.S. Chen, A.L. Collette, U.J. Kim, G.H. Altman, P. Cebe, D.L. Kaplan.Mechanism of silk fibroin sol-gel transitions. The Journal of Physical Chemistry B2006,110(43):21630-21638.
    [32] X.L. Wu, J. Hou, M.Z. Li, J.N. Wang, D.L. Kaplan, S.Z. Lu. Sodium dodecylsulfate-induced rapid gelation of silk fibroin. Acta Biomaterialia2012,8(6):2185-2192.
    [33] J.F. Ming, B.Q. Zuo. A novel silk fibroin/sodium alginate hybrid scaffolds. PolymerEngineering&Science2014,54(1):129-136.
    [34] I.C. Um, H. Kweon, Y.H. Park, S. Hudson. Structural characteristics and properties ofthe regenerated silk fibroin prepared from formic acid. International Journal ofBiological Macromolecules2001,29(2):91-97.
    [35] I.C. Um, H.Y. Kweon, K.G. Lee, Y.H. Park. The role of formic acid in solutionstability and crystallization of silk protein polymer. International Journal of BiologicalMacromolecules2003,33(4-5):203-213.
    [36]吴其晔,巫静安.高分子材料流变学[M].高等教育出版社,2002.
    [37] A.E. Terry, D.P. Knight, D. Porter, F. Vollrath. pH induced changes in the rheology ofsilk fibroin solution from the middle division of Bombyx mori silkworm.Biomacromolecules2004,5(3):768-772.
    [38] A. Ochi, K.S. Hossain, J. Magoshi, N. Nemoto. Rheology and dynamic light scatteringof silk fibroin solution extracted from the middle division of Bombyx mori silkworm.Biomacromolecules2002,3(6):1187-1196.
    [39] C. Holland, A.E. Terry, D. Porter, F. Vollrath. Comparing the rheology of native spiderand silkworm spinning dope. Nature Materials2006,5:870-874.
    [40] A. Matsumoto, A. Lindsay, B. Abedian, D.L. Kaplan. Silk fibroin solution propertiesrelated to assembly and structure. Macromolecular Bioscience2008,8(11):1006-1018.
    [41] Q. Wang, Y.H. Yang, X. Chen, Z.Z. Shao. Investigation of rheological properties andconformation of silk fibroin in the solution of AmimCl. Biomacromolecules2012,13(6):1875-1881.
    [42] P. Zhou, X. Xie, D.P. Knight, X.H. Zong, F. Deng, W.H. Yao. Effects of pH andcalcium ions on the conformational transitions in silk fibroin using2D Ramancorrelation spectroscopy and13C solid state NMR. Biochemistry2004,43(35):11302-11311.
    [43] Y. Shen, M.A. Johnson, D.C. Martin. Microstructural characterization of Bombyxmori silk fibers. Macromolecules1998,31(25):8857-8864.
    [44] C. Vepari, D.L. Kaplan. Silk as a biomaterial. Progress in Polymer Science2007,32(8-9):991-1007.
    [45] S.A. Fossey, G. Nemethy, K.D. Gibson, H.A. Scheraga. Conformational energy studiesof β-sheets of model silk fibroin peptides sheets of poly(Ala-Gly) chains.Biopolymers1991,31(13):1529-1541.
    [46] S. Bai, S. Liu, C. Zhang, W. Xu, Q. Lu, H. Han, D.L. Kaplan, H. Zhu. Controllabletransition of silk fibroin nanostructure an insight into in vitro silk self-assemblyprocess. Acta Biomaterialia2013,9(8):7806-7813.
    [47] Q. Zhang, Y.H. Zhao, S.Q. Yan, Y.M. Yang, H.J. Zhao, M.Z. Li, S.Z. Lu, D.L. Kaplan.Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primaryneurons. Acta Biomaterialia2012,8(7):2628-2638.
    [48] H. Wang, X.Y. Liu, Y.J. Chuah, J.C.H. Goh, J.L. Li, H.Y. Xu. Design and engineeringof silk fibroin scaffolds with biomimetic hierarchical structures. ChemicalCommunications2013,49:1431-1433.
