超声场对高强铝合金凝固过程的影响规律与作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:大规格铝合金铸锭成形成性困难是发展我国航空航天和武器装备用大型整体结构件所面临的技术瓶颈。对铝合金凝固过程施加超声波扰动是改善铸造缺陷、提高铸锭品质、提升材料性能的一个新的工艺途径。全面理解与系统掌握超声场对铝合金凝固过程的影响规律与作用机理是实现这一工艺的关键。然而,现有关于超声波处理熔体技术的研究大多以经验和现象描述为主,缺乏定量的表征与本质的揭示。针对于此,本论文以航空航天用高强高韧7×××系铝合金为研究对象,通过实验测试、理论推导、数值模拟等方法,对超声场作用下铝合金熔体的凝固行为及其产生机制进行了深入探讨。论文的主要研究内容与结论如下:
     1)进行了一系列铝合金熔体凝固传热分析实验。结果表明:施加超声场可以改善温度场分布的均匀性,并且能够明显加快熔体的整体凝固进程,尤其是显著提高固-液相区熔体冷却速率,使其相应的冷却时间缩短约2/3。而另一方面,超声辐射杆本身对铝合金熔体传热的影响非常微小,可以忽略不计。
     2)研究了不同工艺处理条件对铝合金凝固组织的影响规律。实验证明超声波对铸锭的细晶效果并非辐射杆端面的激冷形核所致,也与从辐射杆中分离出来的钛元素无关,而是主要归功于超声空化促成的形核增殖与谐振效应抑制了晶体生长。
     3)在归结实验现象的基础上,分别建立了压力过冷模型、毛细浸润模型与初生晶体谐振模型。通过计算与分析,全面揭示了超声场对铝合金熔体凝固过程不同阶段的主导作用机理。在结晶温度区段,超声主要通过空化效应,以压力过冷、异质活化促进熔体形核的方式,提高形核率,实现铸锭晶粒的细化;在固-液相共存温度区段,超声主要通过谐振效应,以晶体振幅增大、界面自由能级提高至相变驱动力减小的方式,控制晶体生长速度,实现铸锭晶粒的细化。通过进一步的计算发现铝合金熔体凝固体系中最易出现谐振的晶粒为1-10μm的初生晶体。
     4)开展了大规格7050铝合金铸锭的超声波外场辅助铸造工业实验,铸锭的规格分别达到了Φ550mm与1320mm×500mm。实验结果表明:多源超声场的协同作用可以促使铸锭全断面获得均匀的细化效果,晶粒度分别为1级(圆锭)和2级(扁锭),并且能够显著改善溶质元素的晶界偏析与宏观偏析,使其相对固溶率至少提高20%以上,同时还能提高铸锭的成品率与机械性能的均匀性。
     5)针对1320×500mm规格铝合金扁锭超声波半连铸工艺,以添加源项的方式,建立了声-流-热耦合的三维数值模型。通过Fluent软件与二次开发的子程序,实现对铝合金半连铸多源超声作用下的多物理场耦合过程模拟,获得了不同超声频率和振幅对宏观声场、流场与温度场的影响规律,初步确定了超声参数之间的匹配关系。
     这些研究工作将为推动铝合金超声波外场铸造技术的发展与工业应用提供工艺基础与理论参考。
Abstract:The formation of the qualified structure and performance is difficult in the casting of large size aluminum alloy ingot, which is a technical bottleneck in the development of large-scale integrated parts required for aerospace and weapon equipment in our country. Exerting ultrasonic disturbance to the solidification of aluminum alloy is a novel process approach for improving casting defects, enhancing ingot quality and promoting material performace. A comprehensive understanding and systematic mastering about the effect rules and function mechanism of ultrasonic field on the solidification of aluminum alloy is the key to realize this process. However, most of the comtemporary study had been empirical and phenomenological rather than quantitative expression and essential revealment. Based on this, the7xxx series aluminum alloy with a high strength and high tenacity was taken as the research object in this dissertation. Through the experimental testing, theoretical modeling, numerical simulation and other methods, the solidification beheavior of the aluminum alloy treated with ultrasound and its generation mechanism were discussed throughly. The main research contents and conclusions are as follows:
     (1)A series of experiments were carried to analyze the heat transfer during the solidification of aluminum alloy. The results show that ultrasonic treatment (UT) can not only improve the uniformity of temperature field distribution, but also speed up the solidification process of the melt obviously, in especial, significantly increase the cooling rate of solid-liquid phase zone melt so that its corresponding cooling time was shortened by about2/3. But on the other side, the ultrasonic radiator itself has little efffect on the heat transfer of the aluminum alloy melt so it can be be negligible.
     (2)The aluminum alloy melt was treated with different process conditions to study the rules of solidification structure formation of the aluminum alloy. The experiments confirm that the grain-refinement effect of the ingot obtained with UT is neither resulted from nucleation caused by the chilling effect of the radiating face nor the titanium element separated from the radiator, but owes to the nucleation proliferation induced by ultrasonic cavitation and the growth inhibition of crystals caused by resonance effect.
     (3)Based on the summarization of experimental phenomena, the models for pressure-suppercooling, capillary infiltration and the primary crystal resonance were established respectively. The dominant function mechanism of ultrasonic field on the solidification of Al alloy melt at different solidification stages was revealed comprehensively through the mathematical calculations and theoretical analysis. Researches show that with UT in the temperature range of crystallization, cavitation effect plays a leading role in grain refinement by promoting the nucleation of Al alloy melt in the ways of pressure-supercooling and heterogeneity activation; While with UT in the solid-liquid phase coexistence temperature range, the resonance effect plays a main role in grain refinement by inhibiting the grain growth in the ways that the phase transformation driving force is reduced as the free energy level of crystal interface increases, which is due to the increase of crystal vibration amplitude. Moreover, through further calculation, it is found that primary crystals with a size1~10μm are prone to resonate among the grains in the solidification sytem of aluminum alloy..
     (4)The industrial experiments of semi-continuous casting of large size7050aluminum alloy ingot with UT were conducted successfully. The size of the ingot reached Φ550mm and1320mm×500mm. Results show that the cooperative treatment of multi-source ultrasonic field can not only implement a homogeneous grain refinement effect of the whole cross section in ingots of which the crystal degree was level1(billet) and level2(slab) repectively, but also can significantly improved the grain boundary segregation and macro-segregation of solute elements. The solution rate of the main alloy elements was increased by more than20%. Meanwhile, the yield of the ingots and the uniformity of mechanical properties are able to be improved.
     (5)For the technology of ultrasonic semi-continuous casting of aluminum alloy slab with a size of1320mm×500mm, a three-dimensional numerical model based on the coupling of acoustic field, flow field and temperature field was established through adding an extra source term. It was realized by Fluent soft and user subroutine that the coupling process of the multi-field in semi-continuous casting with multi-source ultrasonic field was simulated. The matching rules among the ultrasonic parameters were preliminarily set down from the simulation results of distribution characteristics of macroscopical acoustic fied, flow field and temperature field that obtained with UT of difference frequency and amplitude.
     These studies will provide technical base and theoretical reference for promoting the development of the casting technology of aluminum alloy with outer ultarsoncid fied and its industrial applications.
引文
[1]国家自然科学基金工程与材料科学部.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社,2010:45-60.
    [2]方华婵,陈康华,巢宏,等.Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J].粉末冶金材料科学与工程,14(2009):351-355.
    [3]O. N. Senkov, R. B. Bhat, S. V. Senkova, et al, Effect of Sc and heat treatment on microstructure and properties of a 7xxx DC cast alloy [C]//The 9th Inter. Conf. on Aluminum Alloys, Australia,2004:501-506.
    [4]薛卫东,张瑞明.新型铝合金展望[J].机械工程与自动化,4(2004):89-92.
    [5]J. Liu, M. Kolak. A new paradigm in the design of Al alloys aerospace application [C]//Mater. Sci. Forum,2000(331-337):127-140
    [6]沈贤春.现代铝工业现状与发展趋势[J].有色金属再生与利用,12(2004):29-32.
    [7]吴一雷,李永伟,强俊,等.超高强铝合金的发展与应用[J].航空材料学报,1(1994):49-55.
    [8]宋仁国.高强度铝合金的研究现状和发展趋势[J].材料导报,1(2000):20-21.