    [49] X. Hu, Q. Lu, L. Sun, P. Cebe, X.Q. Wang, X.H. Zhang, D.L. Kaplan. Biomaterialsfrom ultrasonication induced silk fibroin hyaluronic acid hydrogels.Biomacromolecules2010,11(11):3178-3188.
    [50] I. Karakutuk, F. Ak, O. Okay. Diepoxide-triggered conformational transition of silkfibroin formation of hydrogels. Biomacromolecules2012,13(4):1122-1128.
    [51] H. Kweon, H.C. Ha, I.C. Um, Y.H. Park. Physical properties of silk fibroin/chitosanblend films. Journal of Applied Polymer Science2001,80(7):928-934.
    [52] X. Chen, Z.Z. Shao, N.S. Marinkovic, L.M. Miller, P. Zhou, M.R. Chance.Conformation transition kinetics of regenerated Bombyx mori silk fibroin membranemonitored by time-resolved FTIR spectroscopy. Biophysical Chemistry2001,89(1):25-34.
    [53] H. Wang, Y.P. Zhang, H.L. Shao, X.C. Hu. Electrospun ultra-fine silk fibroin fibersfrom aqueous solutions. Journal of Materials Science2005,40(20):5359-5363.
    [54] J. Nam, Y.H. Park. Morphology of regenerated silk fibroin effects of freezingtemperature alcohol addition and molecular weight. Journal of Applied PolymerScience2001,81(12):3008-3021.
    [55] G.M. Nogueira, M.A. de Moraes, A.C.D. Rodas, O.Z. Higa, M.M. Beppu. Hydrogelsfrom silk fibroin metastable solution formation and characterization from abiomaterial perspective. Materials Science and Engineering C2011,31(5):997-1001.
    [56] M.W. Tibbitt, K.S. Anseth. Hydrogels as extracellular matrix mimics for3D cellculture. Biotechnology and Bioengineering2009,103(4):655-663.
    [57] F.T. Bosman, I. Stamenkovic. Functional structure and composition of theextracellular matrix. The Journal of Pathology2003,200(4):423-428.
    [58] G.D. Kang, J.H. Nahm, J.S. Park, J.Y. Moon, C.S. Cho, J.H. Yeo. Effect of poloxameron the gelation of silk fibroin. Macromolecular Rapid Communications2000,21(11):788-791.
    [59] S. Nagarkar, A. Patil, A. Lele, S. Bhat, J. Bellare, R.A. Mashelkar. Some mechanisticinsight into the gelation of regenerated silk fibroin sol. Industrial EngineeringChemistry Research2009,48(17):8014-8023.
    [60] Y.J. Ren, Z.Y. Zhou, B.F. Liu, Q.Y. Xu, F.Z. Cui. Preparation and characterization offibroin/hyaluronic acid composite scaffold. International Journal of BiologicalMacromolecules2009,44(4):372-378.
    [61] R. Nazarov, H.J. Jin, D.L. Kaplan. Porous3D scaffolds from regenerated silk fibroin.Biomacromolecules2004,5(3):718-726.
    [62] J.F. Ming, B.Q. Zuo. Silk I structure formation through silk fibroin self-assembly.Journal of Applied Polymer Science2012,125(3):2148-2154.
    [1] R. Nazarov, H.J. Jin, D.L. Kaplan. Porous3D scaffolds from regenerated silk fibroin.Biomacromolecules2004,5(3):718-726.
    [2] X.Q. Wang, J.A. Kluge, G.G. Leisk, D.L. Kaplan. Sonication induced gelation of silkfibroin for cell encapsulation. Biomaterials2008,29(8):1054-1064.
    [3] J.F. Ming, B.Q. Zuo. A novel silk fibroin/sodium alginate hybrid scaffolds. PolymerEngineering&Science2014,54(1):129-136.
    [4] U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan. Three-dimensionalaqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials2005,26(15):2775-2785.
    [5] P.H.G. Chao, S. Yodmuang, X.Q. Wang, L. Sun, D.L. Kaplan, G. Vunjak-Novakovic.Silk hydrogel for cartilage tissue engineering. Journal of Biomedical MaterialsResearch Part B Applied Biomaterials2010,95B(1):84-90.
    [6] H.J. Kong, M.K. Smith, D.J. Mooney. Designing alginate hydrogels to maintainviability of immobilized cells. Biomaterials2003,24(22):4023-4029.
    [7] C.T. Hung, R.L. Mauck, C.C.B. Wang, E.G. Lima, G.A. Ateshian. A paradigm forfunctional tissue engineering of articular cartilage via applied physiologicdeformational loading. Annals of Biomedical Engineering2004,32(1):35-49.
    [8] B.B. Mandal, S. Kapoor, S.C. Kundu. Silk fibroin/polyacrylamidesemi-interpenetrating network hydrogels for controlled drug release. Biomaterials2009,30(14):2826-2836.
    [9] N. Guziewicz, A. Best, B. Perez-Ramirez, D.L. Kaplan. Biomaterials lyophilized silkfibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies.Biomaterials2011,32(10):2642-2650.
    [10] E.S. Gil, D.J. Frankowski, R.J. Spontak, S.M. Hudson. Swelling behavior andmorphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules2005,6(6):3079-3087.
    [11] A. Matsumoto, J.S. Chen, A.L. Collette, U.J. Kim, G.H. Altman, P. Cebe, D.L. Kaplan.Mechanism of silk fibroin sol-gel transitions. The Journal of Physical Chemistry B2006,110(43):21630-21638.
    [12] X.L. Wu, J. Hou, M.Z. Li, J.N. Wang, D.L. Kaplan, S.Z. Lu. Sodium dodecylsulfate-induced rapid gelation of silk fibroin. Acta Biomaterialia2012,8(6):2185-2192.
    [13] N. Nagasawa, H. Mitomo, F. Yoshii, T. Kume. Radiation-induced degradation ofsodium alginate. Polymer Degradation and Stability2000,69(3):279-285.
    [14] I.C. Um, H.Y. Kweon, Y.H. Park, S. Hudson. Structural characteristics and propertiesof the regenerated silk fibroin prepared from formic acid. International Journal ofBiological Macromolecules2001,29(2):91-97.
    [15] Y. Tamada. New process to form a silk fibroin porous3D structure.Biomacromolecules2005,6(6):3100-3106.
    [16] C.Y. Jiang, X.Y. Wang, R. Gunawidjaja, Y.H. Lin, M.K. Gupta, D.L. Kaplan, R.R.Naik, V.V. Tsukruk. Mechanical properties of robust ultrathin silk fibroin films.Advanced Functional Materials2007,17(13):2229-2237.
    [17] X.G. Li, L.Y. Wu, M.R. Huang, H.L. Shao, X.C. Hu. Conformational transition andliquid crystalline state of regenerated silk fibroin in water. Biopolymers2008,89(6):497-505.
    [18] I. Karakutuk, F. Ak, O. Okay. Diepoxide-triggered conformational transition of silkfibroin formation of hydrogel. Biomacromolecules2012,13(4):1122-1128.
    [19] X. Hu, Q. Lu, L. Sun, P. Cebe, X.Q. Wang, X.H. Zhang, D.L. Kaplan. Biomaterialsfrom ultrasonication induced silk fibroin hyaluronic acid hydrogels.Biomacromolecules2010,11(11):3178-3188.
    [20] G.M. Nogueira, M.A. de Moraes, A.C.D. Rodas, O.Z. Higa, M.M. Beppu. Hydrogelsfrom silk fibroin metastable solution formation and characterization from abiomaterial perspective. Materials Science and Engineering C2011,31(5):997-1001.
    [21] Y.J. Yu, S. Zhihuai, S.J. Chen, C.Q. Bian, W. Chen, G. Xue. Facile synthesis ofpolyaniline sodium alginate nanofibers. Langmuir2006,22(8):3899-3905.
    [22] M.U. Chhatbar, K. Prasad, D.R. Chejara, A.K. Siddhanta. Synthesis of sodiumalginate based sprayable new soft gel system. Soft Matter2012,8:1837-1844.
    [23] G. Sen, R.P. Singh, S. Pal. Microwave initiated synthesis of polyacrylamide graftedsodium alginate synthesis and characterization. Journal of Applied Polymer Science2010,115(1):63-71.
    [24] S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K.Katsaros. Metal-carboxylate interactions in metal alginate complexes studied withFTIR spectroscopy. Carbohydrate Research2010,345(4):469-473.