    [9]曾渝,尹志民,潘青林,等.超高强合金的研究现状及发展趋势[J].中南工业大学学报,2002,33(6):592-596.
    [10]尚俊玲,陈维平,李元元.中国铸造行业发展战略分析[J].铸造技术,2007,28(10):1386-1389.
    [11]M. Nakai. New aspects of development of high strength aluminum alloys for aerospace applications [J]. Materials Science and Engineering A,2000, A285(1): 62-68.
    [12]A. Heinz, A. Haszler, C. Keidel, et al. Recent development in aluminum alloys for aerospace applications [J]. Materials Science and Engineering A,2000,280(1): 10.
    [13]A. Zielinski, J. Chrzanowski, M. Warmuzek, et al. Influence of retrogression and reaging on microstructure, mechanical properties and susceptibility to stress corrosion cracking of an Al-Zn-Mg alloy [J]. Materials and Corrosion.2004, 55(2):77-87.
    [14]中国科学院先进材料领域战略研究组.中国至2050年先进材料科技发展路线图[M].北京:科学出版社,2009:62-75.
    [15]李晓红.航空新材料与飞机、发动机的发展[J].大视野,8(2008):21-23
    [16]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2006:25-28.
    [17]田荣璋,王祝堂.铝合金及其加工手册[M].长沙:中南大学出版社,2001:425-426.
    [18]Burke, J. E., and D. Turnbull. Recrystallization and grain growth [J]. Progress in Metal Physics.3 (1952):220-292.
    [19]Cohen M, Machlin E S and Paranjpe V G. Thermodynamics in Physical Metallurgy [J]. ASM, Metals Park, OH,1950:242.
    [20]边房秀,邹新国,李广荣,等.金属晶粒自身细化[J].金属学报,1997,33(6):602-607.
    [21]朱兆军,王宏伟,魏尊杰.Al-5Ti-1B对A357合金晶粒细化作用的研究[J].材料科学与工艺,2006,14(2):171-177.
    [22]钱小兵,陈乐平,周全.脉冲磁场对H62黄铜凝固组织和力学性能的影响[J].特种铸造及有色合金,2013,33(8):781-784.
    [23]程晓,黄胜.晶粒细化对铸造A1-7Zn-2.5Mg-Cu合金性能的影响[J].特种铸造及有色合金,2012,32(11):991-994.
    [24]班春燕.电磁场作用下铝合金凝固理论基础研究[D].沈阳:东北大学,2002.
    [25]P. Gearaldtennyson, P. Kumar, H.Lakshmi, et al. Experimental studies and phase field modeling of micro structure evolution during solidification with electromagnetic stirring [J]. Trans. Nonferrous Met. Soc. China,2010,20 (5): 774-780.
    [26]A.D.Sneyd. Theory of electromagnetic stirring by AC fields [J]. IMA Journal of Mathematics Applied in Business & Industry,1993,4(5):87-113.
    [27]左玉波,崔建忠,赵志浩等.低频电磁铸造7050铝合金的组织与性能[J].东北大学学报:自然科学版,2008,29(1):77-80.
    [28]李吉祥,阎志明,罗大伟,等.电磁参数对7050铝合金凝固组织及元素分布的影响[J].铸造,2009,157(11):1136-1141.
    [29]Chen Xing-run, Zhang Zhi-feng, Xu Jun. Effects of annular electromagnetic stirring processing parameters on semi-solid slurry production [J]. Trans. Nonferrous Met. Soc. China,20 (2010):s873-s877.
    [30]J. X, T. T. MEEK, H. Q. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration [J]. Scripta Materialia,2006,54(5): 893-896.
    [31]G. I. Eskin, V. S. Sinyavskii, V. V. Usova. Regularities of the intensifying effect of ultrasonic treatment in titanium alloy pickling [J]. Protection of Metals,2003, 39(6):614-623.
    [32]Chernov D K. Reports of the Imperial Russian Metallurgical Society [R]. Russia: 1878.
    [33]Boyle R W. Cavitation in the propagation of sound [J]. Transactions of Royal Society of Canada,1922,3(16):157.
    [34]Boyle R W, Taylor G B, Froman D K. Cavitation in the Track of an Ultrasonic Beam[J]. Phys. Rev.(Ⅱ),1929,27:518.
    [35]Sokolov S Y. Sur L'influence des ondes ultra-soniques sur les reactions chimiques [J]. Techn. Phys. URSS,1936,3:176.
    [36]Seemann H J. Metallforschung mit Ultraschall [J]. Metallwirtsch,1936,15:1067.
    [37]Schmid G, Ehret L. Beeinflussung der Metallpassivitat durch Ultraschall [J]. Zeitschrift fur Elektrochemie und angewandte physikalische Chemie,1937,43(6): 408-415.
    [38]Danilov V I, Kh G. Chedzhemov, Problems of Physical Metallurgy and the Physics of Metals [J]. Metallurgizdat,1955,4:34.
    [39]O. V. Abramov. Ultrasound in Liquid and Solid Metals [M]. Boca Raton, CRC Press,1994:289-329.
    [40]Abramov O V. High-intensity ultrasonics:theory and industrial applications [M]. CRC Press,1999:152-155.
    [41]Eskin G I. Ultrasonic treatment of light alloy melts [M]. CRC Press,1998:66-69.
    [42]Eskin G I. Ultrasonic in Metallurgy [M]. Moscow:Metallurgizdat,1960:48-55.
    [43]Lane D H, Cunningham J W, Tiller W A. The Application of ultrasonic energy to ingot solidification [J]. Transactions of the American Institute of Mining and Metalllurgical Engineers,1960,218 (6):985-990.
    [44]Rai G, Lavernia E, Grant N J. Powder size and distribution in ultrasonic gas atomization [J]. JOM,1985,37(8):22-26.
    [45]Bergmann L, Bergmann L, Bergmann L, et al. Der ultraschall und seine anwendung in wissenschaft und technik [M]. Hirzel,1949:78.
    [46]Pohlman R, Cichos M. Apparatus for disintegrating concertions in body Cavities of living organisms by means of an ultrasonics probe:U.S. Patent 3,823,717[P]. 1974-7-16.
    [47]Mason T J, Zhao Y. Enhanced extraction of tea solids using ultrasound [J]. Ultrasonics,1994,32(5):375-377.
    [48]Crawford A E. Ultrasonic Engineering:With Particular Reference [M]. Butterworths Scientific Publications,1955:60.
    [49]赵忠兴,穆玉刚,周广英.超声振动对铸造合金结晶过程的影响[J].沈阳工业学院学报,1997,16(3):9-13
    [50]赵忠兴,毕鉴智,郑一等.铝合金超声铸造技术[J].特种铸造及有色合金,1999(1):13-15
    [51]陈锋.振动作用下铝合金的凝固组织与性能特点[D].南京:东南大学,材料科学工程学院,1990.
    [52]李英龙,李宝绵,刘永涛.功率超声对Al-Si合金组织和性能的影响[J].中国有色金属学报,1999,9(4):719-722
    [53]陈锋,舒光冀,马立群,等.高能超声作用下数种金属基复合材料的制备及机制[J].复合材料学报,1998,15(3):12-16
    [54]赵君文,吴树森,万里,等.超声场中金属半固态浆料组织的演化[J].金属学报,2009,45(3):314-319.
    [55]乔翔,张志高,李建涛,等.铸造过程中超声处理对7050铝合金变形及热处理的影响[J].金属热处理,2011,36(12):62-65.
    [56]王乐酉,吴文祥,马科,等.超声振动对7055铝合金组织及力学性能的影响[J].材料科学与工艺,2010,18(6):838-842.
    [57]蒋日鹏,李晓谦,张雪,等.超声对铝合金凝固传热与组织形成的影响与作用机制[J].中南大学学报:自然科学版,2012,43(10):3807-3813.
    [58]李晓谦,林森,蒋日鹏.AlTiC细化剂经超声波活化处理的细晶效果及其作用机理[J].华中科技大学学报:自然科学版,2013,41(6):11-15.
    [59]Ripeng Jiang, Xiaoqian Li, Lihua Zhang. Effects of Vibration Frequency on Ultrasonic Degassing of Molten Aluminum Alloy, Information Technology Journal,2013,12 (22):6817-6821.