    [25] U.J. Kim, J. Park, C.M. Li, H.J. Jin, R. Valluzzi, D.L. Kaplan. Structure and propertiesof silk hydrogels. Biomacromolecules2004,5(3):786-792.
    [26] Q. Lu, Y.L. Huang, M.Z. Li, B.Q. Zuo, S.Z. Lu, J.N. Wang, H.S. Zhu, D.L. Kaplan.Silk fibroin electrogelation mechanisms. Acta Biomaterialia2011,7(6):2394-2400.
    [27] T.Y. Zhong, C.M. Deng, Y.F. Gao, M. Chen, B.Q. Zuo. Studies of in situ-forminghydrogels by blending PLA-PEG-PLA copolymer with silk fibroin solution. Journalof Biomedical Materials Research Part A2012,100A(8):1983-1989.
    [28] J. Magoshi, S. Nakamura. Studies on physical properties and structure of silk glasstransition and crystallization of silk fibroin. Journal of Applied Polymer Science1975,19(4):1013-1015.
    [29] J. Magoshi, M. Mizuide, Y. Magoshi, K. Takahashi, M. Kubo, S. Nakamura. Physicalproperties and structure of silk VI conformational changes in silk fibroin induced byimmersion in water at2to130℃. Journal of Polymer Science Polymer PhysicsEdition1979,17(3):515-520.
    [30] H. Zhang, J. Magoshi, M. Becker, J.Y. Chen, R. Matsunaga. Thermal properties ofBombyx mori silk fibers. Journal of Applied Polymer Science2002,86(8):1817-1820.
    [31] K.Y. Lee, W.S. Ha. DSC studies on bound water in silk fibroin/S-carboxymethylkerateine blend films. Polymer1999,40(14):4131-4134.
    [32] S.A. Fossey, G. Nemethy, K.D. Gibson, H.A. Scheraga. Conformational energy studiesof β-sheets of model silk fibroin peptides sheets of poly (Ala-Gly) chains.Biopolymers1991,31(13):1529-1541.
    [33] K.G. Lee, H.Y. Kweon, J.H. Yeo, S.O. Woo, J.H. Lee, Y.H. Park. Structural andphysical properties of silk fibroin/alginate blend sponges. Journal of Applied PolymerScience2004,93(5):2174-2179.
    [34] C.X. Liang, K. Hirabayashi. Improvements of physical properties of fibroinmembranes with sodium alginate. Journal of Applied Polymer Science1992,45(11):1937-1943.
    [35] L. Wang, R.M. Shelton, P.R. Cooper, M. Lawson, J.T. Triffitt, J.E. Barralet.Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials2003,24(20):3475-3481.
    [36] J.W. Lu, Y.L. Zhu, Z.X. Guo, P. Hu, J. Yu. Electrospinning of sodium alginate withpoly(ethylene oxide). Polymer2006,47(23):8026-8031.
    [37] S. Miyazaki, W. Kubo, D. Attwood. Oral sustained delivery of theophylline usingin-situ gelation of sodium alginate. Journal of Controlled Release2000,67(2-3):275-280.
    [38] P. Kanti, K. Srigowri, J. Madhuri, B. Smitha, S. Sridhar. Dehydration of ethanolthrough blend membranes of chitosan and sodium alginate by pervaporation.Separation and Purification Technology2004,40(3):259-266.
    [39] J.W. Rhim. Physical and mechanical properties of water resistant sodium alginatefilms. LWT-Food Science and Technology2004,37(3):323-330.
    [40] L.W. Chan, Y. Jin, P.W.S. Heng. Cross-linking mechanisms of calcium and zinc inproduction of alginate microspheres. International Journal of Pharmaceutics2002,242(1-2):255-258.
    [41] A. Blandino, M. Macias, D. Cantero. Formation of calcium alginate gel capsulesinfluence of sodium alginate and CaCl2concentration on gelation kinetics. Journal ofBioscience and Bioengineering1999,88(6):686-689.
    [42] K. Liu, H.J. Ding, J. Liu, Y. Chen, X.Z. Zhao. Shape-controlled production ofbiodegradable calcium alginate gel microparticles using a novel microfluidic device.Langmuir2006,22(22):9453-9457.