    [60]Li X. Q., Jiang R. P., L. Li ZH., et al. Characteristics and formation mechanism of segregation during the solidification of aluminum alloy with ultrasonic radiation, Materials Science Forum,2012 (697-698):383-388.
    [61]蒋日鹏,李晓谦,鞠增业,等.铝合金超声波半连铸多场耦合的模拟与实验.华南理工大学学报:自然科学版,2014,42(4):86-90.
    [62]谢恩华.铝合金超声凝固熔池流场数值模拟及实验研究[D].长沙:中南大学,2009.
    [63]X. Jian, H. Xu, T.T. Meek, Q. Han. Effect of power ultrasound on solidification of aluminum A356 alloy [J]. Materials Letters,59 (2005):190-193.
    [64]Irsid. Ultrasonic Can Replace Mould Oscillation during Billet Casting [J]. Steel Times Int,1989,10 (5):45.
    [65]Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys [J]. Ultrasonics Sonochemistry,2001,8 (3):319.
    [66]Eskin G I. Effect of ultrasonic (cavitation) treatment of the melt on the microstructure evolution during solidification of aluminum alloy ingots. Zeitschrift fuer Metallkunde [J],2002,93 (6):502.
    [67]Komarov S V, Kuwabara M, Abramov O V. High power ultrasonics in pyrometallurgy:Current status and recent development [J]. ISIJ international, 2005,45 (12):1765.
    [68]Yasuda K, Saiki Y, Kubo T, et al. Influence of high-power ultrasonic irradiation on primary nucleation process during solidification [J]. Japanese Journal of Applied Physics Part 1 Regular Papers Short Notes and Review Papers,2007,46 (7B):4939.
    [69]Hunt J D, Jackson K A. Nucleation of solid in an undercooled liquid by cavitation [J]. Journal of Applied Physics,1966,37(1):254.
    [70]Hanbing Xu, Xiaogang Jian, Thomas T. Meek. Qingyou Han. Degassing of molten aluminum A356 alloy using ultrasonic vibration [J]. Materials Letters, 2004 (58):3669-3673.
    [71]Hanbing Xu, Thomas T. Meek, Qingyou Han. Effects of ultrasonic field and vacuum on degassing of molten aluminum alloy [J]. Materials Letters,2007 (61): 1246-1250.
    [72]Hanbing Xu, Qingyou Han, Thomas T. Meek. Effects of ultrasonic vibration on degassing of aluminum alloys [J]. Materials Science and Engineering A,2008 (473):96-104.
    [73]车欣.ALMGRE系变形铝合金的显微组织及力学性能[D].沈阳:沈阳工业大学,2007.
    [74]Karabin M E, Barlat F, Schultz R W. Numerical andexperimental study of the cold expansion process in 7085 plate using a modified split sleeve [J]. Journal of Materials ProcessingTechnology,2007,189 (1/2/3):45-57.
    [75]Chakrabarti D J, Liu J, Sawtell R R, et al. New generation high strength high damage tolerance 7085 thick alloy product with low quench sensitivity [J]. Materials Forum,2004,28:969-974.
    [76]Zocchi M L. Ultrasonic assisted lipoplasty, technical refinements and clinical evaluations [J]. Clin Plast Surg,1996,23(4):575-598.
    [77]Nadella R, Eskin D G, Du Q, Katgerman L. Macrosegregation in direct-chill casing of aluminium alloys [J]. Progress of Materials science,2008,53:421-480.
    [78]Ohno A. The solidification of metals. Tokyo [M]. Chijin Shokan Company,1976: 88-91
    [79]Ohno A. Solidification:The separation theory and its practical applications [M]. Berlin and New York:Springer-Verlag,1987:62-64.
    [80]赵世链.铝合金超声半连铸结晶器溶池流场数值模拟及试验研究[D].长沙:中南大学,2010.
    [81]何迁,李建国,何北星.功率超声对纯铝凝固组织的影响[J].轻合金加工技术,2008,36(12):14.
    [82]谢恩华,李晓谦.超声波对铝合金熔体的有效细化区域[J].材料科学与工艺,2010,(2):149.
    [83]Kobashi M, Inoguchi N, Kanetake N. Effect of elemental powder blending ratio on combustion foaming behavior of porous Al-Ti intermetallics and Al< sub> 3Ti/Al composites [J]. Intermetallics,2010,18 (5):1039.
    [84]Che H Q, Fan Q C. Microstructural evolution during the ignition/quenching of pre-heated Ti/3Al powders [J]. Journal of Alloys and Compounds,2009,475 (1): 184.
    [85]Kashyap K T, Chandrashekar T. Effects and mechanisms of grain refinement in aluminium alloys [J]. Bulletin of Materials Science,2001,24 (4):345.
    [86]孙雪迎.Al-Ti-B,Al-Ti-C中间合金细化铝及铝合金机制研究[D].北京:清华大学,20112
    [87]张柏清,马洪涛,李建国,等.AI-Ti-C中间合金细化剂的组织及其细化性能[J].金属学报,2000,36(4):341.
    [88]马洪涛,李建国,张伯清,等.AlTiC中间合金细化铝时结晶核心的研究[J].金属热处理,1999,40(10):1-3.
    [89]A L Greer. The mechanism of grain refinement of aluminum[C]//Third International conference on solidification and gravity. Miskolc, Hungary:1999, 26-29.
    [90]Yu L N, Liu X F. Ti transition zone on the interface between TiC and aluminum melt and its influence on melt viscosity [J]. Journal of Materials Processing Technology,2007,182:519-524.
    [91]李英龙,陈彦博,王顺成,等.Al-5Ti-0.25C细化剂合金微观组织与细化性能 [J].铸造,2004,53(5):358-361.
    [92]R.Nadella, D.GEskin, L.Katgerman. Effect of Grain Refinement on Structure Evolution, "Floating" Grains and Centerline Macrosegregation in Direct-Chill Cast AA2024 Alloy Billets[J]. Metallurgical and Materials Transaction A.2008, 39:450-461 [J]. Materials Science and Technology.2007,23 (11):1327-1355.
    [93]Mondolfo L F. Structure and Properties of Aluminum Alloys [M]. London: Butterworths Press,1976:200-400.
    [94]王家听.金属的凝固及其控制[M].北京:机械工业出版社,1988:33.
    [95]Konovalov E G, Germanovich I N. The ultrasonic capillary effect[C]//Dokl. Akad. Nauk BSSR.1962,6 (8):492-493.
    [96]李守中.共振[M].北京:科学出版社,1987:10-36.
    [97]董学武.激振频率对振动凝固铸件残余应力的影响[J].铸造,2000,49(11:816-818.
    [98]陶红标,张慧,王玫.振动激发金属液形核对锌凝固组织的影响[J].中国冶金,2007,17(11):45-62.
    [99]Moussavi S. A Generalization of Young's Theorem [J]. MJMS,1992,4:76-87.
    [100]黄再兴,郑泉水.表面能对纳米颗粒的晶格收缩和固有频率的影响[J].力学学报,1998,30(2):247-251.
    [101]N.Nishiguchi, T. Sakuma, Vibrational Spectrum and Specific Heat of Fine Particles [J]. Solid State Communication,1981,38 (11):1073-1077.
    [102]西泽泰二,郝士明译.微观组织热力学[M].北京:化学工业出版社,2006:118-219.
    [103]马维策.7050铝合金大圆锭半连铸凝固过程数值模拟及裂纹倾向性分析[D].长沙:中南大学,2009.
    [104]黄永强.机械振动理论[M].北京:机械工业出版社,1996:32-33.
    [105]吴钰.超声振动对7050铝合金熔体凝固动力学过冷度的研究[D].长沙:中南大学,2009.
    [106]赵汉中.工程流体力学[M].武汉:华中科技大学出版社,2005:161-164.
    [107]M. C. Flemings. Behavior of Metal Alloys in the Semisolid State [J]. Metall Trans,1991,22A(5):957-981
    [108]Y. Waseda, K. Suzuki. Interionic potentials in liquid metals including liquid noble and transition metals [J]. Physica Status Solidi (B),1973,27 (1):351-367
    [109]胡汉起.金属凝固原理.第二版[M].北京:机械工业出版社,2000:58-60.
    [110]Turnbull D. Formation of crystal nuclei in liquid metals [J]. J Appl Phys, 1999(21):1022-1024.