    [43] M.Z. Li, M. Ogiso, N. Minoura. Enzymatic degradation behavior of porous silkfibroin sheets. Biomaterials2003,24(2):357-365.
    [44] E.R. Morris, D.A. Rees, D. Thom. Characterization of alginate composition and blockstructure by circular dichroism. Carbohydrate Research1980,81(2):305-314.
    [45] J.S. Yang, J.Y. Zhao, Y. Fang. Calorimetric studies of the interaction between sodiumalginate and sodium dodecyl sulfate in dilute solutions at different pH values.Carbohydrate Research2008,343(4):719-725.
    [46] M.G. Neumann, C.C. Schmitt, E.T. Iamazaki. A fluorescence study of the interactionsbetween sodium alginate and surfactants. Carbohydrate Research2003,338(10):1109-1113.
    [47] D.N. Rockwood, R.C. Preda, T. Yucel, X.Q. Wang, M.L. Lovett, D.L. Kaplan.Materials fabrication from Bombyx mori silk fibroin. Nature Protocols2011,6:1612-1631.
    [48] C. Vepari, D.L. Kaplan. Silk as a biomaterial. Progress in Polymer Science2007,32(8-9):991-1007.
    [1] S. Mann, D.D. Archibald, J.M. Didymus, T. Douglas, B.R. Heywood, F.C. Meldrum,N.J. Reeves. Crystallization at inorganic-organic interfaces biominerals andbiomimetic synthesis. Science1993,261(5126):1286-1292.
    [2] Q.L. Feng, F.Z. Cui, G. Pu, R.Z. Wang, H.D. Li. Crystal orientation tougheningmechanisms and a mimic of nacre. Materials Science and Engineering C2000,11(1):19-25.
    [3] P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger. Structure and mechanical quality ofthe collagen mineral nano-composite in bone. Journal of Materials Chemistry2004,14:2115-2123.
    [4] Y.R. Ma, S. Weiner, L. Addadi. Mineral deposition and crystal growth in thecontinuously forming teeth of sea urchins. Advanced Functional Materials2007,17(15):2693-2700.
    [5] S.S. Wang, A.W. Xu. Amorphous calcium carbonate stabilized by a flexible biomimeticpolymer inspired by marine mussels. Crystal Growth&Design2013,13(5):1937-1942.
    [6] X.L. Zhang, Z.H. Fan, Q. Lu, Y.L. Huang, D.L. Kaplan, H.S. Zhu. Hierarchicalbiomineralization of calcium carbonate regulated by silk microspheres. ActaBiomaterialia2013,9(6):6974-6980.
    [7] M.Y. Yang, W. He, Y.J. Shuai, S.J. Min, L.J. Zhu. Nucleation of hydroxyapatite crystalsby self-assembled Bombyx mori silk fibroin. Journal of Polymer Science Part BPolymer Physics2013,51(9):742-748.
    [8] A.L. Wang, H.B. Yin, D. Liu, H.X. Wu, M. Ren, T.S. Jiang, X.N. Cheng, Y.Q. Xu.Size-controlled synthesis of hydroxyapatite nanorods in the presence of organicmodifiers. Materials Letters2007,61(10):2084-2088.
    [9] Y.F. Ma, Q.L. Feng, X. Bourrat. A novel growth process of calcium carbonate crystalsin silk fibroin hydrogel system. Materials Science and Engineering C2013,33(4):2413-2420.
    [10] J.F. Ming, B.Q. Zuo. Crystal growth of calcium carbonate in silk fibroin/sodiumalginate hydrogel. Journal of Crystal Growth2014,386:154-161.
    [11] H. Ohgushi, M. Okumura, T. Yoshikawa, K. Inoue, N. Senpuku, S. Tamai. Boneformation process in porous calcium carbonate and hydroxyapatite. Journal ofBiomedical Materials Research2004,26(7):885-895.
    [12] C. Du, F.Z. Cui, Q.L. Feng, X.D. Zhu, K. de Groot. Tissue response tonano-hydroxyapatite/collagen composite implants in marrow cavity. Journal ofBiomedical Materials Research1998,42(4):540-548.