    [111]Eskin Georgy I. Effect of ultrasonic (cavitation) treatment of the melt on the microstructure evolution during solidification of aluminum alloy ingots [J]. Zeitschrift fuer Metallkunde,2007,93 (6):502-507.
    [112]Zhou Ji-xuel,Yang Yuan-shen,Tong Wen. Effect of cooling rate on the solidified microstructure of Mg-Gd-Y--Zr alloy [J]. Rare Metal Materials and Engineering, 2010,39(11):1899-190.
    [113]Kashchiev D. Interrelation between cluster formation time, cluster growth probability and nucleation rate [J]. Journal of Chemical Physics,2007,127 (6): 4505-4509.
    [114]陈立佳.材料科学基础[M].北京:冶金工业出版社,2007:63-64.
    [115]肖纪美.合金相与相变(第二版)[M].北京:冶金工业出版社,2004:63-65.
    [116]Q. Du, D. G. Eskin, Katgerman L. Modeling Macrosegregation during Direct-Chill Casting of Multicomponent Aluminum Alloys [J]. Metall Mater Trans A,2007(38):180-185.
    [117]D.G. Eskin, Q. Dua, L. Katgerman L. Relationship between shrinkage-induced macrosegregation and the sump profile upon direct-chill casting [J]. Scripta Mater, 55(2006):715-718.
    [118]LAURENTIU NASTAC. Mathematical modeling of the solidification structure evolution in the presence of ultrasonic stirring [J]. METALLURGICAL AND MATERIALS TRANSACTION B,2011,31(4):10-17.
    [119]李建超,谢麒麟,王宝峰,等.铸造铝合金圆锭温度场实验研究和数值模拟[J].特种铸造及有色合金,2006,26(6):337-339.
    [120]汤林志,李志辉,范云强,等.半连续铸造高合金化铝合金过程的数值模拟[J].特种铸造及有色合金,2013,33(8):707-710.
    [121]肖超,张炯明,罗衍昭,等.大方坯连铸过程凝固规律[J].北京科技大学学报,2012,34(9):1011-1016.
    [122]金学伟,王长松,张玉宝,等.板坯连铸凝固过程动态耦合数值模拟[J].过程工程学报,2009(02):233-237.
    [123]O. Louisnard. A simple model of ultrasound propagation in a cavitating liquid. Part Ⅱ:Primary Bjerknes force and bubble structures [J]. Ultrasonics Sonochemistry,2012 (19):66-76.
    [124]V. F. Humphrey. Ultrasonic Review [J]. Progress in Biophysics and Molecular Biology,2007 (93):195-211.
    [125]Vinay Raman, Ali Abbas, Sunil, et al. Mapping local cavitation events in high intensity ultrasound fields [C]//COMSOL Users Conference, Bangalore,2006.
    [126]于海岐,朱苗勇.圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J].金属学报,2008,44(12):1465-1473.
    [127]Goldschmit, M.B., R. J. Principe, M. Koslowski. International Journal for Numerical Methods in Engineering [J].1999(46):1505.
    [128]Guthrie R I L, Tavares R P. Mathematical and physical modelling of steel flow and solidification in twin-roll/horizontal belt thin-strip casting machines [J]. Applied Mathematical Modelling,1998,22(11):851-872.
    [129]张晓明.双辊连铸薄带钢过程数值模拟及实验研究[D].沈阳:东北大学,2005.
    [130]金珠梅,赫冀成,徐广儁.双辊连续铸轧工艺中流场,温度场和热应力场的数值模拟金属学报[J].2000,36(4):391-394.
    [131]Francisco Javier TRUJILLO, Kai KNOERZER. CFD modeling of the acoustic streaming induced by an ultrasonic horn reactor [C]//Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia,2009.
    [132]王楠,邹宗树.钢铁冶金过程数学模型[M].北京:科学出版社,2011:98-102.
    [133]Weckman D C, Niessen P. A numerical simulation of the DC continuous casting process including nucleate boiling heat transfer [J]. Metallurgical Transaction B, 1982 (13B):593-602.
    [134]Young K P, Kerkwood D H. The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions [J]. Metallurgical Transactions A, 1975,6(1):197-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700