    [13] Z.G. Ge, S. Baguenard, L.Y. Lim, A. Wee, E. Khor. Hydroxyapatite-chitin materials aspotential tissue engineered bone substitutes. Biomaterials2004,25(6):1049-1058.
    [14] L.C. Palmer, C.J. Newcomb, S.R. Kaltz, E.D. Spoerke, S.I. Stupp. Biomimeticsystems for hydroxyapatite mineralization inspired by bone and enamel. ChemicalReviews2008,108:4754-4783.
    [15] A. Ethirajan, U. Ziener, K. Landfester. Surface-functionalized polymeric nanoparticlesas templates for biomimetic mineralization of hydroxyapatite. Chemistry of Materials2009,21(11):2218-2225.
    [16] W. Pon-On, S. Meejoo, I-Ming Tang. Formation of hydroxyapatite crystallites usingorganic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS).Materials Chemistry and Physics2008,112(2):453-460.
    [17] Y. Levi-Kalisman, G. Falini, L. Addadi, S. Weiner. Structure of the nacreous organicmatrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM.Journal of Structural Biology2001,135(1):8-17.
    [18] T. Kaneko, D. Ogomi, R. Mitsugi, T. Serizawa, M. Akashi. Mechanically drawnhydrogels uniaxially orient hydroxyapatite crystals and cell extension. Chemistry ofMaterials2004,16(26):5596-5601.
    [19] J. Watanabe, M. Akashi. Novel biomineralization for hydrogels electrophoresisapproach accelerates hydroxyapatite formation in hydrogels. Biomacromolecules2006,7(11):3008-3011.
    [20] J.F. Ming, B.Q. Zuo. A novel electrospun silk fibroin/hydroxyapatite hybridnanofibers. Materials Chemistry and Physics2012,137(1):421-427.
    [21] J.P. Simmer, A.G. Fincham. Molecular mechanisms of dental enamel formation.Critical Reviews in Oral Biology&Medicine1995,6(2):84-108.
    [22] S. Busch. Regeneration of human tooth enamel. Angewandte Chemie InternationalEdition2004,43(11):1428-1431.
    [23] M.J. Olszta, X.G. Cheng, S.S. Jee, R. Kumar, Y.Y. Kim, M.J. Kaufman, E.P. Douglas,L.B. Gower. Bone structure and formation a new perspective. Materials Science andEngineering R Reports2007,58(3-5):77-116.
    [24] A.W. Xu, Y.R. Ma, H. Colfen. Biomimetic mineralization. Journal of MaterialsChemistry2007,17:415-449.
    [25] M. Sarikaya, C. Tamerler, A.K.Y. Jen, K. Schulten, F. Baneyx. Molecular biomimeticsnanotechnology through biology. Nature Materials2003,2:577-585.
    [26] P.X. Ma. Biomimetic materials for tissue engineering. Advanced Drug DeliveryReviews2008,60(2):184-198.
    [27] W. Zhang, S.S. Liao, F.Z. Cui. Hierarchical self-assembly of nano-fibrils inmineralized collagen. Chemistry of Materials2003,15(16):3221-3226.
    [28] S.S. Liao, F.Z. Cui, W. Zhang, Q.L. Feng. Hierarchically biomimetic bone scaffoldmaterials nano-HA/collagen/PLA composite. Journal of Biomedical MaterialsResearch Part B Applied Biomaterials2004,69B(2):158-165.
    [29] X.D. Kong, F.Z. Cui, X.M. Wang, M. Zhang, W. Zhang. Silk fibroin regulatedmineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth2004,270(1-2):197-202.
    [30] C. Cheng, Z.Z. Shao, F. Vollrath. Silk fibroin-regulated crystallization of calciumcarbonate. Advanced Functional Materials2008,18(15):2172-2179.
    [31] J.Y. Rho, L. Kuhn-Spearing, P. Zioupos. Mechanical properties and the hierarchicalstructure of bone. Medical Engineering&Physics1998,20(2):92-102.
    [32]崔福斋等著.生物矿化[M].清华大学出版社,2007:37.
    [33] M.C. Chang, J. Tanaka. FTIR study for hydroxyapatite/collagen nanocompositecross-linked by glutaraldehyde. Biomaterials2002,23(24):4811-4818.
    [34] I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh, M. Zakeri. Synthesis ofnanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys andCompounds2007,430(1-2):330-333.
    [35] D.L. Goloshchapov, V.M. Kashkarov, N.A. Rumyantseva, P.V. Seredin, A.S. Lenshin,B.L. Agapov, E.P. Domashevskaya. Synthesis of nanocrystalline hydroxyapatite byprecipitation using hen’s eggshell. Ceramics International2013,39(4):4539-4549.
    [36] J. Wang, F. Yu, L.J. Qu, X.C. Meng, G. Wen. Study of synthesis ofnano-hydroxyapatite using a silk fibroin template. Biomedical Materials2010,5(4):1-5.
    [37] L.A. Estroff, L. Addadi, S. Weiner, A.D. Hamilton. An organic hydrogel as a matrixfor the growth of calcite crystals. Organic&Biomolecular Chemistry2004,2:137-141.
    [38] H.Y. Li, L.A. Estroff. Calcite growth in hydrogels assessing the mechanism ofpolymer network incorporation into single crystals. Advanced Materials2009,21(4):470-473.
    [39] E. Asenath-Smith, H.Y. Li, E.C. Keene, Z.W. Seh, L.A. Estroff. Crystal growth ofcalcium carbonate in hydrogels as a model of biomineralization. Advanced FunctionalMaterials2012,22(14):2891-2914.
    [40] F.A. Johnson, D.Q.M. Craig, A.D. Mercer. Characterization of the block structure andmolecular weight of sodium alginates. Journal of Pharmacy and Pharmacology1997,49(7):639-643.
    [41] C.V. Liew, L.W. Chan, A.L. Ching, P.W.S. Heng. Evaluation of sodium alginate asdrug release modifier in matrix tablets. International Journal of Pharmaceutics2006,309(1-2):25-37.
    [42] M. George, T.E. Abraham. Polyionic hydrocolloids for the intestinal delivery ofprotein drugs alginate and chitosan a review. Journal of Controlled Release2006,114(1):1-14.
    [43] L.B. Li, Y.P. Fang, R. Vreeker, I. Appelqvist. Reexamining the egg-box model incalcium-alginate gels with x-ray diffraction. Biomacromolecules2007,8(2):464-468.
    [44] I. Braccini, S. Perez. Molecular basis of Ca2+-induced gelation in alginates and pectinsthe egg-box model revisited. Biomacromolecules2001,2(4):1089-1096.
    [45] P. Malkaj, E. Pierri, E. Dalas. The crystallization of hydroxyapatite in the presence ofsodium alginate. Journal of Materials Science Materials in Medicine2005,16(8):733-737.
    [46] M.L. Xie, M.O. Olderoy, J.P. Andreassen, S.M. Selbach, B.L. Strand, P. Sikorski.Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatitemineral phase within hydrogel networks. Acta Biomaterialia2010,6(9):3665-3675.
    [47] S.F. Yang, Y.H. Liu, Y.P. Guo, J.Z. Zhao, H.F. Xu, Z.C. Wang. Preparation of rutiletitania nanocrystals by liquid method at room temperature. Materials Chemistry andPhysics2003,77(2):501-506.
    [48] H. Shin, S. Jo, A.G. Mikos. Biomimetic materials for tissue engineering. Biomateirals2003,24(24):4353-4364.
    [49] S. Mann. Molecular tectonics in biomineralization and biomimetic materials chemistry.Nature1993,365:499-505.
    [50] K. Murai, M. Higuchi, T. Kinoshita, K. Nagata, K. Kato. Calcium carbonatebiomineralization utilizing a multifunctional β-sheet peptide template. ChemicalCommunications2013,49:9947-9949.
    [51] W.J. Zhu, J.P. Lin, C.H. Cai, Y.Q. Lu. Biomimetic mineralization of calcium carbonatemediated by a polypeptide-based copolymer. Journal of Materials Chemistry B2013,1:841-849.
    [52] M. Borgogna, G. Skjak-Braek, S. Paoletti, I. Donati. On the initial binding of alginateby calcium ions the tilted egg-box hypothesis. The Journal of Physical Chemistry B2013,117(24):7277-7282.
    [53] M.B. Stewart, S.R. Gray, T. Vasiljevic, J.D. Orbell. Exploring the molecular basis forthe metal-mediated assembled of alginate gels. Carbohydrate Polymers2014,102:246-253.
    [54]介万奇.晶体生长原理与技术[M].科学出版社,2010.
    [1] L. Yu, J.D. Ding. Injectable hydrogels as unique biomedical materials. ChemicalSociety Reviews2008,37:1473-1481.
    [2] S. Sofia, M.B. McCarthy, G. Gronowicz, D.L. Kaplan. Functionalized silk-basedbiomaterials for bone formation. Journal of Biomedical Materials Research2001,54(1):139-148.
    [3] G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen, H. Lu, J.Richmond, D.L. Kaplan. Silk-based biomaterials. Biomaterials2003,24(3):401-416.
    [4] H.B. Fan, H.F. Liu, S.L. Toh, J.C.H. Goh. Enhanced differentiation of mesenchymalstem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold.Biomaterials2008,29(8):1017-1027.
    [5] P.H.G. Chao, S. Yodmuang, X.Q. Wang, L. Sun, D.L. Kaplan, G. Vunjak-Novakovic.Silk hydrogel for cartilage tissue engineering. Journal of Biomedical MaterialsResearch Part B Applied Biomaterials2010,95B(1):84-90.
    [6] Y.M. Yang, X.M. Chen, F. Ding, P.Y. Zhang, J. Liu, X.S. Gu. Biocompatibilityevaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials2007,28(9):1643-1652.
    [7] J.N. Wang, Y.L. Wei, H.G. Yi, Z.W. Liu, D. Sun, H.R. Zhao. Cytocompatibility of a silkfibroin tubular scaffold. Materials Science and Engineering C2014,34:429-436.
    [8] N. Kuboyama, H. Kiba, K. Arai, R. Uchida, Y. Tanimoto, U.K. Bhawal, Y. Abiko, S.Miyamoto, D. Knight, T. Asakura, N. Nishiyama. Silk fibroin-based scaffolds forbone regeneration. Journal of Biomedical Materials Research Part B AppliedBiomaterials2013,101B(2):295-302.
    [9] J.S. Chen, G.H. Altman, V. Karageorgiou, R. Horan, A. Collette, V. Volloch, T. Colabro,D.L. Kaplan. Human bone marrow stromal cell and ligament fibroblast responses onRGD-modified silk fibers. Journal of Biomedical Materials Research Part A2003,67A(2):559-570.
    [10] B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park. Electrospinning of silkfibroin nanofibers and its effect on the adhesion and spreading of normal humankeratinocytes and fibroblasts in vitro. Biomaterials2004,25(7-8):1289-1297.
    [11] J.X. Wang, R. Ye, Y.H. Wei, H.H. Wang, X.J. Xu, F. Zhang, J. Qu, B.Q. Zuo, H.X.Zhang. The effects of electrospun TSF nanofiber diameter and alignment on neuronaldifferentiation of human embryonic stem cells. Journal of Biomedical MaterialsResearch Part A2012,100A(3):632-645.
    [12] B.B. Mandal, S.C. Kundu. Cell proliferation and migration in silk fibroin3D scaffolds.Biomaterials2009,30(15):2956-2965.
    [13] K. Li, K.Y. Pu, L.P. Cai, B. Liu. Phalloidin-Functionalized hyperbranched conjugatedpolyelectrolyte for filamentous actin imaging in living hela cells. Chemistry ofMaterials2011,23(8):2113-2119.
    [14] A.J. Meinel, K.E. Kubow, E. Klotzsch, M. Garcia-Fuentes, M.L. Smith, V. Vogel, H.P.Merkle, L. Meinel. Optimization strategies for electrospun silk fibroin tissueengineering scaffolds. Biomaterials2009,30(17):3058-3067.
    [15] N. Bhardwaj, S.C. Kundu. Chondrogenic differentiation of rat MSCs on porousscaffolds of silk fibroin/chitosan blends. Biomaterials2012,33(10):2848-2857.
    [16] W.B. Amos, J.G. White. How the confocal laser scanning microscope enteredbiological research. Biology of the Cell2003,95(6):335-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